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Habitat reconstruction and landscape planning have be-
come important topics in conservation because we rec-
ognize that in many landscapes the quantity and quality
of habitat is inadequate to meet biodiversity conserva-
tion goals. One method for prioritizing habitat recon-
struction is the focal-species approach (Lambeck 1997),
in which a suite of sensitive species is identified in order
to define the landscape configuration and habitat com-
position needed to conserve the whole biota. These sur-
rogate species typically include the species most sensi-
tive to habitat area, isolation, certain critical resources,
and disturbances such as fire. As with other surrogacy
approaches, it is hoped that the needs of other species
in the biota will fall under the umbrella of these focal
species (but see Lindemayer et al. 2002). Watson et al.
(2001) use this focal-species approach to develop
guidelines for the size and placement of eucalypt wood-
land remnants for conserving birds in a region of south-
eastern Australia. They identify the Easter Yellow Robin
(

 

Eopsaltria australis

 

) as a focal species for isolation and
the Hooded Robin (

 

Melanodryas cucullata

 

) as the spe-
cies most sensitive to habitat area and complexity. The
method has the considerable advantage of being easy to
communicate and is apparently straightforward to im-
plement because the habitat needs of only a few critical
benchmark surrogate species are considered. We be-
lieve this approach is only a partial solution, and here
we show how it can be formulated explicitly in the
broader context of optimal landscape design.

The focal-species approach helps define an easily un-
derstood goal, but it does not address the issue of how
to most efficaciously reconstruct habitat given a fixed
amount of available resources. Moreover, the species in

a community may have conflicting needs in terms of
habitat variables and spatial configuration, and the focal-
species approach is incapable of effectively “adjudicat-
ing” when these species’ requirements are at variance.
The landscape-design problem has been only partially
formulated, and we believe it is necessary to look at hab-
itat reconstruction within a decision-theory framework
(Possingham et al. 2001).

To illustrate how to formulate habitat reconstruction
in a decision-theory context, we must first define an ob-
jective function. Let us assume that our goal is to maxi-
mize the occurrence of a number of species in the land-
scape and that we are interested in determining which
areas of the landscape to restore. First, we divide the
landscape into a set of sites (often a grid, but could be
planning units), where the size of a site is the unit of res-
toration, a function of sociopolitical concerns as well as
the scale of organisms of interest. Let 

 

x

 

 be a vector of
sites in the landscape, where each element, 

 

x

 

i

 

, is either

 

0 or 1. If the site is vegetated, then 

 

x

 

i

 

 

 

�

 

 1, otherwise

 

x

 

i

 

 

 

�

 

 0. A possible objective function is

The probability that focal species 

 

j

 

 is present in site 

 

i

 

, 

 

p

 

ij

 

,
is a function of the other vegetated sites in the land-
scape. The probabilities would be derived from logistic-
regression analyses of species distribution and would be
a function of the site vegetation, biophysical characteris-
tics, the size and shape of the patch in which the site is
embedded, and the spatial configuration of other
patches in the landscape. It could also be a simple rule
that if a patch in which the site is embedded is so large
or has so much interior, core habitat, the probability of
occurrence would be 1.0. Our control variables are
which sites we choose to restore. The weighting factor,

 

�

 

j

 

 , allows us to give priority to certain species. The de-

maximize V x( ) αj  pij x( )
i∈ sites{ }

∑
j∈ species{ }

∑=

subject to xici q≤
i∈ sites{ }

∑
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fault would be to set 

 

�

 

j

 

 

 

�

 

 1 for all 

 

j

 

. The financial cost
associated with restoring site 

 

i

 

,

 

 c

 

i

 

, which may include
costs of revegetation, maintenance, leasing, easements,
or acquisition, depends on the socioeconomic issues of
the region. The available budget over a planning period
(e.g., 20 years) is 

 

q

 

.
Restated, the goal is to maximize the function 

 

V

 

(

 

x

 

),
which is the weighted sum of the probabilities of occur-
rence of all 

 

j

 

 focal species over all 

 

i

 

 vegetated sites in the
landscape for restoration, given that the restoration cost
is less than or equal to the budget size, 

 

q

 

. We can think of
this formulation as the “landscape restoration problem.”

In a sense, the focal-species approach as first em-
ployed is a qualitative expression of the landscape-resto-
ration problem. By formulating the problem with a clear
objective and an economic constraint, we are able to
use optimization tools to find good solutions to the
problem. In the absence of a well-defined problem, we
cannot use standard algorithms to solve the problem and
would need to operationalize the focal-species approach
with ad hoc actions. Indeed, if the focal species have
conflicting habitat needs, then it is doubtful that any ro-
bust qualitative rules could be developed.

Because the landscape-restoration problem is highly
nonlinear and “computationally hard” (a so-called “NP-
hard problem”) (Cormen et al. 1990), it cannot be
solved in a reasonable time for problems with many
sites, but fortunately there are many approximate heuris-
tic algorithms that can be used to generate good solutions
(Sait & Youssef 1999). Simulated annealing (Metropolis
et al. 1953; Kirkpatrick et al. 1983) has been used effec-
tively in reserve design (Possingham et al. 2000; McDon-
nell et al. 2002). A straightforward “greedy” algorithm
may also produce useful answers (Pressey et al. 1997),
but it has the drawback of producing only one solution,
and in landscape planning we often need many good al-
ternatives.

For various budget sizes, we can derive sets of optimal
solutions and distill the spatial characteristics of the
landscapes—the size, shape, and isolation of patches,
the distribution of various habitat types, and the frequency
that certain sites are selected (“summed irreplaceability”).
Moreover, we can find the solutions at a smaller budget
size that are the best subset of solutions reached at
larger budget sizes, which allows us to incorporate dy-
namics and plan for future restoration.

We are currently using simulated annealing algorithms
to find a set of solutions for optimal habitat reconstruc-
tion for birds in the Mount Lofty Ranges of South Austra-
lia. Figure 1 shows one solution for 22 woodland bird
species in a section of the region, where the total region-
wide budget size is 20,000 ha. For this scenario, the
landscape is considered binary (native vegetation or ma-
trix, which is primarily pasture/cropland), and the ob-
jective function is to maximize the probability of occur-
rence over all species and all newly revegetated sites. All

sites have equal costs. The probability functions are de-
rived from logistic-regression analyses of the effects of
the spatial pattern of native vegetation around survey
points (e.g., total area of native vegetation, number of
patches, patch isolation), based on bird-atlas data. The
responses of the species are variable with regard to the
spatial pattern, but this one run of the optimization algo-
rithm shows that, for many species in the community,
accreting habitat to large contiguous blocks of vegeta-
tion is a good strategy. Other species are less sensitive to
patch area and respond more positively to the number
of patches in the landscape. With the incorporation of
more site-specific variables and costs and the inclusion
of finer habitat types, the results may differ greatly. The
optimal solutions may not easily be intuited from a quali-
tative understanding of the species biology, given the
complexity of the constraints.

Figure 1. A habitat restoration scenario for 22 species 
of euclaypt woodland birds in an area of the Mount 
Lofty Ranges, South Australia. The map is a section of 
the 500,000-ha region, where the budget size for reveg-
etation is 20,000 ha and the grain-cell size is 6.25 ha.
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Because socioeconomic factors drive conservation
planning, we believe that to be relevant to on-the-ground
projects, conservation science should be focused more
on formulating problems explicitly and showing how the
broad variety of decision-making tools can be used to de-
liver solutions. Conservation biology cannot operate out-
side the reality of financial limitations.
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