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ABSTRACT: Propagation of cracks in plane elastic bodies with two mutually orthogonal sets of pre-exiting 
weak interfaces is studied. It is assumed that crack follows the horizontal interfaces while the vertical ones 
arrest the crack and produce offsets in the crack path. The method of singular integral equations and the 
Gauss-Chebyshev quadrature for singular integrals is used with the modification that preserves positions of 
collocations on every crack segment when crack propagates. The stress intensity factors (SIFs) are calculated 
for different crack trajectories. Based on these calculations it is found that the preferable crack trajectories 
are the ones that inclined at an angle to the horizontal direction in which the crack were expected to 
propagate due to symmetry. One can call this phenomenon the symmetry breaking. The exponent of the 
power law describing the increase of the mode I SIF with the increasing crack length is close to 0.4 instead 
of 1/2 for the conventional straight crack. 

1 INTRODUCTION 
Growing cracks can sometimes follow tortuous paths resulting from combined effects of 
heterogeneities and pre-existing weak interfaces. The crack propagation is affected by (a) local 
crack arrest due to the presence of tough inclusions or internal interfaces (e.g., pre-existing 
fractures) and; (b) non-homogeneity of stress field. The local crack arrest causes abrupt changes in 
the crack path producing ruptured trajectories in contrast to smoothly fluctuating crack paths 
associated with the influence of stress non-homogeneity. The stress non-homogeneity alters local 
principal directions and thus produces fluctuating crack paths [Galybin and Dyskin, 2003]. The 
present study considers ruptured crack paths caused by internal interfaces in a 2D body. It is 
assumed that the interfaces are composed of two mutually orthogonal sets of parallel joints as 
shown in Fig 1. The initial crack is straight and oriented perpendicular to the remote tensile load 
which is assumed to be insufficient to open the interfaces. 
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Figure 1 Scheme of crack propagation in a body with internal interfaces 

 
It is assumed that the crack propagates along horizontal interfaces and branches at vertical 
interfaces as shown in Figure 1. One can relate this mode of crack propagation to the so-called 
“compressional crossing”, a phenomenon experimentally observed by Renshaw and Pollard [1995] 
and also in FEM simulations [McConaughy and Engelder, 1999].  
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2 MATHEMATICAL MODEL  

2.1 Singular integral equation (SIE) for polygonal crack 
We use an equivalent representation of a curvilinear crack in a plane as a distribution of the 
displacement discontinuity vector (u,v) across the crack contour Γ. Then the following singular 
integral equation, SIE, and the condition of single valuedness of displacements are satisfied to 
provide equilibrium [Savruk, 1981] 
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unbounded at the ends in which G is shear modulus, κ=(3-ν)/(1+ν)  for plane stress, κ=3-4ν for 
plane strain, ν is Poisson’s ratio; ( ) ( )tit ′+′ τσ  is the stress vector applied to the crack surfaces; t and 
t' are complex variables; and regular kernels are given as follows 
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Let contour Γ be a polygonal line composed of N straight connected segments, Γk. (k=1…N). Each 
segment is characterised by a complex coordinate of its centre, χk, its half-length Lk, and the angle 
of inclination, θk, to the positive direction of the x-axis: 
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By introducing unknown functions Qk(η) = Q(tk(η)) on each segment, eqn (1) can be rewritten as 
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Once a solution of (4), (5) is found one can determine the stress intensity factors, KI
  and KII, at the 

left and right ends of Γ from the asymptotics Q1(η) at ηƒ-1 and QN(η) at ηƒ1 respectively. 

2.2 Numerical scheme 
Since, in general, the solutions of (1) are unbounded at the ends, solutions of (4), (5) are sought as 
unbounded for the left end of Γ1 and the right end of ΓN . Hence solutions on all other segments are 
bounded. Therefore the functions Qk(η) can be replaced by new regular functions qk(η) as follows 
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After substitution of (6) into (4) and (5) all regular integrals can be calculated in accordance with 
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the following Gauss-Chebyshev quadratures [Erdogan and Gupta, 1972] 
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These formulae are exact if q(ξ) is a polynomial of (2n-2) degree for the first equation in (7) and of 
(2n-3) degree for the second equation.  
For singular integrals the Gauss-Chebyshev quadratures have the form 
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Here Chebyshev polynomials 
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have roots ξk  (k=1…n) and ηj (j=1…n-1) respectively as determined in (7). Formulae (8) are exact 
if q(ξ) is a polynomial of (2n-1) or (2n-2) degrees respectively.  
It is obvious that the terms containing Chebyshev polynomials in (8) vanish at the roots of Un-1(η) 
and Tn(ξ). Further ξk  (k=1…n) are used as collocations for the edge segments and ηj (j=1…n-1) for 
the internal segments. Although quadratures for each segment have been applied separately based 
on eqn (4), one can return to the consideration of the original SIE (1) by introducing the following 
arrays of nodes, collocations and weights 
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The number of nodes and weights is (n-1)N+2, the number of collocation is Nn-2. Discretization of 
(1) leads to the following system of linear algebraic equations 
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Here vector Z represent stacked arrays of real and imaginary parts of unknowns qk(η) in (6) at the 
nodes; the components of matrixes Kpq

 (((n-1)N+2)×(Nn-2)) (p, q=1,2) and vectors C, S, 
σ, τ and δ have the following form for ( ) 211,21 −−=−= NnmNnl KK  
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System (11) is overdetermined if N>3 and underdetermined otherwise, therefore the number of 
segments in polygonal crack is further assumed to be greater than two. The overdetermined system 
(11) is solved by the least squares method 

 ( ) BAAAZ TT 1−
=  (13) 

The stress intensity factors, SIFs, at the right/left ends (denoted by superscripts “±” respectively) are 
calculated as follows 

 ( )( ) ( )( )1,Interp2,1,Interp2 11 jNNIIIjIII qLiKKqLiKK ξπξπ =+−=+ ++−−  (14) 

where Interp(…,…) denotes the linear interpolation. 
The proposed numerical scheme has been verified against known results for branching cracks. It has 
been found that 4-16 nodes placed on each segment (of equal length) match the accuracy specified 
in the handbook by Murakami [1987] for different configurations in which the length of the branch 
and its orientation vary in a wide range. It has been found that more nodes and collocation points 
are required if the kink is perpendicular to the main crack. Two values (n=8 and n=16) were used in 
further calculations of the SIFs for perpendicular configurations, however if the difference between 
the calculated SIFs for 8 and 16 nodes was pronounced, then 32 nodes were used to refine 
calculations. 

3 SIMULATION OF CRACK GROWTH IN FRAGMENTED 2D PLATE 
A crack approaching a weak interface (Figure 2a) generates delaminating and sliding zones on the 
interface ahead of the crack tip [e.g. Parton, 1992].  
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Figure 2. Crack propagation through the interface: (a) generation of delaminating and sliding zones and a new crack;  
(b) an elementary zigzag step of crack propagation each segment having the length equal to 2. 

 
Calculations show that the size of delaminating zone is small compared to the length of the initial 
horizontal crack. Thus, if the delaminating zone is associated with the kink of the branching crack 
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(Fig 2a) then calculations demonstrate that KI at the kink tip is negative provided that the kink is 10 
(or less) times shorter than the initial crack. At the same time the length of the sliding zone can be 
comparable with the length of the initial crack and it can reach the nearest horizontal interface. 
Therefore a new crack can be induced in the horizontal direction by the tensile stresses acting near 
the end of the sliding zone. When this new crack approaches the next vertical interface another step-
crack can be generated upwards or downwards and so on. Therefore, the process of crack growth 
can be viewed as a sequence of elementary zigzag steps shown in Figure 2b. The described 
mechanism of crack propagation is the further development of the concept of “compressional 
crossing” [Renshaw and Pollard, 1995]. 

3.1 Possible configurations of the trajectory of crack propagation 
As evident from Figure 2, the crack propagation through materials with multiple weak interfaces is 
characterised by the offsets along the interface. In the case of a system of parallel interfaces the 
crack path will consist of elementary zigzag steps. Now we analyse the SIFs for different sequences 
of zigzag steps in order to reveal the most probable paths of crack propagation. The applied load is 
assumed to be equal to 1 unit. It is assumed that the priority of up- or downward steps in the crack 
path is controlled by the largest mode I SIF calculated after each possible zigzag step from the 
left/right tip of the crack. Figure 3 shows values of the dimensionless SIFs (see the expression at the 
top of Figure 3) at each crack tip for different crack paths. In all configurations the total length of 
the cracks (including vertical segments) is L=20.  It is seen that the trajectories with offsets in the 
same direction (cases a, b, c and d) are more preferable, because of higher SIFs, than the trajectories 
with alternating offset directions (cases e and f).  
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Figure 3 Stress intensity factors (SIFs) for different configurations: the numbers correspond to dimensionless SIFs 
(mode I above mode II); the applied load is assumed equal to 1unit. 

3.2 Stress intensity factor vs. crack length 
Based on the previous analysis two crack paths are investigated in this subsection. They represent 
the most (Figure 3b) and least (Figure 3f) preferable paths. In both these cases each segment has 
unit half-length and the initial crack consists of two segments. The maximum length of the crack is 
L=20. For the case of vertical load applied at infinity the mode I SIF is a square root function of the 
crack length for a straight crack propagating through the material, KI=σ0(πL/2)1/2. In the cases 
considered here the SIFs increase weaker than the square root. The results of calculation of the SIFs 
(doted curves) and fitting by power functions (solid lines in Figure 4b, d) are shown together with 
the square root dependence (dash-dot curve) and the special dependence KI=σ0(πΛ/2)1/2 (dash 
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curve) where the effective crack length Λ is the projection of the crack onto horizontal axis.  
Also, several cases in which the crack path is random have been investigated. The paths have been 
specified by random up- or downward zigzag steps. The results of fitting of the calculated SIFs to 
the power law have shown that the exponent is less than ½ for all analysed cases. This suggests that 
the power law with the exponent smaller than ½ correctly describes the behaviour of the mode I SIF 
in random propagation of the crack through the fractured material.  
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Figure 4 Mode I SIFs vs. length: the dotted lines show the calculated values; the dash-dotted lines show the case of 
straight crack with the same total length as the cracks considered; the broken line show the case of straight crack with 
the total length equal to the projection of the cracks considered on the x-axis; the solid lines on log-log graphs show the 
linear regression 

4 CONCLUSIONS 
The analysis shows that the preferable crack trajectories are the ones that inclined at an angle to the 
horizontal direction in which the crack were expected to propagate due to symmetry. One can call 
this phenomenon the symmetry breaking. The exponent of the power law describing the increase of 
KI with the increasing crack length is close to 0.4 in contrast to 1/2 for the straight crack. 
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