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Abstract: Despite numerous claims that population viability analysis (PVA) makes reliable predictions of
the relative risks of extinction, there is little evidence to support this assertion. To assess the veracity of the
claim, we investigated uncertainty in the relative predictions of a PVA model with simulation experiments.
We used a stochastic Ricker model to investigate the reliability of predicted changes in risks of decline in re-
sponse to changes in parameters, the reliability of ranking species in terms of their relative threat, and the re-
liability of choosing the better of two management decisions. The predicted changes in risks of decline within
100 years were more reliable than absolute predictions. We made useful predictions of relative risks using
only 10 years of data. Across 160 different parameter combinations, the rank correlation between the true
risks of extinction within 100 years and predicted risks was 0.59 with 10 years of data, increasing to 0.89
with 100 years of data. We identified the better of two management strategies 67-74% of the time using 10
years of data, increasing to 92-93% of the time with 100 years of data. Our results demonstrate that, despite
considerable uncertainty in the predicted risks of decline, PVA may reliably contribute to the management of
threatened species.

Confiabilidad de Predicciones Relativas en el Analisis de Viabilidad Poblacional

Resumen: A pesar de que varios autores afirman que el andlisis de viabilidad poblacional (AVP) permite
hacer predicciones confiables de los riesgos relativos de extincion, bay escasas pruebas que apoyen tal
aseveracion. Para evaluar su veracidad, utilizamos experimentos simulados para investigar la incerti-
dumbre de las predicciones relativas de un modelo de AVP. Utilizamos un modelo estocdstico de Ricker para
investigar la confiabilidad de cambios previstos en los riesgos de declinacion en respuesta a cambios en los
pardametros, la confiabilidad de jerarquizar a las especies en términos de su amenaza relativa y la confiabil-
idad de seleccionar la mejor de dos decisiones de manejo. Los cambios previstos en los riesgos de declinacion
en 100 aiios fueron mds confiables que las predicciones absolutas. Se hicieron predicciones titiles de los ries-
gos relativos utilizando datos de solo 10 aiios. En 160 combinaciones diferentes de pardmetros, la correl-
acion de rangos entre riesgos de extincion verdaderos en 100 asios y los riesgos previstos fue 0.59 con datos
de 10 arios, e incremento a 0.89 con datos de 100 avios. La mejor de las decisiones de manejo se identificé en-
tre 67 y 74% de las veces utilizando datos de 10 arios, y entre 92-93% de lasveres con datos de 100 arios.
Nuestros resultados demuestran que, a pesar de la considerable incertidumbre en los riesgos de declinacion
previstos, el AVP puede contribuir confiablemente al manejo de especies amenazadas.
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Introduction

Although population viability analysis (PVA) appears to
provide unbiased predictions of extinction risk (Brook et
al. 2000; Ellner et al. 2002), the predictions are typically
subject to considerable uncertainty (Taylor 1995; McCar-
thy et al. 1996; Ludwig 1999; McCarthy et al. 1999). As a re-
sult, there is doubt about the usefulness of these predic-
tions in individual cases (Possingham et al. 1993; Beissinger
& Westphal 1998; Ludwig 1999). This concern is impor-
tant because PVA is used extensively in conservation biol-
ogy to predict both the risk of extinction faced by popula-
tions and species and the efficacy of management
strategies that seek to mitigate these threats (Shaffer 1981;
Gilpin & Soulé 1986; Boyce 1992; Burgman et al. 1993; Pos-
singham et al. 1993). Despite this uncertainty, advocates of
PVA argue that the relative predictions of these models are
useful, even though the absolute predictions may be unreli-
able (Burgman et al. 1993; Possingham et al. 1993; Linden-
mayer & Possingham 1995, 1996; Ak¢akaya & Raphael
1998; Beissinger & Westphal 1998; McCarthy et al. 2001).
It is claimed that the use of PVA to assess relative risks is
less prone to uncertainties about the structure of the model
and parameter estimates than the absolute predictions. Al-
though this argument seems plausible, the only evidence to
support the claim is from two case studies (Lindenmayer &
Possingham 1996; Akc¢akaya & Raphael 1998).

At least three types of relative predictions can be gen-
erated by PVA. First, relative predictions may be gener-
ated for a particular species or population by predicting
how a particular management strategy will decrease or
increase the risk of population decline (Akcakaya &
Raphael 1998). Second, risks of population decline
faced by different species or populations may be as-
sessed, and the species may then be prioritized for man-
agement, protection, or recovery on the basis of the pre-
dicted risks of decline. This ranking of species relies at
least to some extent on the precision of the absolute
predictions (Taylor 1995). Third, relative predictions
may be generated to determine the most effective man-
agement strategy from a range of different possibilities
(Lindenmayer & Possingham 1995, 1996).

We sought to determine whether relative predictions
are likely to be more reliable than absolute predictions
and whether they remain reliable when the absolute
predictions are subject to considerable uncertainty. In
particular, we asked whether PVA could be used to (1)
determine how risks will change in response to manage-
ment, (2) rank species in terms of their level of threat,
and (3) determine the best management strategy.

Methods

Our study was based on simulations in which we used a
stochasitc Ricker (1975) population model to generate
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data and then used these data for estimating parameters
and making predictions. The code for the program used
for simulation and parameter estimation is available at
http://www.nceas.ucsb.edu/~mccarthy/research.html.

The simulations were based on 160 “species” that rep-
resented different parameter combinations. We fol-
lowed three steps for each set of parameters:

(1) We generated through simulation a given number
of years of data (10, 20, 50, or 100 yearly intervals)
by using a stochastic Ricker population model.

(2) We obtained unbiased parameter estimates of the
model based on the data from 10, 20, 50, or 100
years and made predictions of extinction risk within
100 years and of changes in this risk under two
management strategies. These predictions were
based on simulation of the model with 1000 itera-
tions.

(3) We repeated steps 1 and 2 1000 times for a given
set of parameters, generating 1000 different param-
eter estimates and associated predictions. We then
calculated the uncertainty of the predictions by
measuring the inner 90th percentile range of these
1000 predictions.

Details of each of the steps are given below.
We used a Ricker (1975) population model for all sim-
ulations:

N,,, = N,exp(a—-bN,+c¢g,), @))

where N, is population size at time ¢, @ and b are param-
eters of the model controlling the nature of density de-
pendence, o is the standard deviation in the population
growth rate due to environmental stochasticity, and g, is
a random normal deviate with mean equal to 0 and vari-
ance equal to 1. Other population models are likely to
produce results qualitatively similar to those reported
here, but we used the Ricker model because it is capable of
simulating both contest and scramble competition, thereby
spanning a greater range of forms of population dynam-
ics. It is also the same model used by Ludwig (1999),
who demonstrated the large uncertainty often associated
with predicted risks of extinction. The model does not
include demographic stochasticity, but preliminary work
with models including demographic stochasticity indi-
cates qualitatively similar results to those we report here
(M.AM., unpublished data).

For each parameter combination, the predicted risks
of extinction (as calculated in the steps above) were
compared with the true risks. The true risk of extinction
(chance of falling to 1 individual or fewer within 100
years) was determined by stochastic simulation of the
original model with 1000 iterations. This risk is equiva-
lent to the proportion of identical populations of a spe-
cies that would be expected to become extinct.
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Data Generation

We generated data by simulating the dynamics of Eq. 1
for a range of parameter values: a = 0.01, 0.02, 0.05,
0.1, 0.2, 0.5, 1.0, 2.0; = a/b = 100, 1,000, 10,000;
100,000, and o = 0.05, 0.1, 0.2, 0.4, 0.6. Thus, we exam-
ined 160 different parameter combinations, represent-
ing species with a wide range of population dynamics.
Such parameter values reflect dynamics of species rang-
ing from those that are short-lived with the potential for
rapid growth rates through those with low (but positive)
potential population growth rates. The initial population
size was equal to the equilibrium population size in each
simulation (k). Time series with 11, 21, 51, or 101 peri-
ods were simulated, yielding data sets with 10, 20, 50, or
100 observations of changes in population size. These
latter numbers were used to refer to the length of the
data set. The shorter time series were not a subset of the
longer ones.

Parameter Estimation

Parameter estimates for the Ricker model can be ob-
tained by transforming Eq. 1 and using the following re-
gression:

r, = In(N,,/N,) = a—bN,. @)

However, because the population sizes and the errors
about the regression line are not independent, standard
linear regression leads to biased parameter estimates. The
method of parameter estimation used by Ludwig (1999)
retained considerable biases (especially for low values of
a), so we used a different method of parameter estimation
in which the bias was estimated by simulation (Walters
1985).

Assessments of Predictive Accuracy

We conducted an initial analysis to confirm the work of
Ludwig (1999) and demonstrated the considerable un-
certainty associated with predicting the absolute risks of
extinction. For each of the 160 different parameter com-
binations and lengths of data sets, we generated 1000
different time series. In each case, we obtained unbiased
parameter estimates using the method of Walters (1985).
For each time series, and thus each corresponding set of
parameter estimates, we predicted the risk of extinction
(chance of falling to one individual or fewer) within 100
years by stochastic simulation with 1000 iterations.

We assessed the uncertainty in the predicted risks of
extinction for each parameter combination by calculat-
ing the range of the inner 90th percentile from the 1000
simulations. This involved sorting the 1000 predictions
of risk in numerical order, finding the 50th and 950th re-
sult, and calculating the difference between these two
numbers. This range would be close to 0 in cases where
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the predictions of the different time series were consistent
for a given time period and parameter combination. If
the different predictions were not consistent (e.g., vary-
ing between 0 and 1), the range would be close to 1.

Second, we predicted the change in the risk of extinc-
tion under two management scenarios: (1) an increase
in the population growth rate of 5% at all population
sizes (by multiplying », [Eq. 2] by 1.05) and (2) an in-
crease in the carrying capacity of 50% (by dividing pa-
rameter b by 1.5). These changes reflect management
actions that reduce mortality or increase fecundity rates
or increase the amount of habitat available to the spe-
cies. We chose the specific values for the changes (5%
and 50%) by trial and error, so that for half of the 160
different parameter combinations the strategy of increas-
ing the carrying capacity would be preferable to the
strategy of increasing the growth rate (i.e., would lead
to greater reductions in the true risks of decline). The
same time series (i.e., the exact same sequence of popu-
lation sizes) used to examine the variation in the pre-
dicted risk of extinction were used to examine the varia-
tion in these relative risks of extinction. As with the
absolute risks, we assessed the precision of the relative
predictions by measuring the range of the inner 90th
percentile from the 1000 simulations of each parameter
combination and time period.

We examined correlations between the predicted and
true risks across the 160 different parameter combina-
tions to indicate the ability of PVA to rank accurately the
risks faced by different species. For each of the 160 pa-
rameter combinations, a single time series was gener-
ated and parameter estimates were obtained. These param-
eter estimates were used to predict the risk of extinction
and the change in the risk of extinction under the two
management scenarios through stochastic simulation of
the model with 1000 iterations. We used a single time
series to reflect the case that in reality we have only one
set of data for each species.

Finally, we examined the ability to choose the best of
the two possible management strategies. The best strat-
egy—to increase growth rates or increase carrying ca-
pacity—for each of the 160 parameter combinations
was the one that led to the greatest reduction in the risk
of population decline. For each of the 160 data sets we
predicted the best management strategy (using the pa-
rameter estimates and predictions based on a single data
set for each parameter combination) by determining the
one that produced the largest decrease in the predicted
risk of extinction. We calculated the proportion of times
this prediction was correct by comparing the choice to
the management strategy that led to the greatest de-
crease in the true risk of extinction. This indicated the
reliability of using PVA to decide between competing
management strategies. We examined relationships be-
tween the accuracy of the predictions and the parameter
values in an effort to determine the circumstances under



McCarthy et al.

which the predictions were most likely to fail. This was
done by examining plots of how the proportion of cor-
rect decisions varied with values of a, &, and o.

In addition to extinction risk, we used the expected
minimum population size to measure threat (McCarthy
& Thompson 2001). Because of uncertainty about pre-
dicting population dynamics at small population sizes
and concern about population decline, not just extinc-
tion, it is common in PVA to predict risks of decline to
small population sizes (quasi extinction; Ginzburg et al.
1982). Plotting the risk of population decline versus the
threshold population size produces a quasi-extinction
risk curve (Burgman et al. 1993). These curves can be
summarized by calculating the expected minimum pop-
ulation size (the mean of the smallest population size re-
corded in each iteration of a PVA; McCarthy 1996; Mc-
Carthy & Thompson 2001). The expected minimum
population size indicates the average propensity of the
population to decline at some time within the period be-
ing considered and may be expressed as a proportion of
the initial population size. We used it in the current
study (in addition to the extinction risk) to quantify the
risk of population decline. The expected minimum pop-
ulation size has an advantage over the extinction risk for
measuring threat because it gives a better indication of
the propensity for decline when the extinction risk is
small (McCarthy & Thompson 2001).

Results

The results of the simulations demonstrate the consider-
able uncertainty associated with predicting the risk of
extinction. Despite this uncertainty in the absolute pre-
dictions of extinction risk, the relative predictions were
less variable and were useful for ranking the level of
threat faced by a species and deciding on the best man-
agement strategy. With 10 years of data, the mean of the
ranges of the inner ninetieth percentile of extinction
risk was 0.39, with a median of 0.09 (Fig. 1a). For 25%
of the 160 parameter combinations, however, the inner
90th percentile range was >0.96 (Fig. 1a), indicating
the considerable uncertainty that may occur in the abso-
lute predictions. As the years of available data increased,
the precision of the predictions increased, such that the
inner 90th percentile range was reduced to approxi-
mately zero for more than 50% of the 160 parameter
combinations when 100 years of data were available (Fig.
1a). When the simulations were assessed with the ex-
pected minimum population size, the range in the pre-
dictions was greater but had a similar pattern (Fig. 1b).
As expected, the predicted changes in the risks of ex-
tinction due to either increasing growth rates or increas-
ing carrying capacity were more precise than the abso-
lute predictions (Fig. 2). Even with only 10 years of
data, the inner 90th percentile ranges of the change in
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Figure 1. (a) Inner 90th percentile range of the ex-
tinction risk and (b) expected minimum population
size for the 1000 simulations versus the number of
years of data. The results show the median, mean,
quartiles, and extremes for the 160 different parame-
ter combinations. The expected minimum population
was scaled between 0 and 1 by dividing by the initial
population size.

the risk of extinction due to increases in the carrying ca-
pacity were <0.11 for all 160 parameter combinations.
The median of the 160 different inner 90th percentile
ranges was 0.00. This value was 0.05 when changes
from increasing the population growth rate were consid-
ered. With 100 years of data, the inner 90th percentile
ranges of the changes in the risks were all <0.075 (for
increases in the carrying capacity) or <0.42 (for in-
creases in the population growth rate). When the simu-
lations were assessed with the change in the expected
minimum population size, the range in the predictions
was greater, although the pattern was similar to that for
the risk of extinction (Fig. 2¢ & 2d).

When only one set of simulations for each of the 160
parameter combinations was used, the Spearman rank
correlation between predicted risks of extinction and
the true risks was 0.59 when predictions were based on
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Figure 2. (a & b) Inner 90th percentile range of the change in the extinction risk and (¢ & d) expected minimum
population size for the 1000 simulations versus the number of years of data. Changes due to a 5% increase in the
population growth rate (a & c) and a 50% increase in carrying capacity (b & d) are shown. The results show the
median, mean, quartiles, and extremes for the 160 different parameter combinations. The change in the expected
minimum population was scaled between 0 and 1 by dividing by the initial population size.

10 years of data, increasing to 0.89 when 100 years of
data were available. When the expected minimum popu-
lation size was analyzed, the correlation between the
predicted and true values was 0.90 with 10 years of data,
increasing to 0.98 with 100 years of data (Fig. 3).

Finally, the simulations demonstrated that for 67% of
the 160 different parameter combinations, 10 years of
survey data were sufficient to identify the management
strategy—to increase population growth rate or increase
carrying capacity—that minimized the risk of extinction.
The correct decision was made 74% of the time with 10
years of data, when analyzed in terms of the expected
minimum population size (Fig. 4). The probability of
making the correct decision increased to 0.92-0.93 (for
extinction risk and expected minimum population size)
when 100 years of data were available. There was no
clear relationship between the chance of making a cor-
rect decision and the parameter values describing the
population dynamics.
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Discussion

Previous tests of PVAs have assessed their predictive
value (Ludwig 1999; Brook et al. 2000; McCarthy &
Broome 2000; McCarthy et al. 2000), yet it is commonly
believed that PVAs are most useful for their heuristic
value and their ability to aid decision-making (Burgman
et al. 1993; Possingham et al. 1993; Burgman & Possing-
ham 2000). When PVA is used as a decision-support
tool, it is important that predicted changes in the risks of
extinction due to management are reliable, that the rela-
tive risks faced by different species are predicted accu-
rately, and that the models can be used to help decide
the most effective management strategy. The results of
our study indicate that even when only 10 years of data
are available, the models may be used to inform manage-
ment decisions that involve making predictions 100
years into the future. This occurred because the pre-
dicted changes in the risks were considerably less vari-
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Figure 3. Spearman rank correlation coefficient be-
tween the true risks of decline (extinction risk and ex-
pected minimum population size) and those predicted
by a single data set (10, 20, 50, or 100 years of data)
for each of the 160 different parameter combinations.

able than the absolute risks. Also, when species were
compared, the predicted risks faced by the different spe-
cies were positively correlated with the actual risks.
And—perhaps most important—the results indicated
that the model could help identify the best of two com-
peting management strategies, with rates of correct de-
cision-making being better than random when only 10
years of data were available. This supports the assertion
that, despite uncertainty in the predictions, PVA can be
useful as a decision-support tool (Possingham et al.
1993; Akcakaya & Raphael 1998).

The predicted changes in the risks of decline due to
increases in carrying capacity were considerably more
reliable than the changes due to increases in the popula-
tion growth rate. This is likely to occur because wide de-
terministic fluctuations (either limit cycles or chaos)
were predicted for many of the data sets, such that in-
creases in the population growth rate could increase
rather than decrease the risk of decline. In these circum-
stances, it is more likely that management strategies fa-
voring increases in carrying capacity would be chosen.
This meant that in cases where an increase in the popu-
lation growth rate was the best strategy, the correct de-
cision was made less frequently than when an increase
in the carrying capacity was the best strategy. For exam-
ple, with 10 years of data, analyzed in terms of the ex-
pected minimum population size, the correct decision
was made 84% of the time when increasing the carrying
capacity was the best strategy but only 65% of the time
when increasing the population growth rate was the
best strategy.

For 68% of the parameter combinations, the true risk
of extinction within 100 years was approximately 0. For
risks close to 0 (or 1), the range of uncertainty can be
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Figure 4. Proportion of the 160 parameter combina-

tions for which the correct management decision

(50% increase in carrying capacity or 5% increase in

population growth rate) was made when assessed by
means of the change in the risk of extinction or in the
expected minimum population size.

somewhat truncated, meaning that there tends to be
greater uncertainty when risks are close to 0.5. This is
why we also assessed risks of decline in terms of the ex-
pected minimum population size: this value (as a pro-
portion of the initial population size) had true values
that were distributed relatively uniformly between 0.01
and 0.88. These results were less influenced by the pos-
sible truncation of values close to 0 or 1 and therefore
provide a clearer representation of the uncertainty asso-
ciated with the predictions.

Although we argue that the relative predictions of
PVA are more important than the absolute predictions,
tests of absolute predictions based on field data remain
important (McCarthy et al. 2001). Such tests of absolute
predictions should not focus on determining the truth of
PVA models. As with any model, PVA should and always
will be an imperfect description of reality, and it is mis-
guided to use the model testing to indicate whether PVA
is “right” or “wrong.” Clearly, some models will make
poor predictions and others will make better predic-
tions. The role of model testing should be to identify the
weakest aspects of the model so that its predictions can
be improved. Although the results of our study suggest
that PVA can assist such decisions even when the pre-
dictions remain uncertain, PVA predictions should be as-
sessed with field data so that the models (and therefore
the decisions based on them) can be improved further.
The process of parameter estimation, model construc-
tion, prediction, and assessment should be viewed as a
cycle rather than a one-way street (McCarthy et al. 2001;
Lindenmayer et al. 2003).

In our simulation study, the only data available for esti-
mating the parameters were the 10- to 100-year time se-
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ries from a single population. Although 100 years of data
may be a larger data set than is available for many endan-
gered populations, we routinely have more data than
just a single time series. For example, surveys of multi-
ple populations for 15 years have produced almost 60
years of time-series data for mountain pygmy possums
(Burramys parvus) in New South Wales and additional
data on the population ecology of the species from
other parts of its range in Australia (McCarthy & Broome
2000). In another example, McCarthy et al. (1999) used
data from other raptors to help obtain an estimate of
mortality rates for the Powerful Owl (Ninox strenua).
When a real PVA is conducted, such information from
other species or populations, additional life-history data
(e.g., litter sizes), and ecological intuition all contribute
to determining parameter estimates. Such additional
data would be equivalent to increasing the length of the
time series because it would help decrease the uncer-
tainty associated with predictions of the risk of extinc-
tion.

Fieberg and Ellner (2000) investigated the precision
of absolute risks and concluded that the length of the
time series needed to be 5-10 times the time frame of
the predictions for PVA to be reliable. So, to make reli-
able predictions of risk 100 years into the future, 500-
1000 years of data would be required. In contrast, our
results suggest that if relative risks are required, it may
be possible to make useful predictions 100 years into
the future based on only 10 years of data, which is a sub-
stantial improvement. When this result is evaluated, it
should be kept in mind that our study ignored other
sources of uncertainty, including imperfect knowledge
of density dependence, imperfect knowledge of differ-
ences between individuals (e.g., differences that may re-
late to age structure and genetics), and imperfect survey
methods leading to errors in the estimation of popula-
tion size. The reliabilities of both the relative and abso-
lute predictions of PVA in the face of such uncertainties
remain to be determined. Nevertheless, our results sug-
gest that there is some hope that the relative predictions
of PVA will remain useful given realistic amounts of
data.

Because of uncertainty about predictions of PVA, it
has been suggested that levels of threat be determined
by rule sets and similar methods (e.g., Millsap et al.
1990; World Conservation Union 1994) that do not rely
on developing a population model (Beissinger & West-
phal 1998). However, these alternatives may also be
subject to considerable uncertainty (e.g., Burgman et al.
1999). When considering whether or not to use PVA, in-
vestigators need to bear in mind the other advantages of
PVA. Population viability analysis can use more data, the
level of detail in the model is flexible so that an appro-
priate level of complexity can be chosen, and there is an
explicit relationship between the parameters of the
model and the fate of the population. An additional ad-
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vantage of PVA over the alternatives for classifying the
conservation status of species is that the population
models can be used to improve management strategies.
The results of this study suggest that, despite uncer-
tainty, PVA can contribute to the effective management
of threatened species.
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