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ABSTRACT

Crosstalk isthemajor source of performance degradation in next
generation DSL systems such as VDSL. In downstream commu-
nications transmitting modems are co-located at the central of-
fice. This allows crosstalk precompensation to be employed. In
crosstalk precompensation the transmitted signal is pre-distorted
such that the pre-distortion destructively interferes with the cross-
talk introduced by the channel.

Existing crosstalk precompensation techniques either give poor
performance or require modification of customer premises equip-
ment (CPE). This is impractical since there are millions of legacy
CPE modems already in use.

We present a novel crosstalk precompensation technique based
on a diagonalization of the crosstalk channel matrix. This tech-
nique does not require modification of CPE. Furthermore, certain
properties of the DSL channel ensure that thisdiagonalizing prec-
ompensatorachieves near-optimal performance.

1. INTRODUCTION

Next generation DSL systems such as VDSL aim at providing ex-
tremely high data-rates, up to 52 Mbps in the downstream. Such
high data rates are supported by operating over short loop lengths
and transmitting in frequencies up to 12 MHz. Unfortunately, the
use of such high frequency ranges causes significant electromag-
netic coupling between neighbouring twisted pairs within a binder
group. This coupling creates interference, referred to ascrosstalk,
between the systems operating within a binder. Over short loop
lengths crosstalk is typically 10-15 dB larger than the background
noise and isthedominant source of performance degradation.

In upstream communications the receiving modems are co-
located at thecentral office(CO) or at anoptical network unit
(ONU) located at the end of the street. This allows joint reception
of the signals transmitted on the different lines, thereby enabling
crosstalk cancellation[1].

In downstream(DS) communications the receiving modems
reside within differentcustomer premises(CP) so crosstalk cancel-
lation is not possible. However since the transmitting modems are
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co-located at the CO it is possible to do transmission in a joint fash-
ion. This allows some pre-distortion to be introduced into the sig-
nals on the different lines before transmission. This pre-distortion
is designed to destructively interfere with the crosstalk introduced
in the binder, a technique known ascrosstalk precompensation[2].

Several techniques have been proposed for crosstalk precom-
pensation. Unfortunately these lead to either poor performance
or require a change ofcustomer premises equipment(CPE). This
is highly undesirable since there are already millions of CPEs in
place all owned and operated by different customers. Replacing
CO equipment(COE) is much easier since it is typically managed
by a single operator. In addition, COE and CPE are typically man-
ufactured by different hardware vendors, which makes joint design
more difficult.

In this paper we present a novel technique for crosstalk pre-
compensation which works with existing CPE. This technique is
also shown to give near-optimal performance.

2. SYSTEM MODEL

Through the use ofdiscrete multi-tone(DMT) transmission and
synchronized transmission it is possible to model crosstalk inde-
pendently on each tone

yk = Hkxk + zk

The vectorxk , [x1
k, · · · , xN

k ] contains the transmitted signals
on tonek. There areN lines in the binder andxn

k is the sig-
nal transmitted onto linen at tonek. yk and zk have similar
structures.yk is the vector of received signals on tonek. zk is
the vector of additive noise on tonek and contains thermal noise,
alien crosstalk, RFI etc. We denote the noise PSD on linen as
σn

k , E{|zn
k |2}. Hk is theN × N channel transfer matrix on

tonek. hn,m
k , [Hk]n,m is the channel from transmitter (TX)m

to receiver (RX)n on tonek. The diagonal elements ofHk con-
tain the direct-channels whilst the off-diagonal elements contain
the crosstalk channels. We denote the transmit PSD of usern on
tonek assn

k , E{|xn
k |2}.

In DSL spectral masks are used to ensure spectral compatibil-
ity with other systems operating within the binder[3]. We denote
the spectral mask on tonek assk,mask. Spectral masks impose the
constraintsn

k ≤ sk,mask, ∀n.
In DS transmission the TX modems are co-located. As a result

Hk is row-wise diagonally dominant(RWDD). This means that on
each row ofHk, the diagonal element has the largest magnitude

|hn,n
k | À |hn,m

k | , ∀m 6= n (1)
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Fig. 1. Row-wise Diagonal Dominance|h22| À |h21|

The physical reason behind this is that the crosstalk signal must
propagate through the full length of the victim’s line, as depicted
in Fig. 1. This together with the attenuation which results from
shielding between twisted pairs ensures RWDD ofHk. We can
measure the degree of RWDD with the parameterαk

|hn,m
k | ≤ αk |hn,n

k | (2)

RWDD has been verified through extensive measurement cam-
paigns of real binders. In 99% of linesαk is bounded

αk ≤ Kfextfk

√
l

whereKfext = −22.5 dB, l is the line length in kilometers, and
fk is the frequency on tonek in MHz[4]. On typical linesαk is
less than -11.3 dB.

RWDD implies that the rows ofHk are approximately orthog-
onal. Define through the SVD

Hk = UkΛkV
H
k

whereUk andVk are orthogonal matrices containing the left and
right singular vectors andΛk , diag{λ1, . . . , λN} whereλn is
thenth singular value. RWDD impliesUk ' IN . Hence we can
approximateHk ' ΛkV

H
k . This leads to

H−1
k ' VkΛ−1

k (3)

and
HH

k ' VkΛk (4)

Taking (3) and (4) together yields

H−1
k ' HH

k Λ−2
k (5)

SinceHkH
H
k ' Λ2

k we can approximate

λ2
k,n '

X
m

|hn,m
k |2

' |hn,n
k |2 (6)

where we use (1) in the second line.

3. CROSSTALK PRECOMPENSATION

Several techniques have been proposed for crosstalk precompensa-
tion. They are all based on the concept of pre-distorting the signals
before transmission such that the pre-distortion and crosstalk an-
nihilate.

3.1. Zero Forcing Precompensator

Thezero forcing precompensator(ZFP) pre-distorts the transmit-
ted signals with the inverse of the channel matrix[5]. So

xk = Pk,zfxk

where the vector of pre-distorted signalsxk = [x1
k, . . . , xN

k ] and

Pk,zf , βk,zfH
−1
k

This is depicted in Fig. 2. The parameterβk,zf ensures that the
precompensation operation does not increase the transmit power.
Note that

xn
k =

X
m

βk,zf

�
H−1

k

�
n,m

xn
k

Hence

E{|xn
k |2} = β2

k,zf

X
m

����H−1
k

�
n,m

���2 sn
k

≤ β2
k,zf
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To ensure thatxk does not exceed the spectral masks we require

βk,zf = min
n



�H−1
k

�
row n



−1
(7)

From (5)

�H−1
k

�
row n



2 '
X
m

|hm,n
k |2 λ−4

k,m (8)

' |hn,n
k |−2 +

X
m6=n

|hm,n
k |2 |hm,m

k |−4

' |hn,n
k |−2

where we use (6) in line 2, and (1) in line 3. Combining this with
(7) yields

βk,zf ' min
n
|hn,n

k | (9)

Now, with the ZFP

yk = HkPk,zfxk + zk

= βk,zfxk + zk

' min
n
|hn,n

k |xk + zk

hence the data-rate of usern on tonek can be approximated

cn
k,zf ' log2

�
1 +

1

Γ
min

n
|hn,n

k |2 sn
kσ−2

k,n

�
with the approximation becoming exact asαk → 0. Γ denotes the
SNR-gap to capacity and is a function of the target BER, coding
gain and noise margin[6].

So we see that with the ZFP all modems see the channel of the
worst line within the binder. This leads to very poor performance,
especially when the lines are of varying length or when one of the
lines contains a bridged tap.
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Fig. 2. Linear Precompensator

3.2. Multi-user Tomlinson-Harashima Precoder

Similar to the ZFP, theMulti-user Tomlinson-Harashima Precoder
(MU-THP) pre-distorts the transmitted signal with the inverse of
the channel. However in contrast to the ZFP, the MU-THP uses
non-linear modulo operations to ensure that the TX power is not in-
creased. As such no normalization parameterβk is required. This
leads to significantly improved performance with only a modest
increase in complexity[2].

Define the QR decomposition of the conjugate transpose of the
channel

HH
k = QkRk

The structure of the MU-THP is shown in Fig. 3. It consists of a
feed-forward filterFk , Qk and a feedback filterBk , IN −
diag{RH

k }−1RH
k . With the MU-THP

yk = HkFk (IN −Bk)−1 xk + zk

= diag{RH
k }xk + zk

' diag{Hk}xk + zk

The approximation on line 3 is based on (1), see [2] for details.
Hence the data-rate of usern on tonek can be approximated

cn
k,th ' log2

�
1 +

1

Γ
|hn,n

k |2 sn
kσ−2

k,n

�
with the approximation becoming exact asαk → 0. So the MU-
THP allows crosstalk to be completely removed without decreas-
ing the channel gains seen by the individual modems.

Unfortunately the MU-THP required a modulo operation at
the RX to make the modulo operation at the TX transparent. This
requires a hardware modification to CPE which can be extremely
difficult due to the millions of legacy DSL modems which are al-
ready in use.

Additionally, the MU-THP is non-linear which makes it dif-
ficult to apply partial crosstalk precompensation techniques[7, 8].
These techniques are crucial since in binders containing hundreds
of lines, full crosstalk cancellation has an impractically large com-
putational complexity.

3.3. Diagonalizing Precompensator

To overcome the problems of the ZFP and the MU-THP we pro-
pose thediagonalizing precompensator(DP). This technique re-
quires no modification of CPE, is linear, and can be easily com-
bined with partial crosstalk cancellation. As we shall show, the
DP is near-optimal in RWDD channels and gives very similar per-
formance to the MU-THP.

Similar to the ZFP, the DP pre-distorts the transmitted signals
with a linear matrix multiplication. However in contrast to the ZFP,
the DP attempts not to invertHk but to diagonalize it instead. So
the pre-distorted signals

xk = Pk,diagxk

kFx k x k

Bk

mod

Fig. 3. Multi-user Tomlinson-Harashima Precoder

where

Pk,diag , βk,diagH
−1
k diag{Hk}

The normalizing factorβk,diag ensures that the spectral mask is
not exceeded on any line

βk,diag , min
n



�H−1
k diag{Hk}

�
row n



−1

From (8)

�H−1
k diag{Hk}

�
row n



2 '
X
m

|hm,n
k |2 |hm,m

k |2 λ−4
k,m

' 1 +
X
m6=n

|hm,n
k |2 |hm,m

k |−2

' 1

where we use (6) in line 2 and (1) in line 3. Hence

βk,diag ' 1 (10)

Now, with the DP

yk = HkPk,diagxk + zk

= βk,diagdiag{Hk}xk + zk

' diag{Hk}xk + zk

Hence the data-rate of usern on tonek can be approximated

cn
k,diag ' log2

�
1 +

1

Γ
|hn,n

k |2 sn
kσ−2

k,n

�
with the approximation becoming exact asαk → 0. So we see
that, as with the MU-THP, the DP removes crosstalk perfectly
without affecting the direct channels of the individual modems.
In contrast to the MU-THP this can be done without modifying
CPE.

3.4. Theoretical Capacity

It is also interesting to compare the performance of different cross-
talk precompensation techniques with a theoretical upper bound.
In the downstream the DSL channel is a multi-user broadcast chan-
nel. As such there is no single capacity but rather arate region
which is achievable[9]. However if we use all TXs to communi-
cate with a single CPE RX, the data-rate can be upper bounded
by

cn
k = I(xn

k ; yn
k )

≤ I(xk; yn
k )

≤ log2

�
1 +

1

Γ



[Hk]row n



2
sn

kσ−2
k

�
≤ log2

�
1 +

1

Γ

�
1 + (N − 1)α2

k

� |hn,n
k |2 sn

kσ−2
k

�
(11)
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Fig. 4. Value of normalizing factorβ vs. frequency

whereI(a; b) denotes the mutual information betweena andb. We
use (2) to get to line 4. Equality in (11) achieved when we use a
maximum-ratio combining precompensator with

xk = [Hk]Hrow n xn
k

All other RXs must be disabled to achieve this data rate for RXn.

4. PERFORMANCE

To demonstrate the performance of the different precompensation
techniques we ran simulations in a binder consisting of 10 VDSL
lines. The lines have a diameter of 0.4mm and vary in length from
300 m. to 1200 m. in 100 m. increments. Each modem has a
coding gain of 3 dB, a noise margin of 6 dB and a target error
probability of 10−7 or less which results inΓ = 12.9 dB. The
modems use 4096 tones, the 998 FDD bandplan and transmit at
-60 dBm/Hz. We use ETSI noise model A and the semi-empirical
transfer functions of [4].

Fig. 4 shows the values ofβk,zf andβk,diag versus frequency.
As we predicted from (9),βk,zf is closely approximated by the
magnitude of the weakest channel in the binder, in this case the
channel of the 1200 m. line. As predicted by (10),βk,diag is close
to unity.

Shown in Fig. 5 are the data-rates achieved by the various lines
with the different precompensation techniques. Note that with the
ZFP all lines receive the same performance as the 1200 m. line.
In this binder this results in a performance that is worse than with
no crosstalk cancellation. Both the DP and MU-THP give near-
optimal performance, closely approximating the theoretical bound.

5. CONCLUSIONS

In this paper we presented a novel technique for crosstalk prec-
ompensation which attempts to diagonalize the crosstalk channel.
This technique which we term thediagonalizing precompensator
(DP) is linear and has a low computational complexity.

The row-wise diagonal dominance of the downstream DSL
channel ensures that the DP gives near-optimal performance. Un-
like other precompensation techniques, the DP does not require a
modification of CPE and can be easily combined with partial tech-
niques.
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