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A Near-Optimal Linear Crosstalk
Canceler for VDSL

Raphael Cendrillon, George Ginis, Etienne Van den Bogaert, Marc Moonen

Abstract— Crosstalk is the major source of performance degra-
dation in VDSL. Several crosstalk cancelers have been proposed
to address this. Unfortunately they suffer from error propagation,
high complexity and long latency. In this paper we present a
simple, linear zero forcing (ZF) crosstalk canceler. This design
has a low complexity, no latency and does not suffer from error
propagation. Furthermore, due to the well conditioned structure
of the VDSL channel matrix, the ZF design causes negligible
noise enhancement. A lower bound on the performance of the
linear ZF canceler is derived. This allows performance to be
predicted without explicit knowledge of the crosstalk channels,
which simplifies service provisioning considerably. This bound
shows that the linear ZF canceler operates close to the single-
user bound. So the linear ZF canceler is a low complexity, low
latency design with predictable, near-optimal performance. The
combination of spectral optimization and crosstalk cancellation
is also considered. Spectra optimization in a multi-access channel
generally involves a highly complex optimization problem. Since
the linear ZF canceler decouples transmission on each line,
the spectrum on each modem can be optimized independently,
leading to a significant reduction in complexity.

Index Terms— Crosstalk cancellation, diagonal dominance,
digital subscriber lines, dynamic spectrum management, linear,
reduced complexity, vectoring

EDICS— 3-TDSL

I. INTRODUCTION

Next generation DSL systems such as VDSL aim at pro-
viding extremely high data-rates, up to 52 Mbps in the
downstream. Such high data-rates are supported by operating
over short loop lengths and transmitting in frequencies up
to 12 MHz. Unfortunately, the use of such high frequency
ranges causes significant electromagnetic coupling between
neighbouring twisted pairs within a binder. This coupling
creates interference, referred to as crosstalk, between the DSLs
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within a network. Over short loop lengths crosstalk is typically
10-15 dB larger than the background noise and is the dominant
source of performance degradation.

In upstream communications the receiving modems are
often co-located at the central office (CO) or at an optical
network unit (ONU) located at the end of the street. This
allows joint reception of the signals transmitted on the different
lines, thereby enabling crosstalk cancellation.

Several crosstalk canceler designs have been proposed. A
decision feedback structure was shown to achieve close to
the theoretical channel capacity[1] and is described in more
detail in Sec. IV. Unfortunately this structure suffers from
error propagation. To minimize the effects of error propagation
each user’s data-stream must be decoded before decisions are
fed back. This leads to a high computational complexity and
a latency that grows with the number of users in the binder.
Binders can contain hundreds of lines. As a result, it is difficult
to apply this design in real-time applications such as voice over
IP or video conferencing.

Other cancellation techniques use turbo coding principles
to facilitate cancellation[2][3] or exploit the cyclostationarity
of crosstalk[4][5]. The advantage of these methods is that
they do not require signal coordination, and can instead be
applied independently on each modem. Unfortunately these
techniques are extremely complex and give poor performance
when more than one crosstalker exists. Other techniques
use joint linear processing at both the transmit and receive
side of the link[6][7]. This requires co-location of both CO
and customer premises (CP) modems, which is typically not
possible since different customers are situated at different
locations. Furthermore, it has been shown that the theoretical
channel capacity is achievable with receiver-side coordination
only, so using coordination on both ends of the link does not
improve performance[8].

In this paper we present a simple, linear zero forcing (ZF)
crosstalk canceler. This design has a low complexity, no la-
tency and does not suffer from error propagation. Furthermore
since it is based on a ZF criterion it removes all crosstalk.
Despite these advantages it is well known that ZF criteria can
lead to severe noise enhancement in ill-conditioned channels.

To address this concern, this paper analyzes the performance
of the linear ZF canceler in the VDSL environment. It is shown
that due to the well conditioned structure of the VDSL channel
matrix ZF designs cause negligible noise enhancement. As
a result, this simple linear structure achieves near-optimal
performance. We develop bounds to show that the linear ZF
canceler operates close to the single-user bound in VDSL
channels. These bounds allow the performance of the linear
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ZF canceler to be predicted without explicit knowledge of
the crosstalk channels, which simplifies service provisioning
significantly.

The rest of this paper is organized as follows. The system
model for a network of VDSL modems transmitting to a single
CO/ONU is given in Sec. II. A property of the upstream
VDSL channel, known as column-wise diagonal dominance
(CWDD), is explored. As described in Sec. III, from an infor-
mation theoretical perspective, the upstream VDSL channel
is a multi-access channel (MAC). This allows the single-
user bound to be applied to upper bound the capacity of the
channel. Sec. IV describes the current state-of-the-art solution,
the multi-user decision feedback canceler (DFC), and the
problems it has with error propagation, high complexity and
latency.

To address the problems of the DFC, Sec. V describes
a much simpler linear design that has a low complexity,
no latency and is free from error propagation. Sec. V uses
the CWDD property to formulate a lower bound on the
performance of the linear ZF canceler. This bound shows that
the linear canceler operates close to the single-user bound. Sec.
VI describes power loading algorithms for use with the linear
canceler. Existing power loading algorithms for the MAC are
extremely complex, having a polynomial complexity in the
number of lines and tones. Application of the linear canceler
decouples the power allocation problem between lines. As a
result the PSD for each line can be found through a low-
complexity waterfilling procedure and this simplifies power
allocation significantly. Sec. VII compares the performance of
the different cancelers based on simulations.

II. SYSTEM MODEL

Assuming that the modems are synchronized and discrete
multi-tone (DMT) modulation is employed we can model
transmission independently on each tone

yk = Hkxk + zk. (1)

Synchronization is straight-forward to implement when the
receiving modems are co-located, which is the assumption
we make here. The vector xk ,

[
x1

k , · · · , xN
k

]T contains
transmitted signals on tone k, where the tone index k lies in
the range 1 . . .K. There are N lines in the binder and xn

k is
the signal transmitted onto line n at tone k. The vectors yk and
zk have similar structures. The vector yk contains the received
signals on tone k. The vector zk contains the additive noise on
tone k and is comprised of thermal noise, alien crosstalk, RFI
etc. The N ×N matrix Hk is the crosstalk channel matrix on
tone k. The element hn,m

k , [Hk]n,m is the channel from TX
m to RX n on tone k. The diagonal elements of Hk contain
the direct-channels whilst the off-diagonal elements contain
the crosstalk channels. We denote the transmit PSD of user n
on tone k as sn

k , E
{
|xn

k |
2
}

.
Since the receiving modems are co-located, the crosstalk

signal transmitted from a disturber into a victim must prop-
agate through the full length of the disturber’s line. This is
depicted in Fig. 1, where CP 1 is the disturber and CO 2 is
the victim. The insulation between twisted pairs increases the

attenuation. As a result, the crosstalk channel matrix Hk is
CWDD, since on each column of Hk the diagonal element
has the largest magnitude

|hn,m
k | � |hm,m

k | , ∀m 6= n. (2)

CWDD implies that the crosstalk channel hn,m
k from a dis-

turber m into a victim n is always weaker than the direct
channel of the disturber hm,m

k . The degree of CWDD can be
characterized with the parameter αk

|hn,m
k | ≤ αk |h

m,m
k | , ∀m 6= n. (3)

Note that crosstalk cancellation is based on joint reception.
As such it requires the co-location of receiving modems. So
in all channels where crosstalk cancellation can be applied
the CWDD property holds. CWDD has been verified through
extensive measurement campaigns of real binders. In 99% of
lines αk is bounded

αk ≤ Kxf · fk ·
√

dcoupling,

where Kxf = −22.5 dB and fk is the frequency on tone k
in MHz[9]. Here dcoupling is the coupling length between the
disturber and the victim in kilometers. The coupling length
can be upper bounded by the longest line length in the binder.
Hence

αk ≤ Kxf · fk ·
√

lmax, (4)

where lmax denotes the length of the longest line in the binder.
To find a value for αk that is independent of the particular
binder configuration, lmax can be set to 1.2 km, which is the
maximum deployment length for VDSL[9]1. On typical lines
αk is then less than -11.3 dB. The following sections show that
CWDD ensures a well-conditioned crosstalk channel matrix.
This results in the near-optimality of the linear ZF canceler.

When VDSL modems are distributed from an ONU the
noise on each line is typically spatially white and we make
this assumption here

E
{
zkz

H
k

}
= σkIN . (5)

When VDSL modems are distributed from a CO the noise
on each line may be correlated due to the presence of strong
alien crosstalk. In this case a noise pre-whitening operation
must be applied prior to crosstalk cancellation. This noise pre-
whitening may destroy the CWDD property of the channel
matrix Hk. In this case the linear ZF canceler is no longer
optimal, and more complex decision feedback structures must
be employed[8]. Nevertheless, most VDSL deployments will
occur from the ONU, where the assumption of spatially white
noise is valid. The linear ZF canceler developed in this paper
then provides a low complexity, low latency, near-optimal
design.

1Standardization groups are currently considering the deployment of
VDSL2 at lengths greater than 1.2 km[10]. However at such distances far-end
crosstalk is no longer the dominant source of noise, and the benefits of far-end
crosstalk cancellation are reduced considerably.
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Fig. 1. Column-wise Diagonal Dominance |h11| � |h21|

III. THEORETICAL CAPACITY

We start with a bound on the theoretical capacity of the
VDSL channel with coordinated receivers. This will prove
useful in evaluating crosstalk canceler performance since it
provides an upper bound on the achievable data-rate with any
possible crosstalk cancellation scheme.

Theorem 1: The capacity of user n with a fixed transmit
spectrum sn

k is upper bounded by

Rn ≤
∑

k

bn
k,bnd(s

n
k ) (6)

where the data-rate of user n on tone k is upper bounded by

bn
k,bnd(s

n
k ) , ∆f log2

(
1 + Γ−1σ−1

k sn
k |hn,n

k |
2 [

1 + α2
k (N − 1)

])
,

(7)
and ∆f denotes the tone-spacing.

Proof of Theorem 1: CO modems are co-located and do
reception in a joint fashion, so from an information theoretical
perspective this is a multi-access channel. We start by consid-
ering the so-called single-user bound, which is the capacity
achieved when only one user (CP modem) transmits and all
receivers (CO modems) are used to detect that user. Since only
one user transmits the received signal at the CO is

yk = hn
kxn

k + zk,

where hn
k denotes the nth column of Hk. Using the single-

user bound the achievable bitloading of user n on tone k is
limited to

bn
k ≤ ∆f I(xn

k ;yk),

= ∆f log2

(
1 + σ−1

k sn
k ‖hn

k‖
2
)

,

where I(a; b) denotes the mutual information between a and
b and (5) is used in the second line. To account for the sub-
optimality of practical coding schemes, we include the SNR-
gap to capacity Γ [11]. This results in the following achievable
bitloading of user n on tone k.

bn
k = ∆f log2

(
1 + Γ−1σ−1

k sn
k ‖hn

k‖
2
)

. (8)

In the single-user case with spatially white noise, the single-
user bound can be achieved by applying a matched filter to the
received vector yk. The estimate of the transmitted symbol is
then

x̂n
k = ‖hn

k‖
−2
2 (hn

k )
H

yk ,

= xn
k + ‖hn

k‖
−2
2 (hn

k )
H

zk,

where (·)H denotes the Hermitian transpose. In the multi-
user case, the single-user bound can be achieved by detecting
a user last in a successive interference cancellation (SIC)
structure[12], [8].

The CWDD property (3) leads to the bound

‖hn
k‖

2
2 = |hn,n

k |
2
+
∑

m6=n

|hm,n
k |

2
,

≤ |hn,n
k |

2 [
1 + α2

k (N − 1)
]
, (9)

which leads to (6).
Multi-user techniques are often used in wireless systems

and lead to large increases in the signal power at the receiver.
The observation is that if the path from transmit antenna n
to receive antenna n is weak, then the path from transmit
antenna n to receive antenna m might be strong. The result
is a statistical averaging across spatial dimensions, an effect
known as spatial diversity, which leads to large improvements
in performance[13].

In VDSL channels there is, unfortunately, no equivalent to
spatial diversity. This can be seen in equation (9). Here the
CWDD of Hk implies that very little increase can be made in
the signal power through the use of multiple VDSL receivers.
This is the case since, when receivers are co-located, the
crosstalk channel from transmitter n to receiver m is always
much weaker than the direct channel from transmitter n to
receiver n. Note that the benefit, although small, increases
with the crosstalk channel strength αk and the number of
crosstalkers N .

Although spatial diversity is negligible, the use of co-
ordinated reception is by no means fruitless. Instead of
benefiting through spatial diversity, the primary benefit in
VDSL channels is crosstalk cancellation. That is, co-ordinated
reception does not increase signal power in VDSL, but instead
decreases interference power.

IV. DECISION FEEDBACK CANCELER

Decision feedback equalizers are traditionally used to cancel
inter-symbol interference (ISI) in frequency selective channels.
In a multi-user context the same principle can be applied to
remove inter-user interference, otherwise known as crosstalk.
In this case the decision feedback operates across users rather
than time[1].

The structure of the decision feedback canceler (DFC)
is now described. Consider the QR decomposition of the
crosstalk channel matrix

Hk
qr
= QkRk, (10)

where Qk is a unitary matrix and Rk is upper triangular. The
DFC applies the linear feed-forward filter QH

k to the received
vector to yield

ỹk = QH
k yk,

= Rkxk + z̃k, (11)

where the filtered noise z̃k , QH
k zk[1]. If the noise is spatially

white, as described in (5), then filtering with the unitary matrix
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QH
k does not alter the noise statistics

E
{
z̃kz̃

H
k

}
= E

{
Qkzkz

H
k QH

k

}
,

= σkIN ,

= E
{
zkz

H
k

}
.

If the noise is spatially coloured then a noise pre-whitening
must be applied prior to the DFC, which leads to a more
complex receiver structure[8]. However, in ONU distributed
VDSL the assumption of spatially white noise is often a valid
one.

From (11) it is clear that the transmission channel has been
transformed into an upper triangular channel Rk. This channel
is causal in the sense that there is an order in the crosstalk of
the users: user N experiences crosstalk from no-one; user N -1
experiences crosstalk only from user N ; user N -2 experiences
crosstalk only from users N and N -1; and so on.

This causal structure admits the use of decision feedback to
remove crosstalk. User N experiences no crosstalk. Hence the
signal of user N can be detected directly, and the crosstalk
it causes to the other components of yk can be removed. At
this point user N -1 can be detected free from crosstalk, and
the crosstalk it causes to the remaining users can be removed.
This procedure iterates until all users have been detected. The
estimate for user n is thus formed

x̂n
k = dec

[
1

rn,n
k

(
yn

k −

N∑

m=n+1

rn,m
k x̂m

k

)]
,

where rn,m
k , [Rk]n,m and dec[·] denotes the decision

operation[1]. It is typically assumed that no decisions errors
are made

x̂m
k = xm

k , ∀m > n, (12)

which leads to the following estimate for the symbol of user
n

x̂n
k = dec

[
xn

k +
z̃n

k

rn,n
k

]
.

The achievable data-rate of user n on tone k is then

bn
k,dfc = ∆f log2(1 + Γ−1σ−1

k sn
k |rn,n

k |
2
). (13)

The CWDD property can be used to show that |rn,n
k | '

|hn,n
k |[1]. As a result, for small αk, the DFC operates very

close to the single-user bound

bn
k,dfc ' bn

k,bnd.

So the DFC has near-optimal performance. It should be
noted, however, that this performance analysis is based on the
assumption of error-free decisions (12). For this to be valid a
perfect channel code must be used, which has infinite decoding
complexity and delay[14].

In practice a sub-optimal code will be used, which can lead
to decision errors, error propagation and poor performance.
Furthermore, decoding of each user’s codeword must be done
before decisions are fed back. This increases complexity
substantially and leads to a latency that grows with the number
of lines in the binder. In VDSL systems the codewords are
interleaved across the entire DMT block to add robustness
against deep frequency nulls, which result from line properties

such as bridged taps. Furthermore, the codeword may be
interleaved across several DMT blocks to add robustness
against impulse noise[15]. This means that the codewords
are already quite long, and the latency is typically at the
limit required for most applications. Typical binders contain
hundreds of lines, where the increase in latency due to the DFC
can be substantial. As a result with the DFC it is difficult to
support real-time applications such as voice over IP and video
conferencing.

V. NEAR-OPTIMAL LINEAR CANCELER

This section describes a simple linear crosstalk canceler.
Unlike the DFC, this structure has a low complexity, no latency
and hence supports real-time applications. The structure is
based on the zero-forcing (ZF) criterion, which leads to the
following estimate of the transmitted vector

x̂k = H−1
k yk, (14)

= xk + H−1
k zk.

Each user then experiences a crosstalk free channel, affected
only by the filtered background noise.

It is well known that ZF designs lead to severe noise-
enhancement when the channel matrix Hk is ill-conditioned.
Fortunately CWDD ensures that the channel matrix is well-
conditioned; so the linear ZF canceler leads to negligible noise
enhancement and each user achieves a data-rate close to the
single-user bound (8). To see this first consider the singular
value decomposition (SVD) of Hk

Hk
svd
= UkΛkV

H
k . (15)

Here we assume that the elements of Λk are non-zero. This
is straight-forward to achieve in practice by simply switching
off crosstalk cancellation on lines with a null transfer function.
The CWDD of Hk ensures that its columns are approximately
orthogonal. That is (2) implies that

hm
k

H
hn

k '

{
|hn,n

k |
2
, n = m;

0, n 6= m.

Hence

HH
k Hk ' diag

{∣∣∣h1,1
k

∣∣∣
2

, . . . ,
∣∣∣hN,N

k

∣∣∣
2
}

.

Combining this with (15) leads to the following approximation

VkΛH
k ΛkV

H
k ' diag

{∣∣∣h1,1
k

∣∣∣
2

, . . . ,
∣∣∣hN,N

k

∣∣∣
2
}

.

This implies that the right singular vectors can be closely
approximated as Vk ' IN . The linear ZF filter can then be
approximated as

H−1
k = VkΛ−1

k UH
k ,

' Λ−1
k UH

k .

Since Uk is unitary it causes no noise enhancement. Further-
more, Λ−1

k is diagonal and thus it scales the noise and signal
powers equally. So thanks to the CWDD of Hk, filtering the
received signal with the matrix H−1

k causes negligible noise
enhancement. This allows the linear ZF canceler to achieve
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near-optimal performance, operating close to the single-user
bound in VDSL channels. This observation is made rigorous
through the following theorem.

Theorem 2: If A
(m)
min ≥ αkmB

(m)
max, m = 1 . . .N − 1; then

the data-rate achieved by the linear ZF canceler can be lower
bounded

Rn ≥
∑

k

bn
k,zf−bnd,

where

bn
k,zf−bnd , ∆f log2

(
1 + Γ−1σ−1

k sn
k |hn,n

k |
2
f−1 (N, αk)

)
,

(16)

f(N, αk) ,

(
A

(N−1)
max

A
(N)
min

)2

+ (N − 1)

(
B

(N−1)
max

A
(N)
min

)2

, (17)

[
A

(m)
max

B
(m)
min

]
,

(
m∏

i=1

[
1 (i − 1)αk

αk (i − 1)αk

])[
1
0

]
, (18)

and
A

(m)
min , 1 −

m∑

i=1

αk (i − 1) B(i−1)
max . (19)

Proof of Theorem 2: Eq. (14) implies that, after application
of the linear ZF canceler, the soft estimate of the transmitted
symbol is

x̂n
k = xn

k +
[
H−1

k

]
row n

zk.

Hence the post-cancellation signal power is sn
k , the post-

cancellation interference power is zero and the post-
cancellation noise power is

σ̃k,n , E
{∣∣[H−1

k

]
row n

zk

∣∣2
}

,

=
∥∥[H−1

k

]
row n

∥∥2
σk, (20)

where (5) is applied in the second line. Hence the data-rate
achieved by the linear ZF canceler is

bn
k,zf(s

n
k ) = ∆f log2(1 + Γ−1σ̃−1

k,nsn
k ). (21)

Define the matrix Gk , [gn,m
k ], where gn,m

k , hn,m
k /hm,m

k .
Now

Hk = Gkdiag{h1,1
k , . . . , hN,N

k },

hence
H−1

k = diag{h1,1
k , . . . , hN,N

k }−1G−1
k , (22)

and [
H−1

k

]
n,m

=
1

hn,n
k

[
G−1

k

]
n,m

. (23)

Since the receivers are co-located at the CO, the US channel
matrix is CWDD (3). This implies that Gk ∈ A

(N), where
A

(N) denotes the set of N ×N diagonally dominant matrices,
as defined in the appendix. So Theorem 5 from the Appendix
can be applied to bound the elements of G−1

k . This implies
∣∣∣
[
H−1

k

]
n,m

∣∣∣ ≤
{
|hn,n

k |
−1

A
(N−1)
max /A

(N)
min, n = m;

|hn,n
k |

−1
B

(N−1)
max /A

(N)
min, n 6= m;

where A
(N)
max and B

(N)
max are defined in (18) and A

(N)
min is defined

in (19). Hence
∥∥∥
[
H−1

k

]
n,m

∥∥∥
2

≤ |hn,n
k |

−2
f(N, αk),
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Fig. 2. Crosstalk Channel Transfer Functions (1 km cable, 0.5 mm pairs)

where f(N, αk) is defined as in (17). Together with (20) this
yields

σ̃k,n ≤ σk |h
n,n
k |

−2
f(N, αk).

Combining this with (21) leads to (16), which concludes the
proof.

In practice we have found that A
(m)
min ≥ αkmB

(m)
max, m =

1 . . .N −1; holds for N up to 25 and for frequencies up to 12
MHz, so the bound applies in most practical VDSL scenarios.

The function f(N, αk) can be interpreted as an upper bound
on the noise enhancement caused by the linear ZF canceler.
In CWDD channels f(N, αk) ' 1. As a result each modem
operates at a rate

bn
k,zf ' ∆f log2

(
1 + Γ−1σ−1

k sn
k |hn,n

k |
2
)

.

So the linear ZF canceler completely removes crosstalk with
negligible noise enhancement.

Note that the bound (16) can be used to predict and guar-
antee a data-rate without explicit knowledge of the crosstalk
channels. This is the case because the bound depends only
on the binder size, direct channel gain, and background noise
power. Good models for these characteristics exist based on
extensive measurement campaigns. Crosstalk channels on the
other hand are poorly understood and actual channels can
deviate significantly from the few empirical models that exist.
See for example Fig. 2 which shows a measured crosstalk
channel and the predicted crosstalk channel according to
empirical models from standardization[15]. This can make
provisioning of services difficult. Using the bound (16) allows
us to overcome this problem. The bound tells us that the
crosstalk channel gain is not important as long as CWDD
is observed. CWDD is a well understood and modeled phe-
nomenon. As a result (16) allows provisioning to be done in
a reliable and accurate fashion.

A note of explanation may be necessary at this point. It may
seem that CWDD allows us to easily predict, or at least bound,
the crosstalk power that a receiver experiences. This is not
true. The crosstalk power that a receiver experiences depends
on the magnitude of elements along a row, not column, of
Hk. This in turn depends on the configuration of the other
lines within the binder, which varies dramatically from one
scenario to another. For example, in the scenario in Fig. 3,
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the crosstalk from the 150 m line into the 1200 m line is
stronger than the direct signal on the 1200 m line itself.
So the crosstalk from the other lines into the 1200 m line
cannot be bounded without knowledge of the entire binder
configuration. This makes provisioning of services extremely
difficult. CWDD, on the other hand, applies to all lines when
receivers are co-located. No knowledge of the actual binder
configuration is necessary. Using (16) the performance of a
line can be estimated using only locally available information
about the line itself, such as its direct channel attenuation and
background noise.

The value for αk from (4) is based on worst 1% case
models. Hence for 99% of lines αk will be smaller. So in
99% of lines a data-rate above the bound (16) is achieved. The
bound is thus a useful tool not just for theoretical analysis, but
for provisioning of services as well.

Simulations in Sec. VII will use this bound to show that
the linear ZF canceler operates close to the single-user bound,
and hence is a near-optimal design.

VI. SPECTRA OPTIMIZATION

Whilst current VDSL standards require the use of spec-
tral masks, there is growing interest in the use of adaptive
transmit spectra, a technique known as dynamic spectrum
management[16]. This section investigates the optimization
of transmit spectra for use with the linear ZF canceler. Each
transmitter is subject to a total power constraint

∆f

∑

k

sn
k ≤ Pn, ∀n. (24)

The goal is to maximize a weighted sum of the data-rates of
the modems within the network

max
s1,...,sN

∑

n

wnRn s.t. ∆f

∑

k

sn
k ≤ Pn, (25)

where the vector sn , [sn
1 , . . . , sn

K ] contains the PSD of
user n on all tones. The weights w1, . . . , wN are used to
ensure that each modem achieves its target data-rate. The
data-rate Rn is a function of the transmit PSDs s1, . . . , sN ,
and also depends on the type of crosstalk canceler used.
If an optimal, decision-feedback based canceler is used, the
objective function becomes convex[17]. Solving (25) then re-
quires the solution of a KN -dimensional convex optimization.
Although the cost function is convex, no closed form solution
is known[17]. Conventional convex optimization techniques,
such as interior point methods, have a polynomial complexity
in the dimensionality of the search space. In ADSL K =
256, whilst in VDSL K = 4096. The resulting search has
an extremely high dimensionality, for which conventional
optimization techniques are prohibitively complex. A low
complexity, iterative algorithm has been proposed for the
special case where an unweighted rate-sum is maximized, that
is wn = 1 for all n[18]. Unfortunately, since this algorithm
cannot optimize a weighted rate-sum, it cannot ensure that the
target rates are achieved on each line. These target rates are
essential to ensure that each customer obtains their desired
service.

In this section a spectra optimization algorithm is developed
for use with the linear ZF canceler. Since the linear ZF can-
celer removes all crosstalk, the spectra optimization decouples
into an independent power loading for each user. This reduces
complexity considerably. Furthermore, Theorem 2 ensures that
this approach leads to a power allocation that operates close
to the single-user bound.

A. Theoretical Capacity
We start by extending the single-user bound from Sec. III

to VDSL modems that may vary their transmit spectra under
a total power constraint. The resulting upper bound is useful
for evaluating crosstalk canceler performance with optimized
spectra.

Theorem 3: When the transmit PSD sn
k is allowed to vary

under a total power constraint (24), the capacity for user n
can be upper bounded

Rn ≤
∑

k

bn
k,bnd(s

n
k,bnd), (26)

where the single-user waterfilling PSD is defined

sn
k,bnd ,

[
1

λn

−
Γσk

|hn,n
k |

2
[1 + α2

k (N − 1)]

]+

, (27)

the function [x]+ , max(0, x), and λn is chosen such that
power constraint on line n is tight, that is

∆f

∑

k

sn
k = Pn. (28)

This theorem is an intuitively simple extension of the single-
user bound from Theorem 1. The proof, however, is not so
straightforward and is now detailed. The following Lemma
will prove useful in the proof.

Lemma 1: If g(x) ≥ f(x), ∀x, then

max
vx≤p

g(x) ≥ max
vx≤p

f(x), (29)

where x is the vector over which the optimization takes place,
and the vector v and scalar p impose a linear constraint on x.

Proof of Lemma 1: Define

xf , arg max
vx≤p

f(x).

Since g(x) ≥ f(x), ∀x,

g(xf ) ≥ f(xf ). (30)

Now define
xg , arg max

vx≤p
g(x).

The optimality of xg in g(x), over the subspace defined by
the constraints vx ≤ p, implies that

g(xg) ≥ g(xf ),

≥ f(xf ),

where (30) is applied in the second line. This implies (29).
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Corollary 1: Limit the total power of the transmit PSD
such that ∆f

∑
k sn

k ≤ Pn. Under this constraint

max
sn

∑

k

∆f log2

(
1 + Γ−1σ−1

k sn
k ‖hn

k‖
2
)
≤ max

sn

∑

k

bn
k,bnd(sn

k ).

(31)

Proof of Corollary 1: Let x = sn, p = Pn, v = 11×K ,

f(sn) =
∑

k

∆f log2

(
1 + Γ−1σ−1

k sn
k ‖hn

k‖
2
)

,

and
g(sn) =

∑

k

bn
k,bnd(sn

k ).

CWDD (2) implies that

|hn,n
k |

2 [
1 + α2

k (N − 1)
]
≥ ‖hn

k‖
2
,

hence g(sn) ≥ f(sn), ∀sn. Lemma 1 now implies (31), which
completes the proof.

Proof of Theorem 3: The single-user bound (8) applies.
Combining this with the power constraint (24) yields

Rn ≤ max
P

k
sn

k
≤Pn

∑

k

∆f log2

(
1 + Γ−1σ−1

k sn
k ‖hn

k‖
2
2

)
.

Corollary 1 now implies

Rn ≤ max
P

k
sn

k
≤Pn

∑

k

bn
k,bnd(s

n
k ).

In this optimization the objective function is concave, and the
total power constraint forms a convex set. Hence the Karush-
Kuhn-Tucker (KKT) conditions are sufficient for optimality.
Examining the KKT conditions leads to (26), (27) and (28),
which completes the proof.

B. Near-Optimal Linear Canceler
Transmit spectra optimization with the linear ZF canceler is

now considered. Equation (21) implies that (25) is equivalent
to

max
s1,...,sN

∑

n

∑

k

wnbn
k,zf(s

n
k ) s.t. ∆f

∑

k

sn
k ≤ Pn. (32)

Observe that, when using the linear ZF canceler, the data-
rate of each user depends only on its own transmit PSD. It is
independent of the PSDs of the other users since all crosstalk
will be removed. The optimization problem is now decoupled
between users, allowing the optimal power allocation to be
found independently for each user. This also implies that these
PSDs are optimal regardless of the choice of weights wn.

Since the objective function is concave and the constraints
form a convex set, the KKT conditions are sufficient for
optimality. Examining these leads to the classic waterfilling
equation

sn
k,zf =

[
1

λn

− Γσ̃k,n

]+
. (33)

The waterfilling level λn must be chosen such that the total
power constraint for user n is tight, that is ∆f

∑
k sn

k,zf = Pn.

300 m

1200 m

150 m
CO/ONU

CP 2

CP 1

CP 8...
.

...
.

Fig. 3. Upstream VDSL scenario

Conventional waterfilling algorithms can be applied to find
the correct waterfilling level with O(K log K) complexity. So
the overall complexity of power allocation with the linear
ZF canceler is O(NK log K). This is a significant reduction
when compared to existing power allocation algorithms for the
multi-access channel, which have O(N 4K log K) complexity
in the unweighted rate-sum case, and polynomial complexity
in KN in the weighted rate-sum case[18].

Theorem 2 shows that, as a result of CWDD, the linear
ZF canceler operates close to the single-user bound. So using
the linear ZF canceler in combination with the power alloca-
tion (33) gives near-optimal performance. This is confirmed
through simulation in the following section.

VII. PERFORMANCE

This section evaluates the performance of the linear ZF
canceler in a binder of 8 VDSL lines. The line lengths range
from 150 m to 1200 m in 150 m increments, as shown
in Fig. 3. For all simulations the line diameter is 0.5 mm
(24-AWG). Direct and crosstalk channels are generated using
semi-empirical models[9]. The target symbol error probability
is 10−7 or less. The coding gain is set to 3 dB and the noise
margin is set to 6 dB. As per the VDSL standards the tone-
spacing ∆f is set to 4.3125 kHz[15][9]. The modems use
4096 tones, and the 998 FDD bandplan. Background noise
is generated using ETSI noise model A[9]. Performance is
compared with the DFC and the single-user bound.

A. Fixed Transmit Spectra
Current VDSL standards require that modems transmit

under a spectral mask of -60 dBm/Hz[15][9]. This section
evaluates the performance of the linear ZF canceler when all
modems are operating at this mask.

Fig. 4 shows the data-rate achieved by each of the lines
with the different crosstalk cancelers. The linear ZF canceler
achieves substantial gains, typically 30 Mbps or more, over
conventional systems with no cancellation. As can be seen
the linear ZF canceler achieves near-optimal performance,
operating close to the single-user bound. This is a direct
result of the CWDD of Hk, which ensures that the linear
ZF canceler causes negligible noise enhancement. The noise
enhancement caused by the linear ZF canceler on the 600 m
line is plotted for each tone in Fig. 5. As can be seen the
noise enhancement is less than 0.16 dB, which has negligible
impact on performance.
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Fig. 5. Noise enhancement of ZF Canceler on 600 m. line

Fig. 6 shows the data-rate achieved by the linear ZF canceler
as a percentage of the single-user bound. Performance does not
drop below 99% of the single-user bound. The lower bound on
the performance of the linear ZF canceler (16) is also included
for comparison. As can be seen the bound is quite tight and
guarantees that the linear ZF canceler will achieve at least
92% of the single-user bound.

B. Optimized Transmit Spectra
This section investigates the performance of the linear ZF

canceler with optimized spectra (33). A total power constraint
of 11.5 dBm/Hz is applied to each modem as per the VDSL
standards[15][9]. Spectral mask constraints are not applied.
Fig. 7 shows the data-rates achieved on each line. The use of
optimized spectra yields a gain of 5-8 Mbps. The benefit is
more substantial on the longer lines, where a 5 Mbps gain can
double the data-rate.

Fig. 7 shows that spectra optimization gives maximum
benefit on long lines. This is to be expected since on long
lines the direct channel gain decreases more rapidly with
frequency. Note that the benefit of adaptive spectra, when
crosstalk has already been cancelled, comes primarily from
the modem loading power in the best parts of the channel,
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which are typically in the lower frequencies.

VIII. CONCLUSIONS

This paper investigated the design of crosstalk cancelers for
upstream VDSL. Existing designs based on decision feedback
suffer from error propagation, high complexity and long
latency. A linear ZF canceler is proposed, which has a low
complexity and no latency.

An oft-cited problem with the ZF design is that it leads to
severe noise enhancement in ill-conditioned channels. Fortu-
nately VDSL channels with co-located receivers are column-
wise diagonal dominant. This ensures that the VDSL channel
is well conditioned, and noise enhancement caused by the ZF
design is negligible.

An upper bound on the capacity of the multi-user VDSL
channel was derived. This single-user bound shows that spatial
diversity in the VDSL environment is negligible. Therefore
the best outcome that a crosstalk canceler can achieve is the
complete suppression of crosstalk without noise enhancement.

A lower bound on the performance of the linear ZF canceler
was derived. This bound depends only on the binder size,
direct channel gain and background noise for which reliable
models and statistical data exist. As a result the performance
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of the linear ZF canceler can be accurately predicted, which
simplifies service provisioning considerably. This bound shows
that the linear ZF canceler operates close to the single-user
bound. So the linear ZF canceler is a low complexity, low
latency design with predictable, near-optimal performance.

The combination of spectral optimization and crosstalk
cancellation was considered. The bounds were extended to
VDSL systems with optimized spectra. Spectra optimization
in a multi-access channel generally involves a highly complex
optimization problem. Since the linear ZF canceler decouples
transmission on each line, the spectrum on each modem can
be optimized independently, leading to a significant reduction
in complexity.

APPENDIX

Define the set A
(N) of N × N matrices, such that for any

A(N) ∈ A
(N), it holds that

|an,n| = 1;

|an,m| ≤ αk, ∀n 6= m;

where an,m ,
[
A(N)

]
n,m

. Define the set B
(N) of N × N

matrices, such that for any B(N) ∈ B
(N), it holds that

|bn,n| = 1, ∀n < N ;

|bN,N | ≤ αk;

|bn,m| ≤ αk, ∀n 6= m;

where bn,m ,
[
B(N)

]
n,m

.
Theorem 4: Consider any A(N) ∈ A

(N) and B(N) ∈ B
(N).

The magnitude of the determinants of A(N) and B(N) can be
bounded as follows

∣∣∣det
(
A(N)

)∣∣∣ ≤ A(N)
max, (34)

∣∣∣det
(
B(N)

)∣∣∣ ≤ B(N)
max, (35)

where A
(N)
max, B

(N)
max and A

(N)
min are defined in (18) and (19).

Furthermore, if

A
(m)
min ≥ αkmB(m)

max, m = 1 . . .N − 1; (36)

then the following bound also holds
∣∣∣det

(
A(N)

)∣∣∣ ≥ A
(N)
min. (37)

Note that | · | denotes the absolute value operator, whilst det(·)
denotes the determinant operator.

Proof of Theorem 4: The proof is based on induction. Begin
by assuming that the bounds (34), (35) and (37) hold for any
N×N matrices of the form A(N) and B(N) for some specific
value of N . Now consider any matrix A(N+1) ∈ A

(N+1).
Decompose A(N+1) as

A(N+1) =




A(N)

a1,N+1

...
aN,N+1

aN+1,1 · · · aN+1,N 1


 ,

where an,m ,
[
A(N+1)

]
n,m

and A(N) is the submatrix
containing the first N rows and columns of A(N+1). By
expanding the determinant along the last row of A(N+1) it
can be seen that∣∣∣det

(
A(N+1)

)∣∣∣

=
∣∣∣det

(
A(N)

)
(38)

+

N∑

m=1

(−1)N+1−maN+1,m det
([

A
(N)

m aN+1

])∣∣∣∣∣ ,

≤
∣∣∣det

(
A(N)

)∣∣∣+
N∑

m=1

αk

∣∣∣det
([

A
(N)

m aN+1

])∣∣∣ , (39)

where A
(N)

m is the sub-matrix formed by removing column m
from A(N) and aN+1 , [a1,N+1 . . . aN,N+1]

T . The second
line exploits the fact that row permutation does not affect the
magnitude of a determinant. Define the permutation matrix

Πm , [e1 · · · em−1 em+1 . . . eN em] ,

where em is defined as the mth column of the N ×N identity
matrix. Note that ΠT

m[A
(N)

m aN+1] ∈ B
(N). Using the fact

that row permutations have no effect on the magnitude of a
determinant, together with (35) and (39) now implies

N∑

m=1

αk

∣∣∣det
([

A
(N)

m aN+1

])∣∣∣ ≤ αkNB(N)
max. (40)

Combining this with (39) and (34) yields
∣∣∣det

(
A(N+1)

)∣∣∣ ≤ A(N)
max + αkNB(N)

max.

Note that by definition

A(N+1)
max = A(N)

max + αkNB(N)
max, (41)

hence ∣∣∣det
(
A(N+1)

)∣∣∣ ≤ A(N+1)
max . (42)

Now consider any matrix B(N+1) ∈ B
(N+1). Decompose

B(N+1) as

B(N+1) =




C(N)

b1,N+1

...
bN,N+1

bN+1,1 · · · bN+1,N bN+1,N+1


 ,

where bn,m ,
[
B(N+1)

]
n,m

and C(N) is the submatrix
containing the first N rows and columns of B(N+1). By
expanding the determinant along the last row of B(N+1) it
can be seen that∣∣∣det

(
B(N+1)

)∣∣∣ =
∣∣∣bN+1,N+1 det

(
C(N)

)
(43)

+

N∑

m=1

(−1)
N+1−m

bN+1,m det
([

C
(N)

m bN+1

])∣∣∣∣∣

where C
(N)

m is the sub-matrix formed by removing column
m from C(N) and bN+1 , [b1,N+1 . . . bN,N+1]

T . Note that
C(N) ∈ A

(N) and

ΠT
m

[
C

(N)

m bN+1

]
∈ B

(N).
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Using the fact that row permutations have no effect on the
magnitude of a determinant, together with (34), (35), and (43)
now yields

∣∣∣det(B(N+1))
∣∣∣ ≤ αkA(N)

max + αkNB(N)
max.

Note that by definition

B(N+1)
max = αkA(N)

max + αkNB(N)
max, (44)

hence ∣∣∣det(B(N+1))
∣∣∣ ≤ B(N+1)

max . (45)

Combining (41) and (44) in matrix form yields
[

A
(N+1)
max

B
(N+1)
max

]
=

[
1 αkN
αk αkN

] [
A

(N)
max

B
(N)
max

]
. (46)

We now proceed with the inductive proof. First note that∣∣A(1)
∣∣ = 1 and

∣∣B(1)
∣∣ ≤ αk, so (34) and (35) hold for N = 1.

Hence through induction, (42) and (45) imply that (34) and
(35) must hold for all N . This concludes the proof for the
upper bounds (34) and (35). We now turn our attention to the
lower bound (37). First note that from (38)
∣∣∣det

(
A(N+1)

)∣∣∣ ≥
∣∣∣
∣∣∣det

(
A(N)

)∣∣∣ (47)

−
N∑

m=1

αk

∣∣∣det
([

A
(N)

m aN+1

])∣∣∣
∣∣∣∣∣ .

We assume that (37) holds for some specific value of N . Hence
∣∣∣det(A(N))

∣∣∣ ≥ A
(N)
min. (48)

Combining this with (36) and (40) implies
∣∣∣det

(
A(N)

)∣∣∣ ≥
N∑

m=1

αk

∣∣∣det
([

A
(N)

m aN+1

])∣∣∣ .

So from (47)
∣∣∣det

(
A(N+1)

)∣∣∣ ≥
∣∣∣det

(
A(N)

)∣∣∣

−

N∑

m=1

αk

∣∣∣det
([

A
(N)

m aN+1

])∣∣∣ .

Combining this with (48) and (40) leads to the bound
∣∣∣det(A(N+1))

∣∣∣ ≥ A
(N)
min − αkNB(N)

max.

Note that by definition

A
(N+1)
min , A

(N)
min − αkNB(N)

max,

hence ∣∣∣det(A(N+1))
∣∣∣ ≥ A

(N+1)
min (49)

Now note that
∣∣A(1)

∣∣ = 1 and A
(1)
min = 1, so (37) holds for

N = 1. Hence through induction, (49) implies that (37) holds
for all N . This concludes the proof for the lower bound (37).

Theorem 5: If G ∈ A
(N) and

A
(m)
min ≥ αkmB(m)

max, m = 1 . . .N − 1;

then the magnitude of the elements of G−1 can be bounded
∣∣∣
[
G−1

]
n,m

∣∣∣ ≤
{

A
(N−1)
max /A

(N)
min, n = m;

B
(N−1)
max /A

(N)
min, n 6= m.

(50)

Proof of Theorem 5: By definition of the matrix inverse
∣∣∣
[
G−1

]
n,m

∣∣∣ =
∣∣∣det

(
G

m,n
)∣∣∣ / |det (G)| , (51)

where G
m,n is the sub-matrix formed by removing row m

and column n from G. Now G ∈ A
(N) so from theorem 4

|det(G)| ≥ A
(N)
min. (52)

If m = n then G
m,n

∈ A
(N−1) and from Theorem 4

∣∣∣det(G
m,m

)
∣∣∣ ≤ A(N−1)

max , ∀m. (53)

If m 6= n then ΠT
nG

m,n
Πm ∈ B

(N−1) and from Theorem 4
∣∣∣det

(
G

m,n
)∣∣∣ =

∣∣∣det
(
ΠT

nG
m,n

Πm

)∣∣∣ ≤ B(N−1)
max , ∀m 6= n.

(54)
Combining (51), (52), (53) and (54) yields (50), which con-
cludes the proof.
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