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ABSTRACT

This document contains a proof of the optimality of the Optimal Spectrum Management (OSM) algorithm.

1. Optimal Spectrum Management
The optimal spectrum management (OSM) algorithm was presented in [1].  It provides a numerically tractable
way of finding the optimal spectra for a network of DSL modems.  This contribution provides a proof of the
optimality of OSM.

We start by defining the spectrum management problem.  Our goal is to maximize the weighted rate-sum of
the modems within a binder.
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Varying the weights wi allows us to operate at different points on the rate region.  The optimisation is subject
to a total power constraint Pi,max on each line.

2. Equivalence to the Lagrangian
In OSM we find the optimal solution to (1) through the Lagrangian Dual problem which can be solved with a
much lower complexity.  The Lagrangian Dual to (1) is
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For the Lagrangian Dual problem (3) to be equivalent to (1) the Lagrangian multipliers λi must be chosen to
satisfy the complimentary slackness conditions for all i.  The complimentary slackness conditions are:
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Theorem:  Solving the optimal spectrum management problem (1) and the Lagrangian Dual (3) are equivalent.

Proof:  Consider a PSD tuple D
M

D SS ,,1 K  that is optimal in (3) and satisfies the complimentary slackness
conditions (4). We consider two cases for a particular i.
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Case 1: 0 and )( max, =λ≤∆⋅∑ in ii PfnS

Since λi = 0 the optimal solution to the dual problem (3) satisfies
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Since ∑ ≤∆⋅
n i

D
i PfnS max,)( the PSD obeys the total power constraint.  Now (5) implies that the PSDs

maximize the weighted rate-sum, hence they are optimal in terms of (1) hence the dual problem is equivalent
to the original problem.

Case 2: 0 and )( max, >λ=∆⋅∑ in ii PfnS

Since λi Pi,max is a constant term independent of Si we can remove it from (3) without changing the optimal
solution
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Imagine that some other PSD tuple MSS
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1 K  is more optimal in terms of (1) than the solution to the dual

problem D
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D SS ,,1 K .  This implies that
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But this is contradicted by the optimality of D
M

D SS ,,1 K  in (3).  Therefore it is not possible that a PSD tuple
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1 K  exists that gives a better solution to (1) than D
M

D SS ,,1 K .  This implies that D
M

D SS ,,1 K  is optimal
in terms of (1) and that the dual problem (3) and the original problem (1) are equivalent.  In practice as long as
one of the complimentary slackness conditions in (4) is satisfied for each modem then (1) and (3) are
equivalent.     n

3. Per-tone Decomposition
The Dual problem is equivalent to (6) since only a constant term has been removed. Furthermore, (6) can be
rewritten as a summation of terms across tones
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Moving from (6) to (7) is possible since the bitloading on each tone is only a function of the PSDs on that
tone.  So the optimisation can be decoupled across tones.  Inherent to this is the assumption that sidelobes
can be safely neglected.  In VDSL (using transmitter and receiver windowing) this is the case and OSM is the

(5)

(6)

(7)
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truly optimal DSM algorithm.  In ADSL the sidelobes are more substantial however we still find that OSM
yields as significant performance gain over other DSM techniques like iterative waterfilling[1].

Since the optimisation has been decoupled, we can find the optimal PSD tuples on a per-tone basis.
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This greatly decreases complexity and allows the optimal solution to be found in a numerically tractable way.
This is the true innovation behind the OSM algorithm.

The optimisation in (8) is solved independently on each tone.  The only coupling occurs through the
Lagrangian multipliers λi which are adjusted in an outer loop of the algorithm.

To solve (8) one can use an exhaustive search and this is the most straight-forward solution for small M.  As M
becomes larger it is more efficient to apply specialised non-convex optimisation techniques e.g. the Nelder-
Mead method which is available in Matlab through the function fminsearch.

4. Convergence of OSM and the Complimentary Slackness conditions
So far we have shown that solving the optimisation problem independently on each tone (8) is equivalent to
the original optimisation problem (1).  Recall that this is only the case if the complimentary slackness
conditions (4) are satisfied.  In [2] we prove that OSM always converges and that at convergence the
complimentary slackness conditions are satisfied.  Thus OSM always yields the optimal solution.  This proof
is rather complex and so is not included here.  The interested reader is referred to [2].

5. Summary
This contribution is for information only.  We presented a proof of the optimality of the Optimal Spectrum
Management (OSM) algorithm. We showed that OSM yields the optimal PSDs for the spectrum management
problem, allowing any point in the theoretically optimal rate region to be achieved.

OSM is based on the inherent assumption that sidelobe effects are negligible.  This is the case in VDSL
where transmitter and receiver windowing minimises sidelobes.  In ADSL sidelobe effects are more
pronounced however OSM still yields significant gains over iterative waterfilling[1].
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Algorithm A.1.3.2:  Optimal Spectrum Management

initialise w1,…, wM -1,  λ1,…,λM
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for each tone n:

find PSD tuple ( )(1 nS ,…, )(nS M ) which maximises
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end

if target
11 −− < MM RR  increase wM -1, else decrease wM –1

end

M

if target
11 RR <  increase w1, else decrease w1

end
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