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Optimality in reserve selection algorithms: When does 
it matter and how much?  
 
R. L. Pressey, H. P. Possingham, C. R. Margules  
 
This paper responds to recent criticisms in Biological Conservation of heuristic reserve selection 
algorithms. These criticisms primarily concern the fact that heuristic algorithms cannot guarantee an 
optimal solution to the problem of representing a group of targeted natural features in a subset of the 
sites in a region. We discuss optimality in the context of a range of needs for conservation planning. 
We point out that classical integer linear programming methods that guarantee an optimal solution, like 
branch and bound algorithms, are currently intractable for many realistic problems. We also show that 
heuristics have practical advantages over classical methods and that suboptimality is not necessarily a 
disadvantage for many real-world applications. Further work on alternative reserve selection 
algorithms is certainly needed, but the necessary criteria for assessing their utility must be broader than 
mathematical optimality.  
 
Introduction  
 
From a mathematical viewpoint, optimal reserve selection algorithms are those that identify the smallest set 
of sites, in terms of number or total area, needed to represent a targeted group of natural features in a region. 
The importance of optimality is largely that it minimizes the cost of achieving a reservation goal, both in 
terms of acquisition of land for conservation and foregone opportunities for other land uses, Optimality 
means maximum efficiency of representation in terms of the number or area of selected sites (Pressey & 
Nicholls, 1989). It also means maximum complementarity of sites. Complementarity has been proposed as 
an important principle of reserve selection (Vane-Wright et al., 1991; Pressey et al., 1993). It refers to the 
need, once a representation target has been set, for new reserves to complement previous ones as fully as 
possible in the features they contain rather than to duplicate features unnecessarily. 
 Given equal competing land use pressures, political support and funding, an optimal solution 
should increase the likelihood, compared to a suboptimal one, of achieving a fully representative reserve 
system. The size of this advantage is likely to depend, of course, on the extent to which departures from 
optimal representation are necessary to deal with real-world constraints. These constraints include other 
reservation criteria such as spatial arrangement and land suitability and the compromises involved in turning 
algorithm selections into actual reserves on the ground. 
 Another advantage of optimality is that algorithms that achieve it are most reliable for comparative 
purposes. They can be used to compare alternative reservation scenarios (e.g. starting with or without certain 
sites) and alternative data bases (e.g. the same region mapped at two scales). Differences between scenarios 
in the optimal required number or area of sites can be confidently ascribed to the factors being tested rather 
than to inconsistencies in the operation of the algorithm on different data sets. 
 Analyses that can identify optimal sets of sites to achieve representation goals are clearly desirable. 
Classical methods for solving integer linear programming problems, like the branch and bound approach 
promoted by Underhill (1994), can guarantee optimal representation of natural features, at least for some 
data sets and some problems (see Lawler & Wood, 1966 for a description of these methods). We agree with 
Underhill (1994) that heuristic algorithms cannot guarantee optimal solutions, although they can be 
demonstrated to achieve or approach optimality. Indeed, we can define heuristics for the purposes of 
this paper as analytical methods that proceed in steps designed intuitively to find optimal or near-
optimal solutions, but without the ability to confirm optimality. Does this lack of guaranteed optimality 
mean that heuristics have limited value in conservation planning and that classical optimizing methods 
are 'the strand of progress in reserve selection algorithms that ought to be pursued' (Underhill, 1994)? 
These questions would be easy to answer if they depended only on which algorithm was optimal when 
applied to a simple reserve selection problem. 
 The question of the relative utility of alternative selection algorithms actually depends not 
only on mathematics but also on the practicalities of conservation planning. In this paper, we address 
this important question by considering the following issues: (1) the degree of suboptimality of 
heuristics; (2) the tractability of alternative algorithms for realistic problems; (3) the comparative value 
of optimal and suboptimal analyses for indicative purposes; (4) the comparative value of optimal and 
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suboptimal analyses in the full planning context; and (5) the need to rank priorities for protection. We 
refer to classical methods for guaranteeing solutions to integer linear programming problems as 
'optimizing algorithms'. As an alternative to these, there are several possible heuristic approaches used 
to approximate optimal solutions. One that has been widely applied in reserve selection is the 'greedy' 
algorithm specifically criticized by Underhill (1994). This is a stepwise analysis that selects sites for 
notional reservation according to how many previously under-represented features they contain (e.g. 
Kirkpatrick, 1983; Vane-Wright et al., 1991). It seeks the highest increment of new features at each 
step, making 'locally' optimal decisions that do not necessarily add up to a 'globally' optimal solution 
for representing all the features in a region. A similar stepwise heuristic is based on the relative rarity 
of features (e.g. Margules et al., 1988), beginning with sites that have unique features and progressively 
adding those that contain the next rarest under-represented features. It also progressively makes locally 
optimal selections in an attempt to achieve or approach a global optimum. Another heuristic approach 
is the genetic algorithm (Holland, 1975). Simulated annealing (Kirkpatrick et al., 1983) is sometimes 
considered a heuristic method. We use the term 'heuristic' to refer to stepwise greedy and rarity 
algorithms, unless otherwise specified, since these are the approaches that have been most commonly 
applied in systematic conservation planning. 
 
Issues Relating To Optimality Of Algorithms In Conservation Planning 
 
Suboptimality of heuristics 
 
Cocks and Baird (1989) were the first to demonstrate that optimizing algorithms could find a smaller 
solution to a reserve selection problem than a heuristic (applied by Margules & Nicholls, 1987). This 
has caused some users of heuristics subsequently to refer to their solutions in terms such as 'relatively 
small' (Pressey & Nicholls, 1989) and 'near-minimal' (Pressey et al., 1993) and to regard heuristics as 
approaching or being guided by the principle of complementarity (Vane-Wright et al., 1991; Pressey et 
al., 1993) rather than fully achieving it. 
 Two of us have compared the results of 12 heuristic algorithms, differing in their selection 
rules, with optimal solutions (Pressey et al., in press). We used a data set of the occurrence of 248 land 
types in 1885 pastoral holdings in the Western Division of New South Wales. The problem for the 
algorithms was to select a set of sites that represented each land type at least once. There was no 
requirement for a minimum percentage area of each land type. We found that a 'good' heuristic (with 
purposeful rules directed at efficient representation) selected a number of sites slightly larger than 
optimal and a 'bad' heuristic (lacking very purposeful rules) selected substantially more than the 
optimal number (Table l(a)). In terms of site area, the best heuristic selected sites that totalled about 
10% more than optimal (Table l(a)). Saetersdal et al. (1993) obtained similar results in Norway for 
minimum total area of sites (Table l(b)) but their heuristic found the optimal numbers of sites needed to 
represent two sets of species. Comparative results for vertebrate species in Oregon (Csuti et al., in 
press) were similar to those from the Western Division (Table l(c)). 
 Simulated annealing found the same sized solution as an optimizing algorithm for the Western 
Division data set (Ian Ball, pers. commun.), although the same general approach did slightly less well 
than stepwise heuristics in Oregon (Csuti et al., in press). A recent study in south-western California 
(Church et al., 1996) found that a heuristic algorithm could represent all vertebrate species in the same 
number of 162 km 2 quadrangles as an optimizing algorithm. Willis et al. (1996) also showed that two 
heuristics could produce optimal results for equal-sized sites (eighth-degree grid cells) in South Africa. 
They considered that the gap between the results of heuristics and optimizing algorithms will be 
narrowed or closed if, as in their study area, a large proportion of a region's features are narrow 
endemics. This type of distribution forces alternative algorithms to select very similar sets of sites. 
Many of the plant species analysed by Saetersdal et al. (1993) were regionally endemic to one site and 
this could at least partly explain the ability of their heuristic to select a total area of sites for plants that 
was closer to the optimal solution than in the Western Division (Table l(a),(b)).  
 



Table 1. Minimum numbers and areas of sites selected by alternative algorithms; bracketed figures are 
percentage increases relative to optimal solutions 
 
a This study: pastoral holdings in western New South Wales (out of 1885) needed to represent each of 248 
land types at least once 
 

 
 
Several other characteristics of data sets could also affect the suboptimality of heuristics, including the 
average size and size range of sites. For example, the large difference between the optimal area to 
represent birds in the Norwegian woods and the area selected by the heuristic (Table l(b)) was due to the 
addition on one very large site that contained no endemics (Saetersdal et al., 1993). Another factor could be 
the nestedness of species or other features that determines the relative efficiencies of heuristics on different 
data sets (Ryti, 1992). Other comparisons of optimizing algorithms and heuristics in reserve selection have 
been on small demonstration data sets. These have shown that heuristics can fail to select optimal sets of 
sites that can be identified by hand (Possingham et al., 1993: Underhill, 1994). Nevertheless, it remains to be 
demonstrated that any of the studies criticized by Underhill (1994) used algorithms that were 'grossly 
suboptimal' which he considers heuristics can be. More importantly, an assessment of the utility of 
alternative algorithms must consider the implications of suboptimality for their potential uses in conservation 
planning. Demonstrating that optimizing algorithms are 'better' than heuristics for a simple representation 
problem leaves many questions about practical value unanswered. We consider these below. 
 
Tractability for realistic problems 
 
Optimizing algorithms minimize the value of an objective function (e.g. the number of sites in the final 
solution) subject to a number of constraints that impose limits on the choice of solution. The constraints for a 
simple representation problem are derived, for example. from a table of species presence-absence data 
(Saetersdal  et al., 1993). For each species, a constraint is defined that requires any valid solution to include 
at least one occurrence of the species. Other examples of linear constraints are total site areas or acquisition 
costs that should not be exceeded. Optimization problems are 'NP-complete' which means that their 
computation time increases roughly exponentially with the number of constraints. No algorithms are 
available to circumvent this exponential increase in the time needed to guarantee an optimal solution. 
 Reserve selection problems for small to medium-sized data sets are therefore relatively easy and 
quick to solve with optimizing algorithms once the package has been properly formulated. Optimal solutions 
to simple representation problems were found in a few minutes for a data set of 441 sites and 426 species in 
Oregon (Csuti et al., in press) and in seconds for a data set of 280 sites and 333 species in south-western 
California (Church et al., 1996). For larger problems, the processing time could be prohibitive, depending on 
how quickly an answer is required. For example, an optimal number of sites needed to give at least one 
representation of each of the 248 land types in the Western Division (1885 pastoral holdings) was found by a 
previous version of LP SOLVE (Freeware from Michel Berkelaar, Eindhoven University of Technology, 
Department of Electrical Engineering, Design Automation Section, PO Box 513, NL-5600 MB 



Eindhoven, Netherlands) after about 10 days' computation on a SUN IPX workstation (Possingham et 
al., 1993), although equally small solutions (without guaranteed optimality) were found much more 
quickly. A more recent version of the same package found an optimal number of sites in about 10 h. 
Single runs of the heuristics applied to the same problem produced answers in 5 min or less on a 486 
desktop (Pressey et al., in press). These were prototype programs that have now been optimized for 
processing time to run in seconds. On the same data set, simulated annealing selected the same number 
of sites as the optimizing algorithm but in a fraction of the time (Ian Ball, pers. commun.). Time 
differences of this magnitude are highly significant for practical conservation planning. If a reserve 
selection algorithm is part of a decision-support system (see below) and managers and politicians are 
waiting to see the results of some alternative scenario that they have suggested, computation time of 
more than a few minutes becomes a serious impediment to the planning process. The ability of 
heuristics to produce quick answers as parts of interactive systems (e.g. Williams et al., 1991; Bedward 
et al., 1992; Pressey et al., 1995) is extremely important for real-time investigation of alternative 
reservation scenarios. 
 Other more complex reserve selection problems are even less amenable to solution by 
optimizing algorithms and can be intractable with current methods. For the Western Division data set, a 
much more realistic problem than the one analysed for Table l(a) is to represent a minimum percentage 
of the total area of each land type. This could be a blanket target, such as 5% of all land types, or 
targets graded in some way according to factors such as risk of degradation or previous decline. 
Without percentage area targets, the requirement of a simple occurrence is likely to leave many land 
types inadequately represented in selected sites. 
 The same problem applies to representation of any other natural features. Is one or even three 
or five occurrences of each species in a set of nominal protected areas really an effective reservation 
goal? The population size of at least some species in selected sites is likely to be dangerously small, 
even if such a goal were achieved. Representation goals for species would be more usefully framed in 
terms such as population size, where data are available, or the selections could be restricted to local 
populations known to be larger than some threshold value (Kershaw et al., 1994). Ideally, 
representation goals for species should also be combined with data on source areas (Pulliam, 1988) and 
patches of critical resources (Pressey, 1994). We found two widely used packages for optimization 
(with the branch and bound method) to be unworkable for the percentage area problem for land types in 
the Western Division, even when we reduced the number of sites in the data set by more than 75%. The 
packages were LP_SOLVE (see details above) and LINGO, a major commercial package. The 
packages ran on SUN IPX workstations for weeks without finding solutions. The 18 heuristics we 
trialled for this problem, before optimizing for speed, found solutions for the full data set in minutes on 
a 486 desktop, as for the presence-absence problem. For small data sets, optimal solutions to 
percentage area and other quantitative representation problems can also be found by adapting the 
combinatorial analyses of Pressey et al. (1994) which yield much useful information in addition to the 
identity of the optimal set(s). 
 The reserve selection problems discussed by Underhill (1994) are linear because the 
constraints and costs are linear in terms of the control variable. Other problems will be far more 
complex. The problem becomes non-linear if, for example, the boundary of the reserve system needs to 
be minimized. The difficulty of finding an optimal solution and the necessary computation time 
increase dramatically. 
 One way of making a large reserve selection problem manageable for optimizing algorithms is 
to reduce the data matrix (Possingham et al., 1993; Camm et a/.,1996). The approach taken by 
Possingham et al. (1993) involved two rules for data reduction: 
 (1) remove every site that contains a set of species that is a subset of, or is equivalent to, the 
set of species in another site; and (2) remove every species that occurs in a set of sites that is a superset 
of, or is equivalent to, the set of sites in which another species occurs. 
 This approach can work well for simple presence/absence problems requiring at least one 
occurrence of each species or some other feature. However, for more complex and realistic problems, 
and particularly for non-linear problems, it can be less useful or ineffective. One of us (H.P.P.) is 
developing genetic algorithms and simulated annealing methods for reserve selection problems that are 
more difficult than presence-absence goals for small data sets. So far, simulated annealing has given 
better solutions to some problems than other heuristics. It could be a practical compromise between 
optimizing algorithms and the commonly used stepwise heuristic -- it produces reasonable answers in 
reasonable time and can produce better answers if left to run for longer. It is notable that heuristics are, 
of necessity, the methods used by many mathematicians working on complex applied problems in 
operations research. They develop heuristics that are tested against optimizing algorithms for relatively 
small and simple problems and then apply them to larger and more complex ones. For complex 



problems, heuristics can be superior to optimizing algorithms because of faster computation and the 
likelihood of actually obtaining an answer, even if it is not guaranteed to be optimal. 
 
Comparative value of alternative algorithms for indicative analyses 
 
Any reserve selection algorithm, used alone, has only indicative value as a starting point for further 
considerations. The realities of conservation planning require selection algorithms to deal with more 
complex problems than simple representation of natural features. Furthermore, computers do not produce 
networks of reserves that are already acquired, politically acceptable, and with boundaries and natural 
features confirmed on the ground (Bedward et al., 1992; Margules et al., 1994). For some time, optimizing 
approaches in the general area of resources planning have been seen as indicative, rather than prescriptive, 
tools (Cocklin, 1989) and this applies equally well to heuristics. There are also advantages in having 
algorithms nested within larger systems for supporting decisions on reserve acquisitions. Algorithms alone 
can, however, be useful in comparing reserve requirements under different conditions. A valuable type of 
comparison is to compare the total land area needed to represent all targeted features in a region starting both 
with and without a set of existing or proposed ad hoc reserves. The required area including ad hoc reserves 
is typically larger than that when the analysis begins without them which provides an estimate of the cost of 
such decisions (Margules & Nicholls, 1987; Cocks & Baird, 1989; Saetersdal  et al., 1993; Kershaw et al., 
1994; Rebelo, 1994; and see Pressey & Tully, 1994 for review). This, in turn, provides an argument for 
respecting the principle of complementarity in a world in which the resources available to support nature 
conservation are limited. We have used optimizing algorithms and heuristics for such comparisons on the 
Western Division data set. We found that a good heuristic identifies similar relative areas for alternative 
scenarios as an optimizing algorithm (Table 2(a)). It can do this with a single run. The results from 100 runs 
to allow for random choices in the final rule are virtually identical (Table 2(b)). The results of a bad heuristic 
are less similar to that of the optimizing algorithm (Table 2(a)) and can indicate widely different trends 
between individual runs, including large negative differences (Table 2(b)). The message from these analyses 
is that an intelligently written heuristic can be as valuable as an optimizing algorithm for comparative 
purposes, depending on how much precision is needed in the comparison. If there is a demonstrated need for 
very precise comparative figures then the additional time required to formulate and run optimizing 
algorithms might be warranted; but this is not feasible for many of the more complex real-world problems 
for which optimizing algorithms are intractable. It is worth noting here that there are limitations on the 
ability of suboptimal heuristics to compare scenarios that differ in only one or very few sites. In such 
comparisons, differences in the required total area of sites to achieve the representation goal are less clearly 
related to the differences in starting situations. When this is a problem, there are simple alternative 
approaches to assessing the relative contribution of sites to full representation that do not require algorithms 
at all (Pressey & Tully, 1994). 
 
Comparative value of alternative algorithms in the full planning context 
 
Representing natural features in a set of reserves is one of the goals of conservation planning. There are 
other important goals that make the most efficient solution to representation untenable, including 
maximizing the proximity or adjacency of selected sites, minimizing cost, and avoiding sites in poor 
condition. These goals, when combined with the representation of natural features, often require some 
efficiency of representation to be sacrificed (e.g. Lewis et al., 1991; Bedward et al., 1992; Nicholls & 
Margules, 1993; Lombard et aL, 1995) although the extent of this loss, like suboptimality, appears to 
be data-dependent (Freitag et al., in press; Willis et aL, 1996). Departures from an initial set of selected 
sites will also be necessary as data and opportunities for protection change in the time between the 
initial plan and the establishment of the entire network of reserves. Extreme responses to such 
problems would be, on the one hand, to continue to strive for the optimal set regardless of difficulties 
or, on the other hand, to forget about optimality altogether and protect whatever sites become available 
for protection. A desirable middle course is to make judicious departures from the initial plan by 
minimizing the losses of efficiency necessary to secure alternative sites. 
Both multiple goals and controlled departures from initial plans can be handled by optimizing 
algorithms (Cocks & Baird, 1989; Saetersdal  et al., 1993; Possingham et aL, 1993; Underhill, 1994; 
Camm et al., 1996; Church et al., 1996) and other algorithmic approaches (e.g. Lewis et al., 1991; 
Nicholls & Margules, 1993). The analyses can find new optimal (or near-optimal) solutions given new 
sets of specified constraints relating to contiguity of sites, availability for protection, and many other 
factors. In situations where the constraints on implementation change through time, the analyses can be 
reapplied, taking into account the sites that are already part of the established network. One could argue 
that a guaranteed optimal solution is still desirable, no matter how many additional goals are combined 
with the representation of features. It is an open question, though, how much practical difference might 
be made by an optimal compared to a slightly suboptimal analysis when they are both applied to 



complex problems and made to respond to all the necessary real-world compromises. In any case, some 
risk of suboptimality has to be accepted for the many important problems that are intractable for 
optimizing algorithms, either because of time constraints or other causes of failure. 
 
Table 2. Total areas (km 2) of pastoral holdings selected by three algorithms to represent all land types in 
the Western Division of New South Wales at least once; scenario 1: no existing reserves, all selections from 
the algorithm; scenario 2: starting with initial parts of existing reserves, before consolidation with adjacent 
areas (17 pastoral holdings); scenario 3: starting with all existing reserves (41 holdings); scenario 4: starting 
with all existing reserves plus all reserve proposals (135 holdings) 
 
Note that the results for scenario 1 differ from those in Table 1 because the data set for this table had to be 
altered to take into account the boundaries of all existing and proposed reserves. aAreas (average of 100 runs 
for heuristics) for each scenario and percentage increases (bracketed) relative to the previous scenario 
 

 
 
An alternative approach for dealing with multiple goals and controlled departures from initial 
selections is for planners to make the departures from efficiency themselves with an interactive system. 
This type of approach can start with an algorithmic solution to a representation goal (Bedward et al., 
1992). The initial selections can then be progressively altered, for example to increase contiguity or 
avoid sites in poor condition, while keeping track of representation goals and the contribution of 
alternative sites to achieving them. Another interactive approach is for the user to make all the 
selections in a stepwise manner, with representation goals and the potential contribution of sites 
updated at each step (Williams et aL, 1991; Pressey et al., 1995). 
 We know of no trials that have compared the results of interactive systems and fully 
automated algorithmic solutions for achieving complex goals. Interactive systems have at least two 
potential advantages, though. First, the trade-offs between efficiency and other goals are not forced to 
proceed in the same sequence with the same relative weighting in all parts of the region and at all 
times. Decision-making can be flexible in time and space and the reasons for each selection can be 
logged for later appraisal. Second, the consequences of changing one or a few component sites of a 
whole network can be understood quickly and clearly. For example, an unavailable site can be 
excluded from the network and potential replacement sites, along with all their characteristics and 
locations, can be displayed in a few seconds. 
 Losses of efficiency due to decisions by the user of an interactive system can be displayed 
relative to a benchmark figure of required reserve area. The benchmark could be for representation 
only, with which to gauge the cost of adjustments for design and land suitability; or it could be for 
multiple initial goals to show the cost of changes during the vagaries of implementation. These 
benchmarks can also be updated each time a site is selected and so progressively demonstrate the most 
efficient subsequent selection. It is worth considering whether such benchmarks need to be optimal 
solutions or whether slightly suboptimal ones will suffice. The need for optimal benchmarks depends 
on the types of comparisons being made and will often be questionable given the comparative results in 
Table 2. The feasibility of optimal benchmarks is questionable given the intractability of optimizing 
algorithms for many problems and the greater speed and convenience of heuristics as parts of 
interactive systems. 
 



The need to rank priorities for protection 
 
Optimality has also been discussed in relation to the priorities of selected sites for protection. We agree 
with Underhill (1994) that the order in which sites are selected by a heuristic is not necessarily a 
reliable guide to their priority for protection. However, our reasons concern the practicalities of 
conservation planning more than the importance of 'ranking of priorities within optimal sets' based on a 
'theoretically sound technique'. Underhill (1994) suggested that the appropriateness of a priority 
sequence for protection hinged on whether or not the algorithm was optimal. Yet there are at least three 
reasons why the selection sequence from any algorithm could bear no relationship to the 'right' 
sequence of acquisition and could, in fact, be dangerously misleading. 
 One reason is that a selected set will, for many regions, be only one of many ways of 
constructing a representative reserve network. Flexibility in reserve networks, due to the possibility of 
replacing some sites with others (Pressey et al., 1994) can be explored by several approaches, including 
optimizing algorithms (Possingham et al., 1993; Saetersdal et al., 1993; Underhill, 1994; Camm et al., 
1996; Church et al., 1996; Csuti et al., in press) and heuristics (Margules et al., 1991; Rebelo & 
Siegfried, 1990, 1992). In this context, selection of a site by one run of an algorithm can indicate little 
about its conservation 'value' or potential contribution to a fully representative reserve network. Many 
selected sites are not inherently more valuable than unselected sites and might be exchanged for them 
with little cost in efficiency. This potential for replacement of sites as members of future reserve 
networks is increased if protection is possible for more than the minimum number or total area of sites 
needed to achieve the representation goal. 
 A second, related reason for the selection order from any algorithm to have a tenuous 
relationship with on-ground priorities is the inevitable need for changes to selections during 
implementation. If complementarity is to be achieved as fully as possible, then a change in one or two 
selected sites, perhaps because of changes in availability for protection, will alter the set of remaining 
sites that best complement them (Saetersdal et al., 1993). This can also be handled by progressive 
applications of optimizing and heuristic algorithms but indicates that an initial optimal solution is 
unlikely to be the most appropriate in the end. 
 A third reason for caution in interpreting the selection order of an algorithm as the preferred 
order of acquisition concerns the vulnerability of sites or their need for protection. The discussion so 
far has been dominated by considerations of representation. This assumes that all features in a region 
are equally in need of protection, an assumption that is often demonstrably wrong (Pressey, 1995). The 
most appropriate order of protection on the ground might be the one that protects the most threatened 
sites or features first or that pre-empts the imminent destruction of areas predisposed to clearing, so that 
maximum options for achieving a representative reserve network are open 5 or 10 years hence. 
 Optimal representation requires that if only a subset of a fully representative network of sites 
can be protected, then the best subset to protect is the one that contains the most features (Underhill, 
1994). This approach can inform decision-makers about how many species can be reserved with a 
given input of conservation resources (Camm et al., 1996; Church et al., 1996) but might, in the end, 
facilitate the same sort of political point-scoring that measures progress in conservation by the number 
of hectares reserved in a term of office. A more realistic approach would be to allocate limited 
conservation resources to protect the features that most need protection. Otherwise, at least a part of the 
diversity that has been optimally selected for protection might not need it, at least in the short term. 
Worse, some of the features badly in need of protection might not be included in the mathematically 
optimal subset of sites. 
 For the same reasons, the optimal rate of accumulation of species as more sites are added to a 
notional network does not necessarily indicate the best sequence of protection. This approach assumes 
that the role of a reserve network is to 'save' as many features as possible as quickly as possible by 
representing samples of them. Another interpretation is that a reserve network is meant to facilitate the 
persistence of features in the landscape. Some of those features will not necessarily need the sort of 
protection that reserves can offer, or not in the short to medium-term, but some will need it very badly. 
The two interpretations of the role of reserves can lead to different priorities for protection and to 
different definitions of optimality. Heuristic analyses have shown that a selection order for cumulative 
richness can vary markedly from one that takes rarity (as one indicator of vulnerability) into account 
(Kershaw et al., 1994, 1995). Possingham et al. (1993) found the same when they used stochastic 
dynamic programming (an optimizing method) to take into account varying risks of site destruction. 
Techniques for combining representativeness with vulnerability in selection procedures are therefore 
available but still developing. They are untested in terms of their relative effectiveness in maximizing 
the number of features that persist in a landscape where those features decline or become extinct at 
different rates. 



 
Conclusions 
 
In the light of these issues, what are the implications of optimality of algorithms for conservation 
planning? Several main points emerge from our discussion: 
 
(1) optimal solutions to simple representation problems, as well as to more complex ones, must always 
be preferred to suboptimal ones but are not always feasible, either because of the required processing 
time or because optimizing algorithms fail to find solutions; 
 
(2) heuristic methods are essential for the types of problems, including some important reservation 
goals, for which optimality cannot yet be guaranteed; with improvements in software and hardware, 
there will be an increase in the variety of conservation planning problems that can be solved with 
optimizing methods and a corresponding decrease in the reliance on heuristic approaches; 
 
(3) the slight suboptimality of good heuristic methods comes with a substantial compensatory 
advantage in processing speed for large regional data sets; in some situations, and particularly for real-
time decision support systems, this time difference can preclude the use of the optimizing algorithms 
presently available; 
 
(4) slight suboptimality of good heuristics is not necessarily a problem when the criteria are broadened from 
mathematical to practical; good heuristics can be reliable comparative tools and it is not known to what 
extent mathematical optimality actually makes a difference on the ground after all the vagaries of 
implementation have been worked through; 
 
(5) a preoccupation with optimal progressive representation of natural features can shift acquisition priorities 
away from the sites and features most in need of protection; in this context the term 'optimal' must be 
broadened to refer, not only to representation, but also to the persistence of features in the landscape, 
whether or not they are reserved; 
 
(6) the quest for optimality is an enticing one but is only worthwhile if there are real benefits for 
conservation planning; these cannot be demonstrated by comparisons of algorithms in solving simple 
problems with small data sets; more imaginative comparisons in practical, rather than analytical, situations 
are necessary; 
 
(7) heuristic and optimizing methods are not opposing approaches; optimizing algorithms are by no means 
the only promising line of development in reserve selection algorithms; the two approaches have 
complementary strengths and limitations and both, therefore, need further refinement as tools in 
conservation planning. 
 
Progress in conservation planning will certainly depend to some extent on biologists learning techniques 
from mathematicians, as Underhill (1994) suggested. Conservation planning is, however, much more than 
the outputs of software packages. New and better algorithms are only a minor part of the progress that needs 
to be made in conservation planning. Major progress requires biologists as well as mathematicians to learn 
more about the challenges of implementing the results of algorithms in the real world. 
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