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In this paper we investigate power allocation in MIMO-OFDM systems. We
describe the optimal power allocations under two different constraints: a con-
straint on the total power of all transmitters (TXs) which is applicable in wireless
applications, and a constraint on the power of each TX which is more relevant
in wireline applications.
We describe the optimal TX/RX structure which in combination with the optimal
power allocation achieves the MIMO-OFDM channel capacity (under the cho-
sen constraints), with low complexity. Simulations show the benefits of using a
total power constraint in place of a per-TX power constraint are largest when
the TXs see channels with significantly different attenuations.

1 INTRODUCTION

In highly frequency selective channels the loading of power across frequency has
a significant impact on system performance. The well known waterfilling algorithm[1]
describes the optimal power allocation for single-input single-output (SISO) channels.
In this paper we investigate the problem of power allocation in multi-input multi-output
(MIMO) systems. These systems are encountered in the wireless environment where
multiple TX/RX antennas are used to increase data-rate and mitigate channel fades
through the use of spatial multiplexing and TX/RX diversity respectively[2]. The
MIMO approach also finds application in wireline environments like digital subscriber
line (DSL) where it can be used to enable crosstalk cancellation[3].

2 MIMO SYSTEM MODEL

We restrict our attention to OFDM transmission. The signal sent by each trans-
mitter has a cyclic prefix (CP) appended. We assume the CP is of sufficient length
so transmission on each tone can be modeled independently. Transmission of one
OFDM-block is then described

yk = Hkxk + zk

wherexk ,
[
x1

k, · · · , xN
k

]T
is the vector of transmitted signals on tonek. There are

N co-located transmitters (TX) and co-located receivers (RX) in the system andxn
k is
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the signal of TXn at tonek. yk andzk have similar structures.yk is the vector of
received signals on tonek. zk is the vector of additive noise on tonek. We assume
E {

zkz
H
k

}
= σ2

kIN . This is without loss of generality since a noise-whitening pre-
filter can be applied at the RXs.Hk is theN × N channel transfer matrix on tonek.
hn,m

k , [Hk]n,m is the channel from TXm to RX n on tonek. We define the transmit

correlation matrix on tonek Sk , E {
xkx

H
k

}
and its elementssn,m

k , [Sk]n,m

The capacity of the system is

C =
∑

k

I(xk;yk) (1)

=
∑

k

log
∣∣IN + σ−2

k HkSkH
H
k

∣∣

whereI(a;b) denotes the mutual information betweena andb.

3 POWER ALLOCATION IN MIMO SYSTEMS

We now investigate power allocationsSk that maximize the capacity of the MIMO
channelC.

3.1 POWER CONSTRAINT FOR ALL TRANSMITTERS

We first focus our attention on the maximization ofC under a constraintP on the
total power of all TXs

max
{Sk}k=1...K

C s.t. Sk ∈ RN
+ , ∀k (2)

∑
n

∑

k

sn,n
k ≤ P (3)

This constraint is well suited to wireless applications and is then motivated by con-
sidering the limitations on the analog front-end (AFE) which drives the multi-element
antenna. Note thatRN

+ is the set of all positive semi-definite matrices of sizeN × N .
Naturally any valid transmit PSD must be within this set.

Using the SVDHk
svd
= UkΦkV

H
k whereΦk , diag

{
ϕ1

k, . . . , ϕ
N
k

}
. The optimal

transmit correlation matrix is then

Sk = VkDkV
H
k (4)

where

Dk ,
[

1

λ
IN − σkΦ

−2
k

]+

and[x]+ , max(0, x). 1
λ

is the waterfilling level and is chosen such that the TX power
constraint (3) is met with equality. Note that the diagonal values ofDk are found



through a conventional waterfilling algorithm. Waterfilling is applied to the equivalent
channel̃h which is formed by concatenation of all singular valuesϕn

k

h̃ ,
[
ϕ1

1, . . . ϕ
N
1 , . . . , ϕ1

K , . . . , ϕN
K

]

Proof: See Appendix.

3.2 POWER CONSTRAINT PER TRANSMITTER

In many scenarios it is more relevant to consider a constraintPn on the power of
each TX instead of a constraintP on the total power of all TXs. An example is DSL
transmission. In DSL the use of several modems as a MIMO system yields significant
benefits in terms of interference cancellation[3]. In this case the limitation is on the
transmit power that the AFE of each modem can support.

Maximizing capacity under a constraint on each TX leads to the optimization prob-
lem

max
{Sk}k=1...K

C s.t. Sk ∈ RN
+ , ∀k (5)

∑

k

sn,n
k ≤ Pn, ∀n (6)

The object functionC is concave while the constraints form a convex set of feasi-
ble solutions. As a result we can solve this problem using standard convex optimisation
techniques.

Unfortunately we do not know of a closed form solution to the optimisation (5).
This is the subject of ongoing work. Instead we use standard numerical techniques for
solving convex problems (e.g. interior point methods).

4 OPTIMAL TX/RX STRUCTURE FOR MIMO SYSTEMS

We now describe the optimal TX and RX structure from [4] which in combination
with the power allocation of the previous sections achieves MIMO channel capacity.

Using the eigenvalue decompositionSk
eig
= QkMkQ

H
k . Define the equivalent chan-

nelHk , HkQkM
1/2
k and its SVDHk , UkΦkV

H

k .
Begin with a set of normalized frequency domain symbolsxk which are generated

by the encoder at tonek. These are normalized such thatE {
xkx

H
k

}
= IN . Before

transmission we apply the pre-filterPk , QkM
1/2
k Vk to the normalized symbols.

Hencexk = Pkxk and the transmitted signalxk has the optimal PSD, ie.E {
xkx

H
k

}
=

Sk.
At the RXs we apply the filterWk , Φ

−1

k U
H

k . Our estimate of the transmitted
symbols is thus formed

x̂k = Wkyk

= Wk (HkPkxk + zk)

= xk + Φ
−1

k zk



wherezk , U
H

k zk. Note thatE {
zkz

H
k

}
= E {

zkz
H
k

}
= σ2

kIN .
Note that under the total power constraint (3):Qk = Vk, Mk = Dk, Hk ,

UkΦkD
1/2
k , Uk = Uk, Φk = ΦkD

1/2
k andVk = IN . Hence we have the following

simplifcations:Pk = VkD
1/2
k andWk = D

−1/2
k Φ−1

k UH
k .

Applying an ideal single-input single-output (SISO) code to the scalar streamx̄n
k

allows us to achieve the rate

cn
SISO =

∑

k

log2

(
1 + σ−2

k (ϕn
k)2) bps/Hz

with vanishing probability of error. This leads to a total rate

CSISO =
∑

n

cn
SISO

=
∑

k

log2

∣∣∣IN + σ−2
k Λ

2

k

∣∣∣

=
∑

k

log2

∣∣IN + σ−2
k HkSkHk

∣∣

= C

whereC is the capacity of the MIMO channel as defined in (1).
So using independent SISO encoders/decoders for theN scalar streams

xn
k , y

n
k , ∀n plus simple linear pre and post-filtering allows us to achieve the full ca-

pacity of the MIMO channel. Note this has a much lower complexity than using a
maximum likelihood (ML) multi-input multi-output (MIMO) encoder/decoder for the
N dimensional data-streamxk,yk.

5 PERFORMANCE

Operating under a total power constraint (3) rather than a power constraint on each
TX (6) gives an extra degree of freedom in the power allocation problem. We now
investigate the performance of the optimal power allocations under both constraints.

Our simulation uses a Rayleigh channel model withK = 16 tones. The elements
of the channel matrixHk at each tone have independent, Gaussian distributions. The
benefit of using a total power constraint over a power constraint on each TX is largest
when the TXs see channels with significantly different gains. To introduce this into
our simulation we define the parameterα which determines the spread in attenuation
of the channels seen by each of the TXs.

Hk =
[
h1

k · · · hN
k

]

E
{
hn

k (hn
k)H

}
=

(
1

α

)n−1

IN
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Figure 1: Capacity vs. Spread in Channel Attenuation -α

So we can expect the channels from then+1th TX to be attenuated by a factorα more
than the channels from thenth TX. Shown in Fig. 1 is capacity versus the spread in
channel attenuationα. This is plotted for different numbers of TXsN . The capacity is
shown with flat transmit PSDs where

Sk =
P

KN
IN

Also plotted is the capacity with optimal transmit PSDs under a total power con-
straint and a per-TX power constraint as described in Sec. 3.1 and 3.2 respectively.

As can be expected, the freedom to shift power from one TX to another, as pro-
vided by the total power constraint, gives the largest gains when the TXs see channels
with significantly different attenuations, that is for high values ofα.

6 CONCLUSIONS

In this paper we investigated the problem of power allocation in MIMO-OFDM
channels. We discussed the optimal power allocation problem under a constraint on
the total power of all TXs (3), and under a constraint on the power of each TX (6). We
also described the optimal TX/RX structure which in combination with the optimal
power allocations achieves MIMO-OFDM channel capacity with low complexity.

It was seen that applying a power constraint to the total power of all TXs provides
an extra degree of freedom in power allocation. This allows power to be redistributed
from TXs which have poor channels to TXs whose channels have low attenuation. As



can be expected, using the total power constraint in place of the per-TX power con-
straint provides significant gains. These gains are largest when the TXs see channels
with significantly different attenuations. This was confirmed by simulation.

In this paper we used numerical methods to solve the problem of power alloca-
tion with a per-TX power constraint. A closed form solution for this problem is an
important extension to this work.

APPENDIX

Using the eigenvalue decomposition

Sk
eig
= QkDkQ

H
k

whereDk = diag
{
d1

k, . . . , d
N
k

}
is a diagonal matrix whose diagonal elements contain

the eigenvalues ofSk andQk contains the corresponding eigenvectors. The constraint

Sk ∈ RN
+ ↔ dn

k ≥ 0, ∀n (7)

Now, sinceDk = QH
k SkQk, (7) can be rewritten

(qn
k)H Skq

n
k ≥ 0, ∀n

Define the Lagrangian of the optimisation (2)

J = C + L1 + L2

where

L1 ,
∑

k

∑
n

µn
k (qn

k)H Skq
n
k

L2 , λ

(
P −

∑
n

∑

k

sn,n
k

)

Note that the objectiveC is concave whilst the constraints form a convex set of feasible
solutions. Thus the K.K.T. conditions

∇Sk
J = 0 (8)

µn
kd

n
k = 0, ∀k, n (9)

λ

(
P −

∑
n

∑

k

sn,n
k

)
= 0 (10)

are sufficient for optimality



KKT CONDITION 1

Now

∇Sk
C =

[
Sk + σ2

k

(
HH

k Hk

)−1
]−1

∇Sk
L1 = −λIN

∇Sk
L2 = Qkdiag

{
µ1

k, . . . , µ
N
k

}
QH

k

Hence (8) implies

[
Sk + σ2

k

(
HH

k Hk

)−1
]−1

= λIN −Qkdiag
{
µ1

k, . . . , µ
N
k

}
QH

k

= Qk

[
λIN − diag

{
µ1

k, . . . , µ
N
k

}]
QH

k

and

Sk = Qkdiag
{
λ− µ1

k, . . . , λ− µN
k

}−1
QH

k − σ2
k

(
HH

k Hk

)−1

= Qkdiag
{
λ− µ1

k, . . . , λ− µN
k

}−1
QH

k − σ2
kVkΦ

−2
k VH

k

In the proposed solution (4),Qk = Vk so (8) is satisfied if

Sk = Vk

[
diag

{
λ− µ1

k, . . . , λ− µN
k

}−1 − σ2
kΦ

−2
k

]
VH

k

KKT CONDITION 2

From the previous condition we have

Dk = diag
{
λ− µ1

k, . . . , λ− µN
k

}−1 − σ2
kΦ

−2
k

Examining (9) we find two cases.

Case 1 dn
k > 0

dn
k > 0 impliesµn

k = 0 hence

dn
k =

1

λ
− σ2

k (ϕn
k)−2 > 0

and

dn
k =

[
1

λ
− σ2

k (ϕn
k)−2

]+

, ∀n s.t.dn
k > 0

Case 2 dn
k = 0



dn
k = 0 impliesµn

k = λ− (
σ2 (ϕn

k)−2)−1
. Hence

λ = µn
k +

(
σ2 (ϕn

k)−2)−1

≥ (
σ2 (ϕn

k)−2)−1

sinceµn
k ≥ 0. Hence

1

λ
− σ2 (ϕn

k)−2 ≤ 0

and

dn
k =

[
1

λ
− σ2 (ϕn

k)−2

]+

= 0, ∀n s.t.dn
k = 0

Combining both cases yields

Dk =

[
1

λ
IN − σ2

kΦ
−2
k

]+

KKT CONDITION 3

Note thatλ = 0 impliessn,n
k = ∞. Clearly this violates the power constraint (3).

Henceλ > 0. Using (10) this implies

P =
∑

n

∑

k

sn,n
k

So any optimal solution must meet the total power constraint with equality.
At this point notice that the solution

Sk = Vk

[
1

λ
IN − σkΦ

−2
k

]+

VH
k

satisfies all 3 KKT conditions and thus is optimal.
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