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ABSTRACT

The use of a cyclic prefix (CP) to mitigate inter-symbol in-
terference is a technique commonly applied in both single
and multi-carrier systems. Recently it has been suggested
that the CP be replaced by a pre-defined sequence of known
symbols. This technique, referred to as ‘Known Symbol
Padding’ (KSP) inserts a short training sequence (TS) at the
beginning of each transmission block for equalizer adaption.
This allows for fast tracking of changes in the channel and
simple synchronization.

In this paper we present purely deterministic equalizers for
both single and multi-carrier environments with KSP. We
show that, through better utilization of the CP overhead,
these equalizers exhibit superior performance to those in a
conventional CP system. Low-complexity implementations,
particularly for the multi-carrier case are also given.

1. INTRODUCTION

The use of a cyclic prefix (CP) to mitigate inter-symbol in-
terference (ISI) is a technique commonly applied in both
single and multi-carrier systems. In the single carrier con-
text the CP allows complete ISI cancelation using a finite
length Frequency Domain Equalizer (FDE) whilst in Dis-
crete Multi-tone (DMT), a multi-carrier context, the CP al-
lows the division of a single, frequency selective channel
into a number of independent, flat sub-channels[1]. Equaliz-
ers in CP systems are typically trained using a long training
sequence (TS) before data transmission.

Recently it has been suggested that the CP be replaced by
a pre-defined sequence of known symbols[2]. This tech-
nique, referred to as ‘Known Symbol Padding’ (KSP) in-
serts a short TS at the beginning of each transmission
block to maintain the cyclic (ISI mitigating) structure of
the data and allow equalizer adaptation. This allows for
fast tracking of changes in the channel, which is extremely
important in rapidly time-varying environments such as
HiperLAN[3]. KSP has also been shown to allow for simple
synchronization[2].

Semiblind equalization is typically proposed for KSP
systems[4]. By exploiting both statistical constraints on
the transmitted data and the TS itself, semiblind techniques

achieve good performance however they typically have com-
plex implementations and require a large number of blocks
before convergence. This latter point is of particular concern
since it affects the semiblind equalizer’s tracking ability in a
rapidly time-varying environment.

In this paper we present purely deterministic equalizers for
both single and multi-carrier (SC and MC) environments
with KSP. We show that these equalizers exhibit superior
performance to those based on a long-training sequence in a
SC-CP system. Furthermore, low-complexity implementa-
tions, particularly for the MC case, are given.

2. SINGLE CARRIER KSP

2.1. Channel Model

A linear, convolutive channel with additive noise can be
modeled as

y(i) = H
[

xprev

x(i)

]
+ n(i)

wherey(i), x(i) andn(i) are respectively thei-th received
block, i-th transmitted block and a noise vector all of di-
mensionN×1. The vectorxprev = x(i−1)(N−L+1 : N)
indicates the lastL elements of the previously transmitted
block. H is theN × (N + L) Toeplitz filtering (Sylvester)
matrix constructed from the channel impulse response

h = [ h(0) . . . h(L) ]

In the case where each block can be formed by the concate-
nation of anM × 1 block of data symbolss(i) and av × 1
training sequenceb which is constant over all blocks

x(i) =
[

s(i)

b

]

N = M + v and we assume thatL ≤ v, the received block
becomes a function of the transmitted block only

y(i) = H




b
s(i)

b


 + n(i)

= Hcirc

[
s(i)

b

]
+ n(i)
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whereHcirc is the circulant Toeplitz matrix with first col-
umn h̃, the channel impulse responseh zero padded to
lengthN . Here we have assumed thatL = v but a simi-
lar result if obtained for anyL ≤ v.

Exploiting the circulant nature ofHcirc

y(i) = INdiag
{
FN h̃

}
FN

[
s(i)

b

]
+ n(i) (1)

whereFN andIN representN -point DFT and inverse DFT
matrices respectively.

2.2. Equalization

The circulant structure ofHcirc causes the channel to per-
form a circular convolution on the transmitted datas(i). This
operation can be completely reversed using a frequency do-
main equalizer (FDE) resulting in the cancelation of all ISI
(in the noiseless case). In the following sections we derive
a M-MSE equalizer for the channel which uses the training
sequenceb over several received blocks to adapt it’s param-
eters.

We desire to find some set ofN FDE parametersw that
satisfy

x(i) = INdiag {w}FNy(i)

= INdiag
{
FNy(i)

}
w (2)

Usingw and the firstM rows of (2) we can find an estimate
of the transmitted data

ŝ(i) = IN (1 : M, :) diag {w}y(i) (3)

which can be implemented with a complexityo(Nlog(N)).

2.3. Equalizer Training

We now describe the calculation ofw by examining the re-
ceived TS over several blocks. Sinces(i) is unknown, we
take the lastv rows of equation (2) to yield

IN (M + 1 : N)diag
{
FNy(i)

}
w = b (4)

In the noiseless case both conditions are satisfied exactly
with w = 1N×1 ® (FN h̃) where® represents component-
wise division. When noise is present we wish to satisfy con-
dition (4) as closely as possible (in a least squares sense).
Applying condition (4) overk blocks results in

A(k)w LS= B(k)

where

A(k) =



IN (M + 1 : N, :) diag

{
y(1)

}
...

IN (M + 1 : N, :) diag
{
y(k)

}


 (5)

B(k) = [ bT . . . bT

︸ ︷︷ ︸
k times

]T (6)

y(i) = FNy(i) and the notationQ(n : m, :) represents rows
n to m of matrixQ. If k ≥ N

v we can solve this to find

w = (A(k)H

A(k))−1A(k)H

B(k) (7)

where(.)H denotes complex conjugation and transposition.
Using w and equation (3) we can now estimate the trans-
mitted data. The complete Single Carrier KSP system is
depicted in Figure 1.

2.4. Efficient Implementation

In this section we derive an efficient recursive implementa-
tion for the Single Carrier-KSP (SC-KSP) equalizer. Whilst
explicit re-calculation of the equalizer co-efficients requires
o(vN2) multiplications per received block using conven-
tional recursive least squares (RLS), it is possible to track
changes in the channel using justN2 multiplications per re-
ceived block as we shall show.

Using (5) and (6) we can show that

A(k)H

B(k) = diag
{

Ψ(k)
}H

IN (M + 1 : N, :)Hb

whereΨ(k) =
∑k

i=1 λk−iy(i). Since

Ψ(k+1) = Ψ(k) + λy(k+1)

trackingΨ requires onlyN additions. Hereλ is a forgetting
factor which equals 1 in equation (5) and can be set< 1 to
track time varying channels. We can also show that

A(k)H

A(k) =
(
Ω(k)

)∗
¯

(IN (M + 1 : N, :)HIN (M + 1 : N, :)
)

where¯ represents component-wise multiplication,(.)∗ de-
notes complex conjugation and

Ω(k) =
k∑

i=1

λk−iy(i)y(i)H

Since
Ω(k+1) = Ω(k) + λy(k+1)y(k+1)H

tracking Ω requires onlyN2 multiplications per received
block. It can be shown that givenΨ andΩ, updatingw
requires∼ N3 multiplications. As a result, when imple-
mented in a batch-update procedure (where we trackΩ and
Ψ and only updatew after everyk received blocks) the SC-
KSP equalizer offers a low complexity technique for channel
equalization.

2.5. Performance

The performance of the SC-KSP equalizer was evaluated
against a Single Carrier-Cyclic Prefix (SC-CP) equalizer
which uses a long training sequence for parameter initial-
ization. M = 48 andv = 16 were used for both systems,
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Figure 1: Single Carrier KSP System
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Figure 2: BER vs. Transmitted Frames (SNR=20 dB)

and an impulse responseh similar to those found in Hiper-
LAN environments (withL ≤ v) was used. Noise was as-
sumed to be circular AWGN and both systems used QPSK
modulation.

The TS for the SC-KSP system was a sequence of random
QPSK symbols of lengthv. The SC-CP system was initial-
ized usingnCP = 4 blocks of random QPSK symbols (with
CP) which were transmitted prior to any data. Both systems
had equal average energy per block.

Assuming that the SC-CP equalizer must re-initialize every
nD blocks to track channel changes, the SC-CP system will

achieve a data-rate only a fraction
(

nD

nD+nCP

)
of that of the

SC-KSP system.

Plotted in Figure 2 is the BER of both systems vs. the num-
ber of transmitted blocksn for a SNR of 20 dB. Note that
the SC-KSP system uses all received frames for adaption
(n = nD), whilst the SC-CP system only uses the first 4
(n = nD +nCP ). As we would expect, the SC-KSP system
exhibits superior performance when the number of received
training symbols exceedsM × nCP which corresponds to
12 blocks. Also depicted is the ratio of the data-rates of each
system.

Plotted in Figure 3 are the BER vs. SNR curves of both
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Figure 3: BER vs. SNR (n = 30)

systems withn = 30.

3. DISCRETE MULTI-TONE KSP

3.1. Efficient Implementation

Since Discrete Multi-tone (DMT) modulation encodes data
as frequency domain symbols, it is possible to implement a
KSP FDE in the domain of the transmitted symbols them-
selves. This leads to efficient receiver structures such as the
one depicted in Figure 4. In this system everyN

v -th tone is
selected as a pilot-tone (PT). The idea is that non-PTs (data
tones) will be loaded with data, and the PTs will be varied
to force the lastv time-samples ofxKSP (see figure 4) to
match the TS. Since our choice of PTs form an orthogonal
basis in the time-space of the TS, this should be possible for
any particular choice of data. We will now derive an efficient
implementation for this.

Let us denote the basis formed by the PTs asB

B =
N√
v
IN

(
:, 1 :

N

v
: 1 +

N

v
(v − 1)

)

Here the scaling factorN√
v

is chosen to ensure that the basis
is normal in the time-space of the TS. Exploiting the peri-
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Figure 4: DMT KSP System

odic nature of everyNv -th column ofIN

B =
√

v [ Iv . . . Iv ]T Iv

whereIv represents thev-point inverse-DFT matrix andIv

represents thev × v identity matrix.

Let x be a frequency domain vector with zeros on the PTs
and data in the data-tones and letx be it’s inverse DFT.
Forcing the lastv time-samples ofxKSP to match the TS
through a projection onB yields

x(i)
KSP = x(i) − BBH

[
0M×1

x(i)(M + 1 : N)− b

]

= x(i) −



Iv

...
Iv




(
x(i)(M + 1 : N)− b

)

This operation can be implemented through a simple block
copy as depicted in Figure 4.

At the receiver we simply DFT the received block, apply the
FDE to the received frequency-domain symbols and discard

the pilot tones to yield̂s(i). All DFTs and IDFTs are of order
N (which can be chosen a power of 2) andw can be tracked
and updated withN2 andN3 multiplications respectively
using the algorithm described in section 2.4. This leads to
an efficient implementation, particularly in the receiver.

3.2. Performance

It was found that the DMT implementation of KSP was
highly sensitive to the choice of TSb. Strategies for choos-
ing b such that the performance of DMT-KSP exceeds that
of DMT-CP are currently under investigation.

4. DISCUSSION

In this paper we presented deterministic equalizers for sin-
gle and multi-carrier environments with Known Symbol

Padding (KSP). KSP exploits the CP for both ISI mitiga-
tion and equalizer adaption. As a result we observed supe-
rior performance to conventional CP equalizers both in data
transmission efficiency and BER.

The fact that each transmission block has a training se-
quence (TS) also suggests that we can track channel changes
more rapidly with KSP than with a conventional CP equal-
izer. Low-complexity implementations for the equalizers
were presented which can track channel changes withN2

multiplications per block

In summary, the deterministic KSP equalizer offers a re-
duced complexity alternative to semi-blind equalization
schemes such as [4], with a lower BER and higher data effi-
ciency than conventional CP systems.
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