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ABSTRACT 
 The following most recent developments in computational fracture mechanics at Cardiff 
University are reviewed: hybrid crack element (HCE) which can give directly the stress 
intensity factor (SIF) as well as the coefficients of higher order terms in the plane linear elastic 
crack tip asymptotic field; extended finite element method (XFEM) which avoids using a mesh 
conforming with the crack as is the case with the traditional FEM and gives highly accurate 
crack tip fields; penalty function technique for handling point loads; and compressed sparse 
row (CSR) storage scheme for efficient implementation of the above techniques. Possible future 
improvements are also discussed.  

Keywords: Extended finite element method (XFEM); Hybrid crack element (HCE); Penalty 
function; Point load; Sparsity storage; Statically admissible stress recovery (SAR) 

1. INTRODUCTION 
An overview of the most recent developments in computational fracture mechanics at Cardiff 
University is given. 
First, the improvements of hybrid crack element (HCE), which was originally introduced by 
Tong et al. [1] for evaluating only the stress intensity factor (SIF), will be discussed. It has 
been extended so that now it is possible to determine accurately and directly (i.e. without the 
use of the energy related quantities like the J-integral, or other extra post-processing) the SIF as 
well as the coefficients of higher order terms in the plane linear elastic crack tip asymptotic 
fields [2, 3]. In a very recent development it has been further demonstrated that the HCE need 
not be a special element; it can be generated from any regular finite element (FE) mesh so that 
it can be included in any commercial FE code [4]. 
Second, the Cardiff contribution to the extended FE method (XFEM) [5-7] will be included. 
XFEM avoids using a mesh conforming with the crack as is the case with the traditional FEM. 
The standard local FE approximation around the crack is enriched with not only discontinuous 
Heaviside functions along the crack faces but also the asymptotic fields at nodes surrounding 
the crack tip using a partition of unity method (PUM). Our emphasis is on improving the 
accuracy of the crack tip fields. When the crack tip asymptotic field, e.g. Williams expansion, 
is available, the enriched approximation is enforced to be equivalent to this crack tip field [8, 
9]. When the crack tip asymptotic field is not available and enrichment functions meet only the 
local displacement boundary conditions, a statically admissible stress recovery (SAR) method 
[10] is introduced. It uses basis functions, which meet the equilibrium condition within the 
domain and the local traction conditions on the exterior boundaries, and moving least-squares 
(MLS) to fit the stresses at sampling points (e.g., quadrature points) obtained by the FEM. 
Third, a technique is introduced for handling point loads accurately. The displacement field in 
the neighbourhood of a point load is imposed as a constraint on the displacements at nodes 
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surrounding this point. These constraints are enforced through a penalty function approach. 
Accurate handling of point loads is especially important when the point load is close to the 
crack tip as in the evaluation of weight functions [11]. 
Fourth, the improvements to XFEM and to the accurate handling of point loads mean that the 
stiffness matrix can be very sparse, significantly increasing the bandwidth in the conventional 
skyline storage scheme. To avoid this, a compressed sparse row (CSR) storage scheme [12] is 
introduced. It stores only the row and column indices of each non-zero element together with 
its value. Addresses of the diagonal entries are also stored to simplify the retrieval of a specific 
element. 
Finally, future directions of research will be indicated. 

2. HYBRID CRACK ELEMENT (HCE) 
A two dimensional (2D) nd-node polygonal HCE is shown in Fig. 1a. If we ignore the body 
force and assume that no element boundary displacements have been prescribed, the HCE can 
be formulated from the following simplified variational functional [1, 2] 
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Fig. 1. An  nd-node polygonal HCE for a mixed mode (a) or pure mode I (or II) crack (b). 

The tractions iT  are prescribed on the boundary segment eSσ ; the interelement boundary eA~∂  is 
common with the adjacent elements. Displacements ui and tractions Ti(=σijnj) are independent 
of the other elements and taken from the crack tip asymptotic expansions (i.e. Williams 
expansions) excluding rigid body and zero energy modes, but boundary displacements iu~  have 

to be the same for the two elements over their common boundaries eA~∂ . σij denote stresses, 
and nj are the direction cosines of the unit outward normal to eA∂ . Subscripts i and j take the 
values 1 and 2, and the summation convention on repeated indices is used. 
Three-point Gauss integration for each segment of eA~∂  ensures good accuracy, since eA~∂  is 
away from the crack tip, thus avoiding numerical integration of the singular integrand. 
Integrations on crack faces eSσ

 may be carried out analytically; if they are traction-free, as in 
most cases, the integrals vanish. The element must satisfy the following condition for stability 

rq nnn −≥β     (2) 
where nβ and nq (=2nd) are the respective number of element stress and nodal displacement 
parameters employed, and nr(=3 for 2D problems) the number of independent rigid body 
modes. If (2) becomes an equality, the best parameter matching condition is achieved. 
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If we restrict our attention to pure mode I (or II) crack problems, the half polygonal element 
with nd nodes shown in Fig. 1b may be used for constructing the HCE by exploiting the 
symmetric (mode I) or asymmetric (mode II) conditions along the line of extension of the 
crack. We need only integrate along the outer boundary and avoid integrations along the line of 
extension of the crack. 

 

 

 

 

 

 

 
 

In the implementation of HCE in the literature [1-3], HCEs are first designed at each crack tip 
and then the whole domain is meshed taking into account the boundaries of the domain as well 
as the HCEs. An example solved by Xiao and Karihaloo [3] is shown in Fig. 2. This 
complicates the meshing task. A general FE mesh can actually be used by forming the HCE 
from elements surrounding the crack tip. An example is given in Fig. 3. 
The elements used for the 
formulation of the HCE 
will be skipped in the 
element analysis process, 
since their stiffness 
matrices are not required. 
The nodes lying inside the 
HCE are not actually used, 
and the corresponding 
degrees of freedom will 
result in zero pivots in the 
factorization process. This 
problem can be easily 
handled by changing these 
zero pivots to one and continuing the solution process, as in the HSL MA57 package. Fig. 4 
shows an angle-cracked plate under tension studied by Karihaloo and Xiao [4]. The 4-node 
plane hybrid stress element PS of Pian and Sumihara [13] is used in conjunction with the HCE. 
2×2 Gauss quadrature is employed for the formulation of PS. A state of plane stress is assumed 
and the thickness is assumed to be unity. Young’s modulus E = 1, Poisson’s ratio ν = 0.25. All 
nodes on the bottom line are fixed in the vertical (y) direction, but just the extreme left point on 

Fig. 2. (a) A finite plate with an inclined edge crack under uniaxial tension. (b) FE mesh with 
one 25-node HCE and 423 elements giving 487 nodes. 
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number of nodes. The crack is lying along element boundaries. 
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the line is fixed also in the horizontal (x) direction. The results for the right crack tip are shown 
in Table 1. The corresponding results for the left crack tip are almost the same. These results 
show that HCE constructed by the second-layer nodes around the crack tip, or, 4-node elements 
surrounding the element(s) including the tip, gives highly accurate SIFs and T-term. 

 
 
 

 
Table 1. Coefficients of the Williams expansion for the right tip of the crack.  

Results of HCE Exact solution  
θ a1 b1 a2 a3 b3 a1 b1 
0 0.31580 0.00005 -0.25055 0.40183 -0.00011 0.31623 0 
15 0.29412 -0.07879 -0.21632 0.37722 -0.10076 0.29504 -0.07906 
30 0.23708 -0.13658 -0.12404 0.29589 -0.17232 0.23717 -0.13693 
45 0.15822 -0.15773 -0.00246 0.20176 -0.20098 0.15811 -0.15811 
60 0.07875 -0.13670 0.12487 0.10046 -0.17299 0.07906 -0.13693 
75 0.02221 -0.07882 0.21695 0.02143 -0.09880 0.02118 -0.07906 
90 0.00005 0.00001 0.24981 0.00032 -0.00004 0 0 

3. EXTENDED FINITE ELEMENT METHOD (XFEM) 
The original XFEM [5-7] (Fig. 5) used 
only the singular (leading) terms, and 
the additional coefficients at each 
enriched node are independent. It  
predicts accurate global displacements 
but SIFs at the crack tip have to be 
evaluated by a post-processing 
procedure. In order to improve the 
accuracy of local fields so as to 
determine the SIF directly, the FE 
approximation of the crack tip node as 
well as its surrounding nodes are 
enriched with not only the first term but 
also the higher order terms of the linear 
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Fig. 5. A crack on a uniform mesh without 
consideration of the crack geometry. The squared 
nodes are enriched with the Heaviside function 
centred at the crack line whereas the circled nodes 
are enriched with the known crack tip fields. 

w = 10 
 a = 0.2  
σ = 1 

Fig. 4. (a) Geometry and loads of an angle-cracked plate under tension. (b) Illustration of the 
HCE for the right crack tip formed by the second-layer nodes around the crack tip, or, elements 
surrounding the element(s) including the tip, from a 100×100 uniform division of the plate. 
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elastic crack tip asymptotic field using the PUM [8, 9]. The approximation of displacements 
after enrichment becomes 
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where I is the set of all nodes in the element, (u0i, v0i) are the regular degrees of freedom at 
node i, φi is the FE shape function associated with node i. J is the set of nodes whose support is 
intersected by the crack but do not cover any crack tips, the function H(x) is the Heaviside 
function centred on the crack discontinuity, and (b1j, b2j) are the corresponding additional 
degrees of freedom. Mk is the set of nodes that are enriched around the crack tip k, which 
includes all nodes within a characteristic radius from crack tip k, in which the asymptotic fields 
dominate the solution. ( )ktip

InmK  and ( )ktip
IInmK   are the coefficients, and fijn the angular functions. 

We define the elements that include the crack tip k as the first-layer elements of the crack tip 
with enriched nodes. The nodes in the first-layer elements are defined as the first-layer 
enriched nodes and denoted by Mk1. The elements immediately adjacent to the first-layer 
elements are defined as the second-layer elements, and the nodes that are in the second-layer 
elements, but not in the first-layer elements, are defined as the second-layer enriched nodes. 
Additional layers of elements and enriched nodes can be defined in a similar manner. The 
additional coefficients KInm

(tip k), KIInm
(tip k) for each order n at the first-layer enriched nodes of 

crack tip k, i.e., m∈Mk1∩I≡I, are constrained to be equal through a penalty function approach. 
The third term on the right hand side of (3) becomes the actual crack tip asymptotic fields, and 
the additional coefficients are the relevant coefficients of the crack tip asymptotic fields. The 
additional coefficients at the other enriched nodes at the crack tips are assumed to be 
independent, thus ensuring a seamless link between the approximation matching the crack tip 
field and the standard FE approximation, using PUM. A penalty factor of 104E guarantees the 
convergence of numerical solutions. 
Liu et al. [9] solved the plate with an 
inclined centre crack (Fig. 4a) with the 
XFEM. The parameters used are: W=10, 
a=0.5, σ=1, E=100 and ν=0.3. A 100×100 
uniform division was used together with 
the 4-node plane isoparametric element 
Q4. The first 11 terms are retained in the 
asymptotic solution and three layers of 
enriched nodes around the crack tips are 
chosen. The numerical results listed in 
Table 2 show that without using a mesh 
conforming with the crack, high accuracy 
of the fields near the crack tip can be 
maintained and excellent agreement with 
the exact solution obtained for the entire 
range of θ. 

4. STATICALLY ADMISSIBLE 
STRESS RECOVERY (SAR) 

Table 2. Results for KI and KII of an inclined 
centre crack in a plate under tension. 

XFEM Exact Solution θ 
KI KII KI KII 

0 1.271 0 1.253 0 
5 1.263 0.110 1.244 0.109 

10 1.238 0.213 1.216 0.214 
15 1.194 0.312 1.169 0.313 
20 1.126 0.404 1.107 0.403 
25 1.047 0.480 1.029 0.480 
30 0.960 0.551 0.940 0.543 
35 0.853 0.592 0.841 0.589 
40 0.745 0.620 0.735 0.617 
45 0.625 0.645 0.627 0.627 
50 0.520 0.622 0.518 0.617 
55 0.392 0.585 0.412 0.589 
60 0.288 0.539 0.313 0.543 
65 0.197 0.471 0.224 0.480 
70 0.144 0.400 0.147 0.403 
75 0.084 0.312 0.084 0.313 
80 0.036 0.216 0.038 0.214 
85 0.009 0.108 0.010 0.109 
90 0 0 0 0 
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The method discussed above is only applicable when the crack tip asymptotic field is known. 
For most practical situations, the crack tip fields are not available. However, enrichment 
functions meeting the local displacement conditions adjacent to the crack tip can be chosen 
easily. In order to obtain accurate stresses, the SAR scheme is introduced.  
The MLS interpolant σh(x) of the stress σ(x) is defined in the domain Ω by 

)~()()( xxpxh β=σ                        (4) 
where p(x) are complete basis functions in the spatial coordinates x, which satisfy equilibrium 
in the domain and meet traction conditions on the local boundaries. The coefficients ( )x~β  are 
also functions of x and are obtained by minimizing the following weighted L2 norm: 
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where n is the number of points in the domain of influence (DOI) of x~  for which the weight 
function 0)~( ≠− Ixxw , and Iσ̂  is the value of σ (x) at sampling point (e.g. quadrature point) x 
= xI. The statically admissible basis functions of stress components are normally coupled. 
Therefore the recovery is implemented for the whole stress vector instead of each component 
individually. 
The weight function used in the current study is a fourth order spline function 
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in which di = Ixx −~ is the distance from node xI  to point x~ . The symbol ri is the radius of the 
DOI. Detailed information for implementing the MLS technique can be found in the literature. 
A single edge cracked plate under end shearing (SECPS) studied by Xiao and Karihaloo [14] is 
shown in Fig. 6. A state of plane stress is considered and the thickness is assumed to be unity. 
All nodes on the bottom line (y = -8m) are fixed both in x- and y-directions. The PS element 
[13] is used. Stresses at 2×2 quadrature points are used in the SAR. Nodal stresses on the circle 
with radius r = 0.5 surrounding the crack tip (Fig. 6b) are compared in Fig. 7. The nodal 
stresses from the PS element are obtained directly from its trial stresses. The stresses 
corresponding to the first 15 terms (of each mode) of the Williams expansion obtained by Xiao 
et al. [3] using a 17-node HCE are also included as highly accurate reference solutions. The 
radius ri of the DOI used by MLS is: ri = 0.35 for the two nodes adjacent to the crack faces, and ri 
= 0.2 for other points; ri for nodes inside the domain is chosen close to the smallest side (diagonal) 
of surrounding elements. Thus, there are 8 – 11 quadrature points in the DOI of each point. 
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w = 7m 
 h = 8m 
 τ =1 N/m2  
E = 105 N/m2  
ν = 0.25 
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Fig. 6. (a) Geometry and loading conditions for the SECPS; (b) FE mesh with 96 quadrilateral 
elements giving 115 nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
In Fig. 7, a line segment          (         ) represents stresses within an element inside (outside) the 
circle; a line segment        represents the recovered stresses;     represents HCE results. These 
results demonstrate that the improvement after using the SAR is very promising. 

5. FE FOR MODELLING THE POINT LOAD 

In the Cartesian coordinate system shown in Fig. 8, the displacements in the neighbourhood of the 
point load are 
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Fig. 7. Angular stress distributions along the 
circle r = 0.5. In the SAR, a linearly complete 
self-equilibriated stress field with 7 βs is used 
for all nodes in elements not adjacent to the 
traction-free boundary; a second order 
statically admissible stress field is used for 
nodes inside elements adjacent to the 
boundary (6 βs for one traction-free side; 5 βs 
for two adjacent traction-free sides). 
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Fig. 8. A concentrated vertical force P per 
unit thickness acting on a horizontal straight 
boundary of an infinite plate.
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where A, B, and C are constants depending on the remote boundary conditions. Since the strain 
energy is unbounded in the neighbourhood of the point load, the above known deformation 
fields (7) cannot be used to enrich the general FE approximation via most methods appropriate 
for corners or crack tips. For example, if the PUM is used, the entries in the system stiffness 
matrix corresponding to the singular fields above will be very large (akin to penalty function 
terms). As a result the corresponding coefficient P/(πE), if it is treated as an unknown variable, 
will vanish. The results cannot be improved even when the known amplitude P/(πE) is 
enforced as a prescribed displacement. The DtN method  extended by Seweryn [15] seems 
most appropriate for point loads. However, a required transformation to the system stiffness 
matrix will change the total degrees of freedom of the system. This has been avoided with the 
use of the penalty function approach [11].  

The nodal displacement vector of the discrete system is expanded to include the coefficients in 
the displacement fields (7) of the neighbourhood of a point load. The known amplitude P/(πE) 
is also treated as an unknown coefficient in 
the beginning, and later enforced as a 
prescribed displacement. The displacement 
field (7) acts as constraints on the 
displacements at nodes surrounding the 
loading point in the expanded unknown 
displacement vector. These constraints are 
enforced through a penalty function 
approach. Note that integration of singular 
integrands is avoided as no singular 
functions are used explicitly in the FE 
formulation. If the first ring of nodes 
surrounding the loading point is considered, 
a penalty factor of 103E guarantees 
convergence of numerical solutions. 

6. A COMPRESSED SPARSE ROW (CSR) STORAGE SCHEME  

A CSR storage scheme is introduced [12] since the widely used band storage schemes for the 
system stiffness matrix in a FE analysis can become less efficient with the use of the above 
techniques. Moreover, the discrete system of equations can be ill-conditioned after the 
enrichment, special solvers such as the HSL MA57 package may need to be used. This package 
requires that both the row and column indices of 
each non-zero element be stored together with its 
value.  

As an example, the 6×6 symmetric sparse matrix A 
shown in Fig. 9 (n=6) is stored in CSR format in 
Table 3. (val(ii); irn(ii), jcn(ii)) store the triple (aij; 
i; j) for each non-zero entry in A; kdg stores the 
addresses of the diagonal entries of A in val to ⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

66656261

565553

4443

35343332

26232221

161211

aaaa
aaa

aa
aaaa

aaaa
aaa

 

Fig. 9. A 6×6 symmetric sparse matrix. 
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simplify the retrieval of a specific element. kdg(n+1)=number of non-zero elements in A. 

Table 3. Storage of the sparse matrix in Fig. 9. 
val a11 a12 a16 a22 a23 a26 a33 a34 a35 a44 a55 a56 a66 
irn 1 1 1 2 2 2 3 3 3 4 5 5 6 
jcn 1 2 6 2 3 6 3 4 5 4 5 6 6 
kdg 1 4 7 10 11 13        

The key point in the implementation of the CSR scheme is to analyze the profile, or locations 
of the non-zero entries, of the system stiffness matrix. This can be done in the following steps: 
• For each node find its surrounding elements; 
• For each node find the neighbouring nodes in the surrounding elements whose node 

numbers are larger than that of this node; 
• Calculate the total number of non-zero entries; 
• Analyze the sparsity profile of the system stiffness matrix, and calculate vectors irn, jcn, 

and kdg. 

 
 
 
 
 
 
 
 

6-node HCE
 

Fig. 10. A crack on a uniform mesh. The 
squared nodes are enriched by jump function 
as in XFEM but the crack tip zone is 
modelled by HCE. The two nodes where the 
crack cuts the side of a pre-existing 
quadrilateral element may be treated as 
virtual nodes or enriched by jump function. 

Crack

Inner HCE 

Surface HCE 

Surface HCE 

Fig. 11. Illustrative implementation of  the 
HCE to a 3D crack problem. In the surface 
zone, the crack front intersects the traction 
free surface and the  asymptotic expansion 
is different with that of the inner part. The 
HCE provides a seamless link between 
these asymptotic expansions. 
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7. FUTURE DEVELOPMENTS 

• When the crack tip asymptotic field is available, HCE gives the most accurate crack tip 
fields. If it is used to model the crack tip region, and the XFEM is used for crack faces 
behind the crack tip (Fig. 10), the coupled method will retain advantages of both HCE and 
XFEM in 2-D and 3-D applications. Figure 11 illustrates the implementation of the HCE on 
a 3D crack. 

• When the asymptotic crack field is not available, XFEM will be used together with the SAR. 
This coupled method simplifies the modelling of cracks, and predicts highly accurate crack 
tip fields. 
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