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A modified DSMC method for rarefied flows is described, by which any

viscosity law µ = µ (T ) may be simulated, including experimental data

directly. The collision cross-section of a simple collision model is made to

vary from cell to cell, based on the time-averaged cell temperature and the

required viscosity at that temperature. The new method is tested in two

different flows: high speed Couette flow and a plane 1D shock. For Cou-

ette flow, the shear stress and heat transfer, calculated from the velocity

distribution, agree with the theoretical values calculated from the flow gra-

dients and the theoretical transport coefficients. For the 1D shock, the new

method is compared with the generalized hard sphere (GHS) model. The

new method produces profiles of density and temperature which are gener-

ally indistinguishable from the GHS results except for a deviation in the Tx

temperature component in a small region ahead of the shock. For the worst

case the deviation is 4.6%, but it can be reduced by basing the imposed

viscosity on the maximum component of kinetic temperature rather than

the mean kinetic temperature. The new method is shown to be insensitive

to the number of simulator particles used in each cell.

Three translational degrees of freedom are considered. However, because

µ-DSMC is based on a hard sphere or VHS cross-section, it is compatible

with the most commonly used Borgnakke-Larsen model for translational-

rotational energy exchange.

Key Words: rarefied flow, numerical simulation (65C), DSMC, viscosity method, Suther-
land viscosity, molecular dynamics (82A71)

1. INTRODUCTION

Bird’s Direct Simulation Monte-Carlo method [2] is the standard computational
method for rarefied flows, where the governing equation is the Boltzmann equation.
In DSMC the flow is represented by a large number of simulator particles and the
evolution of the flow is tracked by calculating the motion of these particles and
their collisions amongst themselves and with any boundaries. The simulation is
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advanced in time steps ∆t during which the convection and collision calculations
are de-coupled. After the particles are moved in collisionless flight, binary collisions
are calculated between some of the particles, at a rate which reflects the collision
probability for the particular collision cross-section used. Although the collision
partners are near neighbours, they are not necessarily within one particle diameter.
Post-collision velocities are calculated for the given relative speed of collision and
a randomly chosen set of impact parameters.

The most common collision model now used in DSMC calculations is the vari-
able hard sphere (VHS) model; the total collision cross-section varies with relative
velocity in the same manner as for an inverse power repulsive potential, but the
scattering is as for hard spheres - all directions of the post-collision relative velocity
are equally likely. The first DSMC application of this combination of hard sphere
differential cross-section and a variable total cross-section can be found in the pa-
pers of Borgnakke and Larsen [3] [13] [4], and later by Erofeev and Perepukhov [7]
and Bird [1]. The Chapman-Enskog viscosity of the VHS collision model is a power
law

µ (T ) = µr

(
T

Tr

) 1
2+υ

,

where µr is the viscosity at a reference temperature Tr. This viscosity law matches
that for a molecule displaying an inverse power repulsive intermolecular potential
U (r) ∝ r−α, where α = 2/υ.

The viscosity of real gases can be matched by a power law over a small tem-
perature range only, because the long range attractive forces (the van der Waals
forces) are ignored. More realistic is the Sutherland potential which combines a
short range hard sphere repulsion with a long range inverse 6th power attractive
potential. The viscosity of the Sutherland potential is given by

µ (T ) = µr

(
T

Tr

) 1
2 1 + Ts/Tr

1 + Ts/T
(1)

where the temperature Ts is a measure of strength of the attractive potential. With
Ts = 142 K the Sutherland law fits the experimental viscosity data for argon (Kestin
et al. [10]), reasonably well up to T = 10Ts = 1420 K, at which point the Sutherland
viscosity is 8% less than the experimental data. In contrast, a power law viscosity
is a poor representation of the experimental data over the same range. Fig. 1 shows
this in exaggerated form, by comparing the Sutherland viscosity with that of the
two extremes of the VHS collision model: υ = 0 (the hard sphere molecule with
constant cross-section) and υ = 1

2 (a ‘Maxwell cross-section’). All three viscosities
are set equal at T = Ts, but deviate markedly at high temperatures.

An intermediate value of υ could give a ‘compromise’ representation of the viscos-
ity data over the temperature range shown in Fig. 1, but a different value of υ must
be selected for each flow situation. A collision model based on a realistic potential
can give a good representation of the viscosity of a typical gas over a wide range
of temperature. For example Davis et al. [6] calculated and stored the deflection
angles for the Morse potential for a large array of possible impact parameters and
used a table look-up as required for each collision. Special procedures had to be
used for impact parameters which exceeded the bounds of the array. While this
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FIG. 1. Viscosity µ/µr vs. T/Tr for: —-, Sutherland, Eq. 1 (Ts = Tr); – –, hard sphere

µ/µr = (T/Tr)
1
2 ; · – ·, linear law µ/µr = T/Tr. ◦ argon data Kestin et al. [10] Tr = 142 K,

µr = 1.129× 10−5 Nm−1 s−1.

‘look-up’ approach would be more manageable and accurate with present day com-
puters, as might be exact calculations for realistic potentials for every collision as
it occurs (Koura and Matsumoto [11]), it would be better to have a collision model
as simple to implement as VHS and which produced a realistic viscosity law.

Here we describe such a simple method, called ‘viscosity-DSMC’ or µ-DSMC, by
which a simple collision cross-section can be used to simulate any realistic viscosity
law, including one based on empirical data. This is achieved by adjusting the
parameters of a simple collision model on a cell by cell basis, based on the time-
averaged temperature in each cell, and the required viscosity at that temperature.
In the first example we assume a hard sphere (constant cross-section) collision
probability in each cell, but achieve a Sutherland viscosity law by making the
cross-section depend on the local cell temperature. In the second example we use a
collision probability which corresponds to a ‘soft’ variable hard sphere cross-section
with a fixed value of υ, but achieve a realistic viscosity law by making the reference
size of the VHS cross-section depend on the cell temperature.

2. µ-DSMC: VARIABLE TEMPERATURE CROSS-SECTION

The Chapman-Enskog viscosity [5] for hard sphere molecules is

µ =
5mπ

1
2

16
(RT )

1
2

σ
, (2)

where σ (= πd2, where d is the sphere diameter) is the total collision cross-section,
m is the molecular mass and R is the ordinary gas constant. To produce a variation
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of viscosity which deviates from the hard sphere law the total cross-section must
vary from cell to cell based on the local time-averaged kinetic temperature T̄ in the
cell; that is, in each cell, at each time step, a local molecular size is computed as

σ
(
T̄

)
=

5mπ
1
2

16

(
RT̄

) 1
2

µ
(
T̄

) . (3)

The standard DSMC procedures for a hard sphere molecule are then applied in
each cell, based on the local value of σ. Thus, in each cell the number of collision
pairs considered is

Np =
1
2

n̄Nσgmax∆t,

where gmax is an estimate of the maximum possible collision speed in the cell, σ is
given by Eq. 3, N is the number of particles in the cell and n̄ is the time-averaged
value of the local number density. Note that T̄ is calculated for each cell at the
same time as is n̄ in standard DSMC. The extra computational effort is negligible;
the necessary samples are available as part of the standard DSMC procedures for
obtaining the final steady state.

A pair is accepted for collision if g/gmax > Rf , where Rf is a uniformly dis-
tributed random fraction. The number of collisions accepted is

Ncoll =
ḡ

gmax
Np =

1
2

nNσḡ∆t,

where ḡ is the average collision speed. The collision rate is

ν =
2Ncoll

N∆t
= nσḡ,

or, with σ from Eq. (3),

ν =
5π

16
ρḡ

(
RT̄

/
π)

1
2

µ
(
T̄

) .

Thus the local non-equilibrium collision rate depends on the velocity distribution,
through ḡ, and the specified viscosity law µ

(
T̄

)
. The collision probability need not

be ∝ g (as for a hard sphere total cross-section) but can be taken as ∝ g1−2/υ, as
for the VHS total cross-section (see §5).

3. COUETTE FLOW

Bird [2] has used a simulation of high speed Couette flow to check the viscosity
and thermal conductivity for the VHS collision model. Here we do a similar thing to
demonstrate that the µ-DSMC can produce a variation of viscosity given by Eq. 1,
even though a hard sphere collision model is used locally in each cell. We consider
molecules with three translational degrees of freedom only, so the specific heat at
constant pressure is Cp = 5R/2. The viscosity law for µ-DSMC was imposed by
using Eq. 1 to set the cross-section, via Eq. 3. The theoretical thermal conductivity
is given by K (T ) = µ (T )Cp/Pr, where Pr = 2/3 is the Prandtl number.

The geometry and boundary conditions for Couette flow are shown in Fig. 2. The
gas is contained between two plates parallel to the x-axis separated by a distance
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FIG. 2. Couette flowfield. Plane of skew symmetry at y = 0.

2H, moving in their own plane with speeds ±Vw/2. There is a plane of skew
symmetry mid-way between the plates, where the origin of the y-axis has been
set. The flow extends infinitely in the x and z directions. Half the flow only, from
0 <= y <= H is simulated; simulator particles which cross the plane of skew
symmetry are ‘reflected’ from the plane with their velocity and position vectors
reversed.

The flow begins with a uniform gas density ρ1 and temperature T1 between the
plates. The plate at y = H begins to move at time t = 0, in the positive x-
direction, with speed Vw/2. The plate temperature is held constant at Tw = T1

and particles which collide with the plate are diffusely reflected. The wall speed
ratio was Sw = Vw/ (2RTw)

1
2 = 3.

The simulator gas density and molecular size, and therefore collision rate, are
specified by the nominal mean free path

λ1 =
2µ1

ρ1c̄1
,

where c̄1 = (8RT1/π)
1
2 is the mean thermal speed in the undisturbed gas. The

Knudsen number, λ1/H, was 0.01. The cell size was ∆y = H/200 giving ∆y ≈
0.5λ1; 10 sub-cells per cell were used so that the average collision separation was
< 0.05λ1. There were 100 particles in each cell (on average) in the initial state.
The decoupling interval was ∆t = τ1/5, where τ1 = λ1/c̄1 is a nominal collision
time.

For similar calculations Bird [2] found that steady state was achieved after an
elapsed time 375H/c̄1. In the present calculations steady state was well established
after an elapsed time of 400H/c̄1 and samples taken after this time were used to
derive the final time-averaged steady state. Samples of the flow were taken at
intervals of 2τ1. The simulation continued until the total sample size in each cell
was > 16× 106 particles.

Steady state velocity and temperature profiles are shown in figure 3. All ‘raw’
profiles from the simulations have been smoothed by a moving average over five
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FIG. 3. Normalized velocity (—, 2ux/Vw) and temperature (– –, T/T1) profiles for Couette
flow for µ-DSMC with a Sutherland viscosity law (Ts = T1). Plate separation is 2H, y = 0 is
plane of skew symmetry. Sw = 3, λ1/H = 0.01. 200 cells, 10 sub-cells per cell. Sample size
> 16× 106 in each cell. Each point in the profiles is an average over 5 cells.

cells (a distance ≈ 2.5λ1). The moving plate heats the flow; the temperature is a
maximum at y = 0 and approaches the wall temperature at y = H.

The theoretical shear stress in the flow can be determined from the velocity
gradient dux/dy measured from the velocity profile, and the theoretical viscosity,
µ(T ) from Eq. 1, evaluated for the local flow temperature. The velocity gradient
was taken as the slope of a line of ‘least squares’ best fit to the five adjacent
smoothed values. The velocity gradient is shown in Fig. 4, where the increase in
the gradient towards the moving wall can be seen, indicating the formation of a
‘slip’ or ‘Knudsen’ layer.

4. MEASURED VISCOSITY AND THERMAL CONDUCTIVITY
The shear stress in each cell was determined by sampling the particle velocities.

Thus

τmeas = ρ < cxcy >

where ~c = (cx, cy, cz) is the thermal velocity; the angle brackets denote the average
over all particles in the accumulated sample. This shear stress is shown in Fig.
5. Each point is a five point average over a length 2.5λ1. The measured stress is
approximately constant near the center of the flow, where the velocity gradient and
temperature (and hence theoretical viscosity) are approximately constant. Closer
to the moving plate the measured shear stress reduces.

The measured shear stress is compared with the theoretical shear stress τt =
µ(T )dux/dy in Fig. 6. The results for two values of the viscosity µ(T ), calculated
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FIG. 4. Velocity gradient in Couette flow, corresponding to Fig. 3. µ-DSMC, Sutherland
viscosity law (Ts = T1). Sw = 3, λ1/H = 0.01. dux/dy taken from line of best fit to ux values
over 5 adjacent cells. For clarity, only 1 in 2 points shown.
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FIG. 5. Shear stress τmeas = ρ < cxcy >, calculated from the velocity distribution in
each cell. Reference shear stress τ1 = µ1Vw/(2H) = ρ1c̄1Vwλ1/(4H). µ-DSMC, with Sutherland
viscosity. Flow conditions and smoothing as in Fig. 3.
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FIG. 6. Shear stress from µ-DSMC simulation with Sutherland viscosity law. τmeas as in
Fig. 5. Theoretical shear stress τt = µ dux

dy
. dux

dy
as in Fig. 4. Two viscosity laws: ◦, Sutherland

viscosity, Eq. 1; +, µ(T ) = µ1(T/T1)
1
2 (hard sphere). T as in Fig. 3. For clarity, only 1 in 5

points shown.

from the flow temperature, are shown: the Sutherland viscosity law (Eq. 1), which
was specified for the µ-DSMC simulations, and the hard sphere law µ ∝ T

1
2 . The

results (τmeas/τt ≈ 1) show that µ-DSMC reproduces the Sutherland viscosity law
as required.

A similar procedure was used to check the thermal conductivity in the simula-
tions. The y-component of the heat transfer vector was calculated as

qy,meas =
1
2
ρ < cy~c · ~c >,

values of which are shown in Fig. 7. The heat transfer approaches zero at the plane
of skew symmetry and a maximum value near the moving plate, as expected. The
theoretical value of heat transfer

qy,t = −K
dT

dy
= −µ

Cp

Pr
dT

dy

was calculated for the Sutherland viscosity law and the hard sphere law. The
measured and theoretical values are compared in Fig. 8; the results show the heat
transfer coefficient follows the Sutherland law. Because of the low values of heat
transfer and temperature gradient near the axis, the results for y/H < 0.3 show
increasing scatter and are not shown. This scatter can not be attributed to the
special procedures used in µ-DSMC. Bird [2] found a similar ‘hopelessly erratic’
scatter for a similar flow, using standard DSMC and the VHS collision model.
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FIG. 7. Heat transfer qy,meas = − 1
2
ρ < cy~c · ~c > from µ-DSMC simulation, calculated

from the velocity distribution in each cell. Reference heat transfer q1 = µ1
Cp

Pr
T1
H

. Cp = 5R/2, Pr

= 2/3. Smoothing as in Fig. 3. For clarity only 1 in 5 points shown.
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FIG. 8. Heat transfer from µ-DSMC simulation with Sutherland viscosity law. Sw = 3,

λ1/H = 0.01. qy,meas as in Fig. 7. Theoretical heat transfer qy,t = µ
Cp

Pr
dT
dy

. Cp = 5R/2, Pr =

2/3. Two viscosity laws: ◦, Sutherland viscosity, Eq. 1; +, µ(T ) = µ1(T/T1)
1
2 (hard sphere). T

as in Fig. 3. For clarity, only 1 in 5 points shown.
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5. µ-DSMC WITH ‘SOFT’ COLLISION PROBABILITIES

At high collision energies the collision probability of real molecules is more accu-
rately represented by the variable total cross-section of an inverse power potential,
U(r) ∝ 1/rα. To account for this the VHS (rather than the hard sphere) collision
cross-section can be used as the basis of the new method, while still achieving any
viscosity law. In standard VHS the collision cross-section varies with collision speed
as

σ(g) = σr(gr/g)2υ (4)

where gr and σr are constant throughout the flow. All that is required to achieve
an arbitrary viscosity law is to make σr vary from cell to cell as a function of the
required viscosity. Thus, with

σr

(
T̄

)
=

15π
1
2

16Γ (4− υ)
mgr

µ
(
T̄

) . (5)

where gr =
(
4RT̄

) 1
2 and T̄ is the time-averaged cell temperature, the standard

DSMC procedures will produce the required viscosity µ
(
T̄

)
. The distribution of

relative speeds in collisions will be ∝ g1−2υ.
In order to test µ-DSMC, with this collision probability, in a highly non-equilibrium

flow, the structure of a plane 1-D shock was calculated and cpmpared with the shock
structure calculated with the GHS model of Hash and Hassan [9].

6. GENERALIZED HARD SPHERE

The GHS collision model [9] uses hard sphere scattering and a total collision
cross-section made up of any number of VHS cross-sections. Here we use

σ/σ0 = φ (g0/g)2υ1 + (1− φ) (g0/g)2υ2 (6)

where σ0 is a reference cross-section, g0 = (4RT0)
1
2 and T0 is a reference tempera-

ture. The Chapman-Enskog viscosity for this cross-section, (and isotropic scatter-
ing), is

µ =
15π

1
2

16Γ (4− υ1)
(T/T0)

1
2+υ1

[φ + (1− φ)S]
mg0

σ0
. (7)

where

S = S0 (T0/T )υ2−υ1 .

With υ1 = 2/13, υ2 = 14/13 and φ = 0.61, Eq. 7 can give a reasonably good
representation of the viscosity of argon, for which m = 66.3×10−27 kg (see Fig. 9).
The cross-section σ0 = 6.457× 10−19m2 follows from Eq. 7 with µ0 = 2.272× 10−5

Nm−1s−1 and T0 = 300 K. The GHS viscosity is 5% greater than the experimental
data at T = 1500 K.

For low temperatures, the GHS collision model is extremely computationally in-
efficient; the collision probability increases dramatically for collision speeds g <<
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FIG. 9. Viscosity µ/µ1 vs. T/T1: —–, generalized hard sphere model (Eq. 7) with
υ1 = 2/13, υ2 = 14/13, φ = 0.61, σ0 = 6.457× 10−19 m2, T0 = 300 K; ◦, argon data Kestin et al.
[10]; · · ·, µ = µ1(T/T1)0.67. T1 = 150 K, µ1 = 1.237× 10−5 Nm−1s−1.

(4RT0)
1
2 so that an overwhelming number of low energy collisions must be calcu-

lated. However, these low energy collisions make an insignificant contribution to
the viscous behavior of the model. To overcome this, we can assume that the col-
lision probability is constant for g < (2RT1)

1
2 where T1 is the lowest temperature

in the flow (the pre-shock temperature in the simulations which follow). It can
be shown that this modification affects the theoretical viscosity only at very low
temperatures; the deviation from the viscosity law of Eq. 7 is approximately 1.3%
at T = T1 and reduces dramatically for T > T1.

7. PLANE 1D SHOCK

The FORTRAN computer code DSMC1S, supplied by Bird [2], which calculates
the internal structure of a plane 1D shock was modified to include the GHS collision
model and µ-DSMC. The µ-DSMC procedure was based (locally) on the VHS cross-
section, with υ = 1/6. The specified viscosity law for µ-DSMC was that of the GHS
model (Eq. 7).

Simulations were also undertaken with the standard VHS collision model with
υ = 1/6 for which the viscosity is proportional to T 0.67; this viscosity law is also
shown in Fig. 9. In order to accentuate the difference between the VHS viscosity
and the GHS/µ-DSMC viscosity, the pre-shock temperature T1 was set at 150 K. All
three models had the same viscosity µ1 upstream of the shock and the length scale
in all the profiles shown below is the nominal mean free path λ1 = 2µ1/(ρ1c̄1). The
simulation flowfield typically spanned a length of 30λ1. 200 cells were used, with 6
sub-cells per cell. The cell size was typically < 0.75λ2 where λ2 is the nominal mean
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FIG. 10. Normalized density and temperatures for normal shock (M1 = 2, T1 = 150K,
γ = 5/3). µ-DSMC and VHS collision model compared to GHS collision model. Solid lines
show the results for the GHS collision model. Closed symbols, µ-DSMC: ◦ ρ′, ∇ T ′x, ♦ T ′p.

Closed symbols, VHS collision model (υ = 1/6): + ρ′, · T ′x, × T ′o. Every 3th point only shown.
Theoretical viscosities shown in Fig. 9.

free path downstream of the shock. The time step was ∆t = 0.2λ1/c̄1. Translational
degrees of freedom only were considered, giving a ratio of specific heats of γ = 5/3.
Results for three shock Mach numbers are presented: M1 = 2, 4 and 8, for which
the temperature ratio across the shock is T2/T1 ≈ 2, 5.9 and 20.9 respectively.

Fig. 10 shows the temperature and density profiles obtained for the Mach 2
shock using the new simulation method, compared with the GHS model. The flow
properties are normalized as

ρ′ = (ρ− ρ1)/(ρ2 − ρ1), T ′x = (Tx − T1)/(T2 − T1), T ′o = (To − T1)/(T2 − T1)

where Tx is the x-component of kinetic temperature in each cell, To = (Ty + Tz)/2
is the ‘orthogonal’ temperature, and T1/2 is the equilibrium temperature upstream
or downstream. The origin of the x-axis is set at the point where ρ′ = 0.5. The
viscosity law in both cases is the same, and the µ-DSMC results agree closely with
the GHS results. The temperature rise ahead of the shock is slightly less severe for
µ-DSMC than for the GHS model.

Figs. 11 and 12 show similar results for shock Mach numbers of M1 = 4 and
8. Also shown are the results for the VHS collision model. Because of the lower
viscosity through the shock for this model, the shock thickness is smaller, and the
profiles differ noticeably from those for the GHS and µ-DSMC models. In other
words, although the µ-DSMC model uses the VHS collision probability locally in
each cell, it matches the behaviour of the GHS model, because its viscosity (and
hence collision rate) is similar.
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FIG. 11. Normalized density and temperatures for normal shock (M1 = 4, T1 = 150 K,
γ = 5/3). µ-DSMC (closed symbols) and VHS collision model (open symbols) compared to GHS
collision model (solid lines). Symbols as in Fig. 10.
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FIG. 12. Normalized density and temperatures for normal shock (M1 = 8, T1 = 150 K,
γ = 5/3). µ-DSMC (closed symbols) and VHS collision model (open symbols) compared to GHS
collision model (solid lines). Symbols as in Fig. 10.
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FIG. 13. Deviation ∆Tx/(T2−T1) between µ-DSMC and the GHS collision model (M1 = 4):
◦, standard µ-DSMC (see Fig. 11) maximum deviation ∆T/(T2 − T1) = 4.6%; +, modified µ-
DSMC (see Fig. 14) maximum deviation ∆T/(T2 − T1) = 2.6%.

8. MODIFIED µ-DSMC
Figs. 10, 11 and 12 indicate that µ-DSMC matches the results of the GHS model

very closely for highly non-equilibrium flow in the interior of the shock. The only
small difference lies in a slightly steeper profile of the temperature Tx. For example,
Fig. 13 shows the difference ∆T in the value Tx, as calculated by µ-DSMC, and
the value of Tx as calculated with the GHS model, normalized with respect to the
temperature rise across the shock T2 − T1, for the Mach 4 shock. The maximum
difference is 4.6%. For M1 = 2 and M1 = 8 the maximum difference is 2.8% and
1.6% respectively.

Although this deviation is probably insignificant µ-DSMC can be modified to
reduce this particular difference. All that is required is to base the reference collision
cross-section in any cell, not on the kinetic temperature but on the maximum
component of kinetic temperature, in this case Tx. Thus, in place of Eq. 5, we can
use

σr (Tmax) =
15π

1
2

16Γ (4− υ)
mgr

µ (Tmax)
, (8)

where Tmax = max
(
T̄x, T̄y, T̄z

)
. As before, T̄ denotes the time-averaged tempera-

ture in any cell. The shock structure calculated with ‘modified’ µ-DSMC is shown
in Fig. 14. It can be seen that the agreement with the GHS results is slightly better
than that shown in Fig. 11. Fig. 13 shows the maximum deviation between the
Tx profiles for the modified and unmodified version of µ-DSMC; the maximum de-
viation is reduced from 4.6% to 2.6%. The density and To profiles are changed by
insignificant amounts. Similar results were found for M1 = 2 and 8; the modified
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FIG. 14. Normalized density and temperatures for normal shock (M1 = 4, T1 = 150
K, γ = 5/3). Modified µ-DSMC (closed symbols) compared to GHS collision model (solid lines).
Symbols as in Figs. 10. Max deviation reduced from 4.6% to 2.6%.

µ-DSMC results showed that the maximum deviation of Tx from the GHS profiles
was reduced from 2.8% to 1.6% and 1.6% to 1.3%, respectively.

Plausible reasons can be given to justify this modification: The simulation colli-
sion rate for the GHS simulations within the shock is slightly less than that expected
for equilibrium conditions. The collision rate is lower because, when Tx > Tkin the
average collision speed is greater than the average collision speed at equilibrium.
The larger collision speed leads to a smaller average collision cross-section, and
larger average mean free path, within the shock. Hence the flow is more ‘dissipa-
tive’ than might be expected from equilibrium assumptions. Using the maximum
component of kinetic temperature to calculate the required viscosity mimics this
effect. Wherever the three components of kinetic temperature are significantly dif-
ferent a smaller reference cross-section is used in each cell and the collision rate is
slightly reduced.

9. NUMBER OF SIMULATOR PARTICLES
In a typical DSMC application as few as 10 simulator particles per cell might

be used. Since the cell temperature (and hence the effective collision cross-section)
must be estimated from this small number of particles, it might seem that µ-DSMC
would be sensitive to the number of simulator particles used. On the other hand,
the time-averaged temperature is used and this quickly becomes independent of the
instantaneous number of simulators in any cell for steady flow.

The effect of varying the number of simulator particles was found by repeating
the 1D shock calculations. Five cases were considered; the number of particles per
cell in the upstream flow was 122, 61, 30, 15 and 7. In the last case, before steady
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FIG. 15. Effect of number of simulator particles/cell on the final time-averaged steady
state. Temperature vs. density through the shock. Normalized values: T ′x = (Tx−T1)/(T2−T1),
T = (T − T1)/(T2 − T1), ρ′ = (ρ − ρ1)/(ρ2 − ρ1). M1 = 2, Modified µ-DSMC. Particles/cell in
upstream flow: —-, 122; ◦, 61; 4, 30; ♦,15; ∇, 7. One in five points only shown for clarity.

state was reached, fewer than 3 particles were occasionally found in some cells. In
that case, a new cell temperature was not calculated, but the previous estimate
was used. In all cases the simulation continued until the final sample sizes were the
same. The time-averaged profiles of Tx and T are shown in Fig. 15. These are for
modified µ-DSMC which, since it uses only one component of kinetic temperature
to set the average cross-section, might be expected to suffer more from small sample
sizes. The results are virtually independent of the number of simulator particles
used. The time-average collision rate differed for the five cases by less than 1% in
the interior of the shock.

10. DISCUSSION

The approach taken here to achieve an arbitrary viscosity, appears to be sim-
pler than that taken by Koura and Matsumoto [12], by which they make the two
disposable parameters of the VSS model empirical functions of the collision energy
and these parameters have to be numerically determined. It is important that the
standard Borgnakke-Larsen [4] energy exchange model for molecules with transla-
tional and vibrational degrees of freedom can be used with µ-DSMC; this is because
µ-DSMC, is based on the hard sphere or variable hard sphere collision probability
within each cell.

There are some parallels between the new method and the method of Garcia et
al. [8], which was originally designed to obtain a dense gas equation of state. In
that method, the transport properties are altered by adding a random displacement
between the collision partners, and it appears this could be done while retaining
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the perfect gas equation of state of standard DSMC. In order to obtain an arbitrary
viscosity law, the magnitude of this random displacement has to depend on the flow
temperature, and in this respect would be similar to µ-DSMC; that is, the collision
process would not depend only on the magnitude of relative velocity in a particular
collision, but also on the velocities of all the potential collision partners in the cell
through the kinetic temperature.

I previously proposed a method [14], ‘collision rate DSMC’ (ν-DSMC) in which
all collision speeds in a cell were equally likely (a Maxwell total cross-section) but
which achieved a realistic viscosity law by calculating the collision rate from the
required viscosity law and the kinetic temperature in the cell. That method was
shown to give results within about 5% of the standard VHS collision model (when
the viscosities were matched) for a number of typical non-equilibrium flows, with
a computational effort of about 50-80% of that required for the VHS model. µ-
DSMC, requires the same computational effort as the standard VHS model, but
improves on ν-DSMC in two related ways - the distribution of relative velocities in
collisions is more realistic, and the non-equilibrium collision rate depends on the
local distribution of particle velocities as well as the kinetic temperature.

The extra computational effort required for µ-DSMC, compared to the VHS
model, for the simulations reported here, was negligible, consisting only of calcu-
lating the time-averaged components of kinetic temperature. The samples required
to do this are accumulated in standard DSMC in order to obtain the final steady
state temperature. For unsteady flow it might be necessary to calculate the kinetic
temperature at every time step, and tests of this showed that the computational
load might increase by about 10%, in that case.

If the diffusion coefficient (or Schmidt number) is deemed important for any
particular flow the variable soft sphere (VSS) collision model introduced by Koura
and Matsumoto [11] [12] can be used as the basis of µ-DSMC. In its basic form
the VSS model displays a power law viscosity the same as the VHS model, but the
diffusion coefficient is adjustable.

11. SUMMARY

µ-DSMC is a new simulation method for rarefied flows by which an arbitrary
viscosity law can be implemented. It is as simple as standard DSMC using the
VHS collision model and the computational burden required to achieve an arbitrary
viscosity law is negligible.

Numerical tests for high speed Couette flow, using hard sphere collision proba-
bilities have shown that the coefficients of viscosity and thermal conductivity can
be made to follow the Sutherland law. Further tests for the highly non-equilibrium
flow within a normal shock, using VHS collision probabilities, and a viscosity law
matching the GHS viscosity law, have shown that the µ-DSMC results are neg-
ligibly different from those obtained with the more complex GHS model. Using
µ-DSMC there is no need to construct a realistic collision model, or use a realis-
tic intermolecular potential, in order to obtain a viscosity law which matches the
experimental data to a certain accuracy; the best experimental data can be used
directly to specify the collision cross-section in each cell.
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