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Abstract— The design and optimization of orthogonal fre-
quency division multiplex (OFDM) systems typically take the
following form: The design objective is usually to maximize
the total sum rate which is the sum of individual rates in each
frequency tone. The design constraints are usually linear con-
straints imposed across all tones. This paper explains why dual
methods are ideally suited for this class of problems. The main
result is the following: Regardless of whether the objective or
the constraints are convex, the duality gap for this class of prob-
lems is always zero in the limit as the number of frequency
tones goes to infinity. As the dual problem typically decouples
into many smaller per-tone problems, solving the dual is much
more efficient. This gives an efficient method to find the global
optimum of non-convex optimization problems for the OFDM
system. Multiuser optimal power allocation, optimal frequency
planning, and optimal low-complexity crosstalk cancellation for
vectored DSL are used to illustrate this point.

I. Introduction
In an orthogonal frequency-division multiplex (OFDM)

system, the frequency domain is partitioned into a large
number of tones. Data transmission takes place in each
tone independently. The overall system throughput is the
sum of individual rates in each frequency tone. The de-
sign constraints are typically linear but coupled across all
the tones. The design problem involves the optimization of
the overall performance subject to design constraints. For
example, the optimal bit and power allocation problem is
often formulated as follows: Let H(n), P (n) and N(n) de-
note the channel frequency response, the transmit power
spectrum density and the noise power spectrum density
at tone n, respectively. The optimization problem can be
written down as follows:

maximize
N∑

n=1

log
(

1 +
P (n)H2(n)

N(n)

)
(1)

subject to
N∑

n=1

P (n) ≤ P

P (n) ≥ 0.

The above problem has a well-known solution called
“water-filling”. Efficient solution exists in this case because
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the objective function is concave in the optimizing variable
P (n).

Unfortunately, not all optimization problems are con-
cave. The multiuser bit and power allocation is such an
example. In this case, several OFDM systems co-exist and
they create mutual interference into each other. In this
case, the sum rate maximization problem becomes:

max
K∑

k=1

N∑

n=1

log

(
1 +

Pk(n)H2
kk(n)

N(n) +
∑

j 6=k H2
jk(n)Pj(n)

)

s.t.
N∑

n=1

Pk(n) ≤ Pk k = 1, · · · , K (2)

Pk(n) ≥ 0, k = 1, · · · , K

where Hjk(n) is the channel transfer function from system
j to system k in tone n, Pk(n) is the power allocation for
user k in tone n, each user has a separate power constraint.
Because the objective function is no longer concave, the
optimization problem is difficult to solve. Previous methods
such as iterative water-filling [1] and others [2] [3] approach
the problem with sub-optimal solutions or heuristics.

Recently, Cendrillon et al [4] suggested an exact “Opti-
mal Spectrum Management” algorithm to efficiently solve
this problem. The basically idea is as follows: Form the
Lagrangian of the optimization problem (2):

max
K∑

k=1

N∑

n=1

log

(
1 +

Pk(n)H2
kk(n)

N(n) +
∑

j 6=k H2
jk(n)Pj(n)

)

+
K∑

k=1

λk

(
Pk −

N∑

n=1

Pk(n)

)
(3)

s.t. Pk(n) ≥ 0, k = 1, · · · , K

Solve the Lagrangian for each set of positive and fixed
(λ1, · · · , λK). Then, the solution to the original problem
may be found by an exhaustive search over the λ-space so
that either λk becomes zero or

∑N
n=1 Pk(n) = Pk for each

k. In this case, the Lagrangian objective is identical to the
original objective, thus solving the original problem.

This Lagrangian approach works because of the follow-
ing. First, for a fixed λk , the objective decouples into N
independent problems corresponding to the N frequency
tones. Thus, solving the dual problem requires a much
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lower computational complexity as compared to the origi-
nal problem. Second, λk represents the price of power for
user k. A higher price leads to a lower power usage. Thus,
as a function of λk , the optimal

∑N
n=1 Pk(n) is monotonic

in λk. An exhaustive search over the λ-space can then be
performed using bisection on each λk . This is essentially
an exhaustive over all possible power usage, and it leads to
the global optimum, regardless whether the original prob-
lem is convex. However, with K users, K loops of bisections
are involved, one for each λk. Therefore, the computational
complexity of optimal spectrum management, although lin-
ear in N , is exponential in K. When the number of users
is large, the complexity becomes prohibitive

The purpose of this paper is, first to refine the optimal
spectrum management algorithm with an aim of eliminat-
ing the exponential complexity, and second to generalize
the algorithm for other optimization problems in multiuser
OFDM system design. Toward this end, we show that the
optimal spectrum management algorithm belongs to a class
of dual optimization methods. Contrary to general non-
convex problems, the duality gap for multiuser OFDM op-
timization always tends to zero as the number of frequency
tones goes to infinity, regardless whether the optimization
problem is convex. This observation is inspired by an earlier
work by Bertsekas et al [5] and it leads to λ-search methods
that are polynomial in K. In the second part of paper, we
show that the general theory is applicable to many other
areas of OFDM system design. Optimal frequency plan-
ning and optimal complexity allocation in vectored digital
subscriber line systems are used as examples.

II. Dual Optimization Methods

A. Duality Gap

Consider an optimization problem in which both the con-
straints and the objective function consist of a large number
of individual functions, corresponding to the N frequency
tones:

maximize
N∑

n=1

fn(xn) (4)

subject to
N∑

n=1

hn(xn) ≤ P,

where fn(·) is a scalar function which is not necessarily
concave, and hn(·) is a vector-valued function that is not
necessarily convex. P is a vector of constraints. Also, there
may be other (possibly integer) constraints implicit in the
problem. The idea of dual method is to solve (4) via its
Lagrangian:

L(xn, λ) =
N∑

n=1

fn(xn) + λT ·

(
P−

N∑

n=1

hn(xn)

)
, (5)

where λ is a vector, and “·” denotes vector dot product.
Note that the Lagrangian decouples into a set of N smaller
problems, so optimizing the Lagrangian is much easier than

solving (4). Define the dual objective g(λ) as the solution
to the following:

g(λ) = max
xn

L(xn, λ) (6)

The dual optimization problem is:

minimize g(λ) (7)
subject to λ ≥ 0.

When fn(xn) is concave and hn(xn) is convex, standard
convex optimization results guarantee that the primal prob-
lem (4) and the dual problem (7) have the same solution.
When convexity does not hold, the dual problem provides
a solution which is an upper bound to the solution of (4).
The upper bound is not always tight, and the difference is
called “duality gap”.

In multiuser OFDM design, convexity often does not
hold. However, it is usually the case that the following
“time-sharing” property is satisfied:

Definition 1: An optimization problem of the form (4)
satisfies the time-sharing property if the following holds:
Let xn and yn be optimal solutions to the problem with
P = Px and P = Py, respectively. Then, for any 0 ≤ ν ≤ 1,
there exists a set of zn such that

∑
n hn(zn) ≤ νPx + (1 −

ν)Py , and
∑

fn(zn) ≥ ν
∑

fn(xn) + (1 − ν)
∑

fn(yn).

This property is clearly satisfied if time-division multiplex-
ing may be implemented. The frequency tones can then
be assigned to xn for ν percentage of the time and yn for
(1− ν) percentage of the time. Then, the constraint is sat-
isfied, and the objective value becomes the linear combina-
tion of the previous objective values. In practical OFDM
systems in which there are a large number of frequency
tones, the time-sharing property is often satisfied using fre-
quency sharing. This is true because channel conditions
in adjacent tones are typically similar. Thus, time-sharing
may be approximately implemented via interleaving of xn

and yn. As N → ∞, frequency-sharing is equivalent to
time-sharing.

Note that the concavity of fn(xn) and the convexity of
hn(xn) and all other constraints imply time-sharing but not
vice versa. Time-sharing is always satisfied regardless of the
convexity as long as N is sufficiently large and fn · · · fn+k

are sufficiently similar for small values of k, and likewise
for hn · · ·hn+k. This is the case in almost all OFDM sys-
tems as subchannel width in OFDM systems are chosen so
that the channel response is approximately flat within each
subchannel.

The main result of this section is that the time-sharing
property implies that the duality gap is zero.

Theorem 1: If an optimization problem satisfies the
time-sharing property, then it has zero duality gap, i.e. the
primal problem (4) and the dual problem (7) have the same
solution.

Proof: The proof uses standard technique in optimiza-
tion theory. Fig. 1 illustrates the main idea of the proof.
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Fig. 1. Time-sharing property implies zero duality gap.

The first diagram illustrates a function that satisfies the
time-sharing property. The solid line plots the optimal
(
∑

hn(x∗
n),
∑

fn(x∗
n)) as the constraint P varies. The

intersection of the curve with the vertical axis where∑
hn(x∗

n) = P is the optimal value of the primal objective.
Clearly larger P leads to higher objective value, so the curve
is increasing. More importantly, the curve is concave be-
cause of the time-sharing property. Now, consider a fixed
tangent line with slope λ. By the definition of L(λ, xn),
the intersection of the tangent line with the vertical axis
is precisely g(λ). This allows the minimization of the dual
problem be visualized easily. As λ varies, g(λ) achieves
a minimum at exactly the maximum value of the primal
objective. Thus, the duality gap is zero. (The second di-
agram illustrates a case where time-sharing property does
not hold. In this case, the minimum g(λ) is strictly larger
than the maximum

∑
fn(xn).) 2

The main consequence of Theorem 1 is that as long as
the time-sharing property is satisfied, even non-concave op-
timization problem may be solved by solving its dual. The
dual problem is typically much easier to solve because it
usually lies in a lower dimension. Further, g(λ) is con-
vex regardless of the concavity of fn(xn). (This is because
L(xn, λ) is linear in λ for a fixed xn. As the maximum of
linear functions, g(λ) is convex.) Thus, any hill-climbing
algorithm is guaranteed to converge. Note that the op-
timization of g(λ) requires an efficient evaluation of g(λ).
This usually involves an exhaustive search over the primal
variables. However, as g(λ) is unconstrained and it decou-
ples into N independent sub-problems, such an exhaustive
search is much more manageable.

B. Dual Methods

The optimal spectrum management algorithm solves
L(xn, λ) exhaustively for all possible values of λ. The multi-
user spectrum optimization problem (2) consists of K con-
straints, and successive bisection on each component of λ
would yield the primal optimum. The main point of this
paper is that we can take advantage of the duality rela-
tion and solve the dual objective g(λ) instead. By using an
efficient search of λ, the computational efficiency of the op-
timal spectrum management can be improved dramatically

The main difficulty in deriving an efficient direction for λ
is that g(λ) is not necessarily differentiable. Thus, it does
not always have a gradient. Nevertheless, it is possible to
find a search direction based on what is called a subgra-
dient. A vector d is a subgradient of g(λ) at λ if for all
λ′

g(λ′) ≥ g(λ) + dT · (λ′ − λ). (8)

Subgradient is a generalization of gradient for (possibly)
non-differentiable functions. Intuitively, d is a subgradi-
ent if the linear function passing through (λ, g(λ)) and
with slope d lies entirely below g(λ). In our optimization
problem, since the functions g(λ) and g(λ′) differ only in
(λ′ − λ)(P −

∑N
n=1 hn(xn)), the following choice of d

d = P −
N∑

n=1

hn(xn) (9)

satisfies the subgradient condition (8). The subgra-
dient search suggests that λ should be increased if∑N

n=1 hn(xn) > P and decreased otherwise. This is in-
tuitively obvious as λ represents a price for power. Price
should increase if the constraint is violated. In fact, λ up-
dates can be done systematically. It is possible to prove [6]
that the following update rule

λl+1 =

[
λl + sl

(
P −

∑

n

hn(xn)

)]+

(10)

is guaranteed to converge to the optimal λ as long as sl is
chosen to be sufficiently small. Here, sl is a scalar. By The-
orem 1, the minimum g(λ) is also equal to the maximum∑

fn(xn). Thus, the solution to the dual problem immedi-
ately yields the optimal solution to the original problem.

The crucial difference between the update equation (10)
and that suggested in [4] is that (10) updates all compo-
nents of λ at the same time. Instead of doing bisection
on each component individually, the subgradient method
collectively finds a suitable direction for all components of
λ at once. This eliminates the exponential complexity in
λ-search.

However, note that the evaluation of g(λ) is still expo-
nential in K. This is probably inevitable, if an exact so-
lution to the non-convex optimization problem is desired.
For practical problems, however, sub-optimal methods in
evaluating g(λ) often exist.



III. Applications

A. Multiuser Spectrum Management

We now return to the multiuser optimal spectrum man-
agement problem. In digital subscriber line applications,
electromagnetic coupling induces crosstalk between adja-
cent lines. The goal of optimal spectrum management is to
find a set of power allocations (P1(n), · · · , PK(n)) so that
a target rate-tuple is satisfied. Clearly, the spectrum op-
timization problem satisfies the time-sharing property. In
the rest of the section, a novel formulation of the problem
is first proposed. Its solution via duality is then presented.

In general, a tradeoff exists among the achievable data
rates of different users. Such a tradeoff can be represented
in a rate-region defined as the set of all achievable rates
(R1, · · · , RK). For a K-user system, the rate region is K-
dimensional, which can be difficult to visualize.

In this section, we propose a novel optimization proce-
dure that achieves the same purpose. The objective is now
to maximize a base rate R while guaranteeing a fixed ratio
between Rk and R for each k = 1, · · · , K. More specifically,
we may insist that R1 : R2 : · · · : RK = β1 : β2 : · · · : βK ,
where

Rk =
N∑

n=1

log

(
1 +

Pk(n)H2
kk(n)

N(n) +
∑

j 6=k H2
jk(n)Pj(n)

)
. (11)

Then, the maximization problem becomes

max R (12)
s.t. Rk ≥ βkR

N∑

n=1

Pk(n) ≤ Pk, k = 1, · · · , K

Pk(n) ≥ 0, k = 1, · · · , K

Here, the variables βk directly represent the ratios of service
rates among the different users.

The dual function for (12) can be written as follows:

g(ω1, · · · , ωK , λ1, · · · , λK) = max
Pk,R

(13)

R +
K∑

k=1

ωk(Rk − βkR) +
K∑

k=1

λk

(
Pk −

N∑

n=1

Pk(n)

)

Collecting terms, we see that the maximization involves a
term (1−

∑
ωkβk)R. Since R is a free variable to be opti-

mized, the maximization demands R = ∞ if (1−
∑

ωkβk) >
0 and R = 0 if (1−

∑
ωkβk) < 0. Thus, non-trivial solution

exists only if (1 −
∑

ωkβk) = 0.
It is now straightforward to apply the technique devel-

oped in the previous section to derive a subgradient search
for the minimization of g(ω1, · · · , ωK , λ1, · · · , λK). The
idea is the following: First, solve the maximization prob-
lem (13) for a fixed set of (ω1, · · · , ωK , λ1, · · · , λK) with
(1 −

∑
ωkβk) = 0. This is done using exhaustive search in

each tone separately and it yields a set of power allocation
Pk(n) and achievable rates Rk. The maximum R can be
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found as R = mink Rk/βk. The subgradient method can
now be used to update ωk and λk :

ω′l+1
k =

[
ωl

k + sl
k (Rk − βkR)

]+
(14)

λl+1
k =

[
λl

k + tlk

(
P −

N∑

n=1

Pk(n)

)]+

(15)

Note that the new ωk may no longer satisfy
∑

ωkβk = 1.
Renormalization is needed to project ωk back to the proper
subspace

ωl+1
k =

ω′l+1
k∑

k ω′l+1
k βk

. (16)

As long as sl
k and tlk is chosen sufficiently small, the sub-

gradient algorithm is guaranteed to converge. In practice,
any value smaller than 1 appears to work well. This sub-
gradient algorithm vastly improves the computational com-
plexity of the optimal spectrum management algorithm de-
scribed in [4]. No bisection is needed. The complexity
grows only polynomially with K.

Note that the evaluation of g(ωk, λk), if done exhaus-
tively, still has a complexity exponential in K. However,
for the spectrum optimization problem, experimental re-
sults suggest that lower complexity search algorithms often
work well. Fig. 2 shows the rate region for a two-user ADSL
system with a configuration shown in Fig. 3. Both the full
implementation of optimal spectrum management and a



reduced complexity gradient search are shown. Their per-
formances are very similar, and both outperform iterative
water-filling significantly.

B. Optimal Frequency Planning
The optimal spectrum management is applicable to many

other areas of OFDM system design. For example, in a
wireless multiuser OFDM system, different users are often
allocated to different sets of tones. The optimal power and
bit allocation problem is essentially the spectrum manage-
ment problem with an additional constraint that only one
user occupies each tone [7] [8].

max R (17)
s.t. Rk ≥ βkR

N∑

n=1

Pk(n) ≤ Pk, k = 1, · · · , K

Pk(n) ≥ 0, k = 1, · · · , K

Pk(n)Pj(n) = 0 ∀k 6= j

The solution to (17) is also applicable to the design of opti-
mal frequency-division duplex scheme for digital subscriber
line applications [9].

Previous solutions to this problem [7] [9] [8] relies on a
relaxation of the non-convex constraint. As the result of
this paper shows, this problem can instead be efficiently
solved in the dual domain. The same subgradient up-
dates as in the previous section apply here. The constraint
Pk(n)Pj(n) = 0 for all k and j is incorporated into the eval-
uation of the dual function. Theorem 1 guarantees that the
dual solution is identical to the primal solution.

In fact, the complexity of this problem is strictly sub-
exponential. The evaluation of the dual g(ωk, λk) involves
exhaustively going through K possible power allocations.
Its complexity is therefore linear in K.

C. Partial Crosstalk Cancellation in Vector DSL
Future digital subscriber line applications are expected to

implement crosstalk cancellation and precoding to further
improve the data rates in twisted-pair transmission. Multi-
ple transmitters and multiple receivers at the central office
can be regarded as a single entity. Crosstalk cancellation
can be done in a similar way as echo cancellation.

A typical DSL bundle consists of 50 to 100 twisted pairs.
Cancelling all crosstalks involves 50×50 or 100×100 matrix
processing, which is beyond the computational complexity
constraints of current digital signal processors at the cen-
tral office. On the other hand, in a 50-pair DSL bundle each
twisted-pair has only limited number of nearest neighbours.
Thus, we expect that the cancellation of only a few pairs
would achieve most of the benefits. Furthermore, crosstalk
is frequency dependent. The crosstalk level is low in low
frequency bands, so cancellation in these frequency bands
has limited utility. On the other hand, in very high fre-
quency bands, the data rates are already small. Thus, as
pointed out in [10], data rate improvement due to crosstalk
cancellation is most noticeable in the mid-frequency range.

Given a complexity constraint, how to choose the best
combination of lines and tones in which to implement
crosstalk cancellation is an interesting problem. This prob-
lem was first articulated in [10] and greedy algorithms were
suggested. However, the solution in [10] assumes a fixed
transmit spectrum level. In this section, we formulate a
more realistic problem that jointly performs line/tone se-
lection and spectrum optimization.

The basic setup is the same as before:

max R (18)
s.t. Rk ≥ βkR

N∑

n=1

Pk(n) ≤ Pk, k = 1, · · · , K

Pk(n) ≥ 0, k = 1, · · · , K

However, the evaluation of Rk now takes the following form:

Rk =
N∑

n=1

log

(
1 +

Pk(n)H2
kk(n)

N(n) +
∑

j 6=k G2
jk(n)Pj(n)

)
. (19)

where Gkj(n) = Hkj(n) except where crosstalk cancellation
takes place, in which case Gkj(n) = 0. The total number of
places where Gkj(n) = 0 represents the number of crosstalk
cancellation units that can be implemented. This number
is typically constrained by an implementation limit. More
formally,

N∑

n=1

∑

k 6=j

1{Hkj(n) 6=Gkj(n)} ≤ C (20)

where 1{} is an indicator function and C is a constant rep-
resenting the complexity constraint over all tones and all
users.

Clearly (18) may be solved using the dual formulation.
The complexity constraint is no different from any other
resource constraint. As long as exhaustive search within
each tone can be done with manageable complexity, the
optimization over the N tones only adds a polynomial fac-
tor.

IV. Concluding Remarks

The main point of this paper is that many optimization
problems in OFDM design can be decoupled in a tone-by-
tone basis via the dual method. It is shown that when
a time-sharing property is satisfied, the duality gap be-
comes zero regardless whether the original problem is con-
vex, and the time-sharing property is always satisfied when
the number of tones is large. Further, the dual problem
can be solved using a subgradient method with a polyno-
mial complexity in the number of constraints. Thus, as
long as the optimization within each tone may be done with
manageable complexity, the entire problem may be solved
efficiently. This principle is applicable to a wide range of
OFDM design problems. Multiuser spectrum optimization,
frequency planning and line/tone selection in reduced com-
plexity crosstalk cancellation are some of these examples.
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