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Abstract— Crosstalk is a serious problem in next-generation
DSL systems such as VDSL. Several non-linear crosstalk cancel-
ers and pre-compensators have been proposed to address this.
Unfortunately they all suffer from high complexity, DFE error
propagation and/or require modification of CPE. In this paper we
propose the use of a simple linearzero-forcing crosstalk canceler
in upstream transmission and a simple linear diagonalizing
crosstalk precoderin downstream transmission.

Certain properties of DSL channels ensure that these simple
linear designs lead to near-optimal performance. We formulate
a bound on the performance of these schemes and show that in
99% of upstream DSL channels the linear zero-forcing canceler
achieves 97% of the theoretical channel capacity. Similarly in
99% of downstream DSL channels the linear diagonalizing
precoder achieves 91% of the theoretical channel capacity.

I. I NTRODUCTION

Next generation DSL systems such as VDSL aim at pro-
viding extremely high data-rates, up to 52 Mbps in the
downstream. Such high data rates are supported by operating
over short loop lengths and transmitting in frequencies up
to 12 MHz. Unfortunately, the use of such high frequency
ranges causes significant electromagnetic coupling between
neighbouring twisted pairs within a binder group. This cou-
pling creates interference, referred to ascrosstalk, between
the systems operating within a binder. Over short loop lengths
crosstalk is typically 10-15 dB larger than the background
noise and isthe dominant source of performance degradation.

In upstream communications the receiving modems are co-
located at thecentral office(CO) or at anoptical network
unit (ONU) located at the end of the street. This allows joint
reception of the signals transmitted on the different lines,
thereby enablingcrosstalk cancellation.

Numerous techniques have been proposed for crosstalk
cancellation, see e.g. [1]. Whilst these schemes lead to large
performance gains they are unfortunately non-linear which
results in high run-time complexities. Furthermore the use of
decision feedback can cause problems with error propagation.

Existing crosstalk cancelers are typically based on tech-
niques borrowed from the wireless field. For example the so-
calledvectored receiverproposed in [1] has an identical struc-
ture to the wirelessvertical BLASTreceiver. DSL channels
have special properties not present in wireless channels which
can be exploited to simplify crosstalk canceler design.

In this paper we present a simple linearzero forcing
(ZF) crosstalk canceler. This structure has a low complexity
and suffers no problems with error propagation. As we will
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show, certain properties of the DSL channel ensure that this
simple, linear structure achieves near-optimal performance. We
develop a bound which ensures that in 99% of DSL channels,
the linear ZF canceler achieves at least 97% of the capacity.

II. SYSTEM MODEL

Assuming that the modems are synchronized anddiscrete
multi-tone (DMT) modulation is employed we can model
transmission independently on each tone

yk = Hkxk + zk (1)

The vectorxk ,
[
x1

k, · · · , xN
k

]
contains transmitted signals on

tone k. There areN lines in the binder andxn
k is the signal

transmitted onto linen at tone k. yk and zk have similar
structures.yk is the vector of received signals on tonek. zk

is the vector of additive noise on tonek and contains thermal
noise, alien crosstalk, RFI etc. The tone index isk and lies
in the range1 . . . K. We assume that the noise is spatially
white such thatE {

zkzH
k

}
= σ2

kIN . Hk is theN×N channel
transfer matrix on tonek. hn,m

k , [Hk]n,m is the channel
from TX m to RX n on tonek. The diagonal elements ofHk

contain the direct-channels whilst the off-diagonal elements
contain the crosstalk channels. We denote the transmit PSD
of usern on tonek assn

k , E {|xn
k |2

}
.

In upstream(US) transmission the receiver modems are co-
located. As a resultHk is column-wise diagonally dominant
(CWDD). This means that on each column ofHk, the diagonal
element has the largest magnitude

|hn,n
k | À |hm,n

k | , ∀m 6= n (2)

The physical reason for this is that the crosstalk signal must
propagate through the full length of the disturber’s line, as
depicted in Fig. 1. This together with the attenuation which
results from shielding between twisted pairs ensures CWDD
of Hk. We can measure the degree of CWDD withαk

|hm,n
k | ≤ αk |hn,n

k | , ∀m 6= n (3)

Note that receivers must be co-located for crosstalk cancella-
tion to be possible since it relies on joint detection. CWDD
has been verified through extensive measurement campaigns
of real binders. In 99% of linesαk is bounded

αk ≤ Kfextfk

√
l (4)

whereKfext = −22.5 dB, l is the line length in kilometers,
and fk is the frequency on tonek in MHz[2]. On typical
lines αk is less than -11.3 dB. We will show later on that
CWDD ensures that the channel matrix is well conditioned.
This ensures that ZF crosstalk cancelers do not cause noise
enhancement.
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Fig. 1. Column-wise Diagonal Dominance|h11| À |h21|

III. T HEORETICAL CAPACITY

We will start by considering the theoretically achievable
channel capacity. A word on notation: we use|x| to denote the
absolute value ofx, whilst det(X) denotes the determinant of
the matrixX.

Theorem 1:The theoretically achievable capacity for user
n on tonek can be upper bounded

cn
k,opt ≤ log2

(
1 + σ−2

k sn
k |hn,n

k |2 Γ−1[1 + (N − 1)α2
k]

)
(5)

whereΓ is the SNR-gap to capacity and is a function of the
target BER, noise margin and coding gain.

Proof: Let us start by considering the so-calledsingle-
user boundwhich is the capacity achieved when only one
user (customer premises modem) transmits and all receivers
(CO modems) are used to detect that user. The single-user
bound can be achieved by detecting a user last in asuccessive
interference cancellationstructure[1]. Using the single-user
bound the maximum achievable capacity of usern on tone
k is

cn
k,opt = log2

(
1 + σ−2

k sn
kΓ−1 ‖hn

k‖22
)

wherehn
k , [Hk]col n. Now using (3) we can bound

‖hn
k‖22 ≤ |hn,n

k |2 [
1 + (N − 1)α2

k

]

which leads to (5).
Examining (5) we can see that due to CWDD very little
increase can be made in thesignal powerby using multiple
receivers(RX) in the detection of usern. This is the case
since the channel fromtransmitter (TX) n to RX m is so
much weaker than the direct channel from TXn to RX n.
There is no equivalent tospace diversityin wireline channels.

This does not mean that using co-ordinated reception is
pointless however. Instead the benefit comes primarily from
the ability to do crosstalk cancellation. That is, co-ordinated
reception does not increase signal power in DSL channels, but
rather decreasesinterference power.

IV. DATA -RATE WITH THE L INEAR ZF CANCELER
(UPSTREAM)

The linear ZF canceler forms an estimate of the transmitted
vector

x̂k = H−1
k yk

This completely inverts the transmission channel, removing
interference completely. Consider thesingular value decom-
position (SVD) of Hk

Hk
svd= UkΛkVH

k

The CWDD ofHk ensures that its columns are approximately
orthogonal. As a result we can closely approximateVk ' IN

which implies that

H−1
k ' Λ−1

k UH
k

SinceUk is orthonormal it will not cause noise enhancement.
FurthermoreΛ−1

k is diagonal so it scales the noise and signal
powers equally. As a result, due to the CWDD ofHk, filtering
the received signal with the matrixH−1

k does not cause noise
enhancement. This allows the linear ZF canceler to achieve
near-optimal performance in DSL channels. This observation
is made more rigorous in the following theorem.

Theorem 2:The data-rate achieved by the linear ZF
crosstalk canceler can be lower bounded

cn
k,zf ≥ log2

(
1 + σ−2

k sn
k |hn,n

k |2 Γ−1f−1(N, αk)
)

(6)

where

f(N,αk) ,
(

A
(N−1)
max

A
(N)
min

)2

+ (N − 1)

(
B

(N−1)
max

A
(N)
min

)2

(7)

and
[

A
(N)
max

B
(N)
max

]
,

(
N∏

i=1

[
1 (i− 1)α
α (i− 1)α

]) [
1
0

]
(8)

A
(N)
min , 1−

N∑

i=1

α(i− 1)B(i−1)
max (9)

Proof: See Appendix I.
In practice we will use this bound to show, in the section VI,
that in 99% of DSL channels the linear ZF canceler achieves
97% of the theoretical channel capacity.

V. DATA -RATE WITH THE L INEAR DIAGONAL PRECODER
(DOWNSTREAM)

In downstream(DS) communications the receiving modems
reside within differentcustomer premises(CP) so crosstalk
cancellation is not possible. However since the transmitting
modems are co-located at the CO it is possible to do transmis-
sion in a joint fashion. This allows some pre-distortion to be
introduced into the signals on the different lines before trans-
mission. This pre-distortion is designed to destructively inter-
fere with the crosstalk introduced in the binder, a technique
known ascrosstalk ensation. Several non-linear techniques
have been proposed for crosstalk precoding. The technique
in [1] is based on theTomlinson-Harashimaprecoder. Whilst
this leads to large performance gains it requires modification
of customer premises equipment(CPE). This is difficult due to
the millions of CPEs already deployed, all owned and operated
by different customers. For this reason precoders which only
require modification of CO equipment are preferable.

In [3] we described a lineardiagonalizing precoder(DP)
which does not require modification of CPE. The precoder
operates by pre-filtering the true symbols on each tone with a
matrix Pk prior to transmission such that

xk = Pkx̃k

Here x̃k denotes the vector of true symbols on tonek, whilst
xk denotes the ensated symbols that are actually transmitted.
The precoding matrix is defined



Pk , 1
βk

H−1
k diag{h1,1

k , . . . , hN,N
k } (10)

where

βk , max
n

∥∥∥
[
H−1

k diag{h1,1
k , . . . , hN,N

k }
]
row n

∥∥∥
2

(11)

In DS transmission the DSL channel isrow-wise diagonally
dominant(RWDD) and satisfies

|hn,m
k | ≤ αk |hn,n

k | , ∀m 6= n (12)

Interestingly the DP also achieves near-optimal performance
and obeys the same bound as the linear ZF canceler.

Theorem 3:The data-rate achieved by the linear diagonal-
izing crosstalk precoder can be lower bounded

cn
k,dp ≥ log2

(
1 + σ−2

k sn
k |hn,n

k |2 Γ−1f−1(N,αk)
)

(13)
Proof: See Appendix II.

VI. PERFORMANCE

In this section we evaluate the performance of the linear ZF
canceler through simulation of a binder of 8 VDSL lines. 4
of the lines have lengths of 600 m. whilst the other 4 have
lengths ofL m. The performance is shown for a range of line
lengthsL.

The lines have diameters of 0.5mm. Each modem has a
coding gain of 3 dB, a noise margin of 6 dB and a target
error probability of10−7 or less which results inΓ = 12.9
dB. The modems use 4096 tones, the 998 FDD bandplan and
transmit at -60 dBm/Hz. We use ETSI noise model A and the
semi-empirical transfer functions of [2].

Shown in Fig. 2 are the data-rates achieved on theL m.
lines. As can be seen the linear ZF canceller has near-optimal
performance, operating quite close to capacity. We also include
the lower bound (6) on the performance of the linear ZF
canceler. As can be seen the bound is quite tight and close
to the theoretical capacity.

The important thing to note is that the bound depends only
on the direct channel gain and the background noise power.
Good models for both of these characteristics exist based
on extensive measurement campaigns. Crosstalk channels on
the other hand are much more poorly understood and actual
channels can deviate significantly from the few empirical
models that exist. This can make provisioning of services
difficult.

Using the bound (6) allows us to overcome this problem.
The bound tells us that the crosstalk channel gain is not
important as long as CWDD is observed. CWDD is a well
understood and modeled phenomenon. As a result (6) allows
provisioning to be done in a reliable and accurate fashion.

A note of explanation may be necessary at this point. It may
seem that CWDD allows us to easily predict (or at least bound)
the crosstalk power that a RX experiences. However this isnot
the case. The crosstalk power that a RX experiences depends
on the magnitude of elements along arow (not column) of Hk.
This in turn depends on configuration of the other lines within
the binder which can vary dramatically from case to case.
So knowledge of the full configuration of a binder would be
necessary to predict the performance of a single line. CWDD
on the other hand applies toall DSL lines when RXs are co-
located. No knowledge of the actual binder configuration is
necessary. Using (6) the performance of a line can be estimated
using only information about the line itself.
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Fig. 2. Upstream Data-rate Achieved with ZF Canceler and Lower Bound
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Fig. 3. Downstream Data-rate Achieved with DP and Lower Bound

The value forαk from (4) is based on worst 1% case
models. Hence for 99% of DSL linesαk will be smaller.
Examining the lower bound allows us to conclude that for
99% of DSL lines, the linear ZF canceler achieves 97% of
the theoretical channel capacity. So whilst here we only gave
simulation results for one binder configuration, the bound
ensures us that in all other cases the linear ZF canceller will
also give near-optimal performance.

We ran similar simulations for DS transmission and exam-
ined the performance of the linear DP. Shown in Fig. 3 are
the data-rates achieved on theL m. lines. As can be seen the
DP achieves near-optimal performance. We also include the
lower bound (13) on the performance of the DP. Examining
the lower bound assures us that for 99% of DSL lines, the
linear DP achieves 91% of the theoretical channel capacity.

VII. C ONCLUSIONS

Crosstalk is a serious problem in next-generation DSL
systems such as VDSL. Several non-linear crosstalk cancelers
and pre-compensators have been proposed to address this.
Unfortunately they suffer from high complexity, DFE error
propagation and/or require modification of CPE.

In this paper we proposed the use of a simple linear ZF
crosstalk canceler in the US and a simple linear DP in the DS.



Due to the CWDD (RWDD) of US (DS) channels these simple
linear designs leads to near-optimal performance in DSL.

It was shown that in 99% of US DSL channels the linear
ZF canceler achieves 97% of the theoretical channel capacity.
Similarly in 99% of DS DSL channels the linear DP achieves
91% of the theoretical channel capacity.

APPENDIX I
SUB-OPTIMALITY BOUND FORL INEAR ZF CANCELLER

We will make use of the following theorem in our proof.
Theorem 4:Consider anyN × N matrix A(N) , [an,m]

which satisfiesan,n = 1, ∀n and

|an,m| ≤ α, ∀n 6= m (14)

and anyN ×N matrix B(N) , [bn,m] which satisfiesbn,n =
1, ∀n < N and

|bN,N | ≤ α (15)

|bn,m| ≤ α, ∀n 6= m (16)

The magnitude of the determinants ofA(N) andB(N) can be
bounded as follows∣∣∣det(A(N))

∣∣∣ ≤ A(N)
max (17)

∣∣∣det(A(N))
∣∣∣ ≥ A

(N)
min (18)

∣∣∣det(B(N))
∣∣∣ ≤ B(N)

max (19)

whereA
(N)
max, B

(N)
max andA

(N)
min are defined in (8) and (9).

Proof: We use proof by induction. We start by assuming
that the bounds (17), (18) and (19) hold for anyN×N matrices
of the formA(N) andB(N) for some specific value ofN . Now
consider any(N + 1)× (N + 1) matrix of the formA(N+1)

A(N+1) =




A(N)

a1,N+1
...

aN,N+1

aN+1,1 · · · aN+1,N 1




We’re interested in finding bounds for the determinant of
A(N+1). If we expand the determinant along the last row of
A(N+1) it can be seen that∣∣det(A(N+1))

∣∣
=

∣∣det(A(N))
+

∑N
m=1(−1)N+1−maN+1,m det

([
A

(N)

m aN+1

])∣∣∣
≤ ∣∣det(A(N))

∣∣ +
∑N

m=1 α
∣∣∣det

([
A

(N)

m aN+1

])∣∣∣
(20)

where A
(N)

m is the sub-matrix formed by removing column
m from A(N) and aN+1 , [a1,N+1 . . . aN,N+1]T . We’ve
exploited the fact that row permutation does not affect the
magnitude of a determinant, and we use (14) in the third line.
Define the permutation matrix

Πm , [e1 · · · em−1 em+1 . . . eN em]

whereem is defined as themth column of theN×N identity
matrix. Note thatΠT

m[A
(N)

m aN+1] is of the formB(N) hence
from (19) ∣∣∣det

(
ΠT

m

[
A

(N)

m aN+1

])∣∣∣ ≤ B(N)
max (21)

Using the fact that row permutations have no effect on the
magnitude of a determinant, together with (17) and (20) yields

∣∣∣det(A(N+1))
∣∣∣ ≤ A(N)

max + αNB(N)
max

hence
A(N+1)

max = A(N)
max + αNB(N)

max (22)

We now turn our attention to finding bounds for any(N +
1)× (N + 1) matrix of the formB(N+1). Consider

B(N+1) =




C(N)

b1,N+1
...

bN,N+1

bN+1,1 · · · bN+1,N bN+1,N+1




where theN × N matrix C(N) , [cn,m], cn,n = 1, ∀n and
|cn,m| ≤ α, ∀n 6= m. Expanding the determinant along the
last row ofB(N+1) yields

∣∣det(B(N+1))
∣∣

=
∣∣bN+1,N+1 det(C(N))

+
∑N

m=1(−1)N+1−mbN+1,m det
([

C
(N)

m bN+1

])∣∣∣
(23)

where C
(N)

m is the sub-matrix formed by removing column
m from C(N) and bN+1 , [b1,N+1 . . . bN,N+1]T . Note that
C(N) is of the formA(N) hence from (17)

∣∣∣det(C(N))
∣∣∣ ≤ A(N)

max

In a similar fashion to (21) it can be shown that
∣∣∣det

(
ΠT

m

[
C

(N)

m bN+1

])∣∣∣ ≤ B(N)
max

Using the fact that row permutations have no effect on the
magnitude of the determinant, together with (15), (16) and
(23) yields

∣∣∣det(B(N+1))
∣∣∣ ≤ αA(N)

max + αNB(N)
max

hence
B(N+1)

max = αA(N)
max + αNB(N)

max (24)

Combining (22) and (24) in matrix form yields
[

A
(N+1)
max

B
(N+1)
max

]
=

[
1 αN
α αN

][
A

(N)
max

B
(N)
max

]
(25)

Now observe thatA(1) = 1 andB(1) = a11 ≤ α so (17) and
(19) hold for N = 1. Hence through induction we see that
(17) and (19) hold for allN . This concludes the proof for the
upper bounds (17) and (19). We now turn our attention to the
lower bound (18). Assume thatα is small enough such that

∣∣∣det(A(N))
∣∣∣ ≥

∣∣∣∣∣
N∑

m=1

(−1)N+1−maN+1,m det([A
(N)

m aN+1])

∣∣∣∣∣
This is a necessary condition for our lower bound to hold.
This can be easily checked by seeing whether the resulting
boundA

(N+1)
min is positive. Using (20), (14) and (21) we have
∣∣∣det(A(N+1))

∣∣∣ ≥
∣∣∣det(A(N))

∣∣∣− αNB(N)
max



which together with (18) yields

A
(N+1)
min = A

(N)
min − αNB(N)

max (26)

Now observe thatA(1) = 1 so A
(1)
min = 1 and (19) holds for

N = 1. Hence through induction we see that (26) holds for
all N . This concludes the proof for the lower bound (19).
The following theorem will also prove useful.

Theorem 5:Consider anyN × N matrix G of the form
A(N). The magnitude of the elements ofG−1 can be bounded

∣∣∣
[
G−1

]
n,m

∣∣∣ ≤
{

A
(N−1)
max /A

(N)
min n = m

B
(N−1)
max /A

(N)
min n 6= m

(27)

whereA
(N)
max, B

(N)
max andA

(N)
min are defined in (8) and (9).

Proof: By definition of the matrix inverse
∣∣∣
[
G−1

]
n,m

∣∣∣ =
∣∣∣det(G

m,n
)
∣∣∣ / |det(G)| (28)

where G
m,n

is the sub-matrix formed by removing rowm
and columnn from G. Now G is of the formA(N) so from
theorem 4

|det(G)| ≥ A
(N)
min (29)

If m = n thenG
m,n

is of the formA(N−1) and from theorem
4 ∣∣∣det(G

m,m
)
∣∣∣ ≤ A(N−1)

max , ∀m (30)

If m 6= n thenΠT
nG

m,n
Πm is of the formB(N−1) and from

theorem 4∣∣∣det(G
m,n

)
∣∣∣ =

∣∣∣det(ΠT
nG

m,n
Πm)

∣∣∣ ≤ B(N−1)
max , ∀m 6= n

(31)
Combining (28), (29), (30) and (31) yields (27) which con-
cludes our proof.
Let us now return our attention to the proof of theorem 2.
Define the matrixGk , [gn,m

k ] wheregn,m
k , hn,m

k /hm,m
k .

Since the US channel is CWDD (3) ensures us thatGk is of
the formA(N). Now

Hk = Gkdiag{h1,1
k , . . . , hN,N

k } (32)

After application of the linear ZF canceler, the soft estimate
of the transmitted symbol is

x̂n
k =

[
H−1

k

]
row n

yk

= xn
k +

[
H−1

k

]
row n

zk

where we use (1) in the second line. Hence the post-
cancellation signal power issn

k , post cancellation interference
power is zero, and the post cancellation noise power is

σ̃2
k,n = E

{∣∣[H−1
k

]
row n

zk

∣∣2
}

=
∥∥[

H−1
k

]
row n

∥∥2

2
σ2

k (33)

where we use the fact that the noise is spatially white in the
second line. So the data-rate achieved by the linear ZF canceler
is

cn
k,zf = log2(1 + sn

k σ̃−2
k,nΓ−1) (34)

Let’s examineσ̃2
k,n more closely. From (32)

[
H−1

k

]
n,m

=
[
diag{h1,1

k , . . . , hN,N
k }−1G−1

k

]
n,m

=
1

hn,n
k

[
G−1

k

]
n,m

(35)

SinceGk is of the formA(N)we can use theorem 5 to bound
∣∣∣
[
H−1

k

]
n,m

∣∣∣ ≤
{
|hn,n

k |−1
A

(N−1)
max /A

(N)
min n = m

|hn,n
k |−1

B
(N−1)
max /A

(N)
min n 6= m

Hence ∥∥∥
[
H−1

k

]
n,m

∥∥∥
2

2
≤ |hn,n

k |−2
f(N, αk)

wheref(N,αk) is defined as in (7). Together with (33) this
yields

σ̃2
k,n ≤ σ2

k |hn,n
k |−2

f(N, αk)

Combining this with (34) leads to (6) which concludes our
proof.

APPENDIX II
SUB-OPTIMALITY BOUND FORDIAGONALIZING PRECODER

In this case the DS channel is RWDD, hence we make
a slightly different definition ofGk , [gn,m

k ] with gn,m
k ,

hn,m
k /hn,n

k . Note that each element is now divided by the
diagonal element on the corresponding row. This is in contrast
to Gk in the previous appendix where the division was done
by the diagonal element on the corresponding column.

Since the DS channel is RWDD (12) ensures us thatGk is
of the formA(N). Now

Hk = diag{h1,1
k , . . . , hN,N

k }Gk (36)

From (10) we see that after application of the diagonalizing
precoder the signal at the receiver is

yk = β−1
k diag{h1,1

k . . . hN,N
k }xk + zk

Hence the received signal power for usern is β−2
k |hn,n

k |2 sn
k ,

the received interference is zero, and the received noise power
is σ2

k. So the data-rate achieved by the diagonalizing precoder
is

cn
k,zf = log2(1 + β−2

k |hn,n
k |2 sn

kσ−2
k Γ−1) (37)

Let’s examineβk more closely. From (11)

β2
k = max

n

∥∥∥
[
H−1

k diag{h1,1
k , . . . , hN,N

k }
]
row n

∥∥∥
2

2

= max
n

∥∥∥
[
G
−1

k

]
row n

∥∥∥
2

2

where we use (36) in the second line. SinceGk is of the form
A(N) we can use theorem 5 to bound

β2
k ≤ f(N, αk)

wheref(N, αk) is defined as in (7). Combining this with (37)
leads to (13) which concludes our proof.
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