
SOFTWARE VERIFICATION RESEARCH CENTRETHE UNIVERSITY OF QUEENSLANDQueensland 4072Australia

TECHNICAL REPORTNo. 01-12API Do
umentation with Exe
utableExamplesDaniel Ho�man Paul StrooperO
tober 2001

Phone: +61 7 3365 1003Fax: +61 7 3365 1533http://svr
.it.uq.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Note: Most SVRC te
hni
al reports are available viaanonymous ftp, from svr
.it.uq.edu.au in the dire
tory/pub/te
hreports. Abstra
ts and
ompressed posts
ript�les are available via http://svr
.it.uq.edu.au

API Do
umentation with Exe
utable ExamplesDaniel Ho�man� Paul StrooperyAbstra
tThe rise of
omponent-based software development has
reated an urgent need fore�e
tive API do
umentation. Experien
e has shown that it is hard to
reate pre
iseand readable do
umentation. Prose do
umentation
an provide a good overview butla
ks pre
ision. Formal methods o�er pre
ision but the resulting do
umentation isexpensive to develop. Worse, few developers have the skill or in
lination to readformal do
umentation.We present a pragmati
 solution to the problem of API do
umentation. We aug-ment the prose do
umentation with exe
utable test
ases, in
luding expe
ted outputs,and use the prose plus the test
ases as the do
umentation. With appropriate toolsupport, the test
ases are easy to develop and read. Su
h test
ases
onstitute a
ompletely formal, albeit partial, spe
i�
ation of input/output behavior. Equally im-portant,
onsisten
y between
ode and do
umentation is demonstrated by running thetest
ases. This approa
h provides an attra
tive bridge between formal and informaldo
umentation. We also present a tool that supports
ompa
t and readable test
ases,and generation of test drivers and do
umentation, and illustrate the approa
h withdetailed
ase studies.1 Introdu
tionWith the growth of
omponent-based software development approa
hes, the importan
eof Appli
ation Program Interfa
e (API) do
umentation has grown as well. Class librariesand frameworks provide large and
omplex APIs, making e�e
tive do
umentation essentialfor su

essful use. While the method names and prototypes are expressed in the imple-mentation language, the method behavior must be do
umented as well. Typi
ally, this isdone with brief prose des
riptions, fo
using on the situations that
ommonly arise in APIuse. Su
h do
umentation is inevitably impre
ise and in
omplete, leading to
ostly misun-derstandings between API implementors and API users. The formal methods
ommunityre
ommends pre
ise spe
i�
ations, be
ause su
h spe
i�
ations
an be
omplete and unam-biguous. In some
ases, the spe
i�
ations
an also be used to generate implementationsor test ora
les. Unfortunately su
h spe
i�
ations are expensive to write and maintain.Worse, few developers are willing or able to read formal spe
i�
ations.�Dept. of Computer S
ien
e, University of Vi
toria, PO Box 3055 STN CSC, Vi
toria, B.C. V8W 3P6,Canada, dho�man�
sr.uvi
.
ayS
hool of Inf. Te
h. and Ele
. Eng., Software Veri�
ation Resear
h Centre, The University of Queens-land, Brisbane, Qld. 4072, Australia, pstroop�itee.uq.edu.au1

We present a pragmati
 s
heme for over
oming the problems of prose and formal spe
-i�
ations. The underlying idea is simple: augment traditional prose do
umentation withtest
ases designed spe
i�
ally for use in do
umentation. Typi
ally, there are a few
asesfor ea
h likely question about API behavior. In pra
ti
e, the test
ases serve roughly thesame role that FAQs (\frequently asked questions") do on many web sites.Our \FAQ approa
h" to using test
ases for do
umentation has four main bene�ts:1. Pre
ise (though partial) do
umentation. The test
ases
ontain both inputs andexpe
ted outputs in exe
utable form. Therefore, they are formal spe
i�
ations ofrequired behavior for sele
ted inputs.2. Guaranteed
onsisten
y of
ode and do
umentation. A single
ommand
an runall the test
ases, automati
ally revealing in
onsisten
ies between a
tual and do
u-mented behavior.3. Good fault dete
tion. While the primary purpose of the FAQ test
ases is
ommu-ni
ation, they are also useful for quality assuran
e. For example, the test
ases
anprovide the kind of unit tests advo
ated in Extreme Programming (Be
k 1999a).4. Helpful examples of use. When �rst using an API, programmers often spend a lotof time getting the �rst simple example to run. Our test
ases provide
omplete,runnable examples suitable for
opying and editing.With our approa
h to test
ases as do
umentation, readability of the test
ases is ofparamount importan
e. The next se
tion shows how we develop
ompa
t, readable test
ases with the Roast tool (Daley, Ho�man, and Strooper 2000; Ho�man and Strooper2000). Se
tions 3 and 4 present detailed
ase studies of the FAQ approa
h, in
ludingdo
umentation using test
ases and, for
omparison, in Z. Se
tion 5 presents related work.2 Tool supportTo illustrate the bene�ts of tool support for FAQ test
ases, we present a
onventionaltest driver and a Roast driver (Daley, Ho�man, and Strooper 2000; Ho�man and Strooper2000). Consider the test
ases and output shown in Figure 1 for the Java StringBuffer
lass, whi
h is part of Sun's JDK (Sun Mi
rosystems 2001) and implements a mutablesequen
e of
hara
ters. In Figure 1(a), the �rst two lines of method main initialize theStringBuffer s and display the initial value. Test
ases 1{4 show what happens when
hara
ters are inserted at the boundary positions: f�1; 0; s.length(); s.length()+ 1g.As the output shows, the �rst and last of these positions are illegal. Some users aresurprised to see that
ase 3 is legal, i.e., s.insert(s.length(),
) is equivalent tos.append(
). When StringBufferTest is
ompiled and exe
uted, it produ
es the outputshown in Figure 1(b).The driver in Figure 1 is reasonably
ompa
t, but is
lumsy as a
ommuni
ation me
h-anism. The reader must jump ba
k and forth between the method
alls in the driver
odeand the driver output to determine the behavior for ea
h
ase. Also, the only ex
eption
he
king that is performed during test exe
ution is that the
alls to insert in
ases 1 and2

StringBuffer s = new StringBuffer("ab
");System.out.println("Starting value: " + s);try { s.insert(-1,'W'); } // CASE 1
at
h (Ex
eption x) { System.out.println("Ex
eption:
ase 1"); }s.insert(0,'X'); // CASE 2System.out.println("Following
ase 2: " + s);s.insert(s.length(),'Y'); // CASE 3System.out.println("Following
ase 3: " + s);try { s.insert(s.length()+1,'Z'); } // CASE 4
at
h (Ex
eption x) { System.out.println("Ex
eption:
ase 4"); }(a) Driver sour
e
odeStarting value: ab
Ex
eption:
ase 1Following
ase 2: Xab
Following
ase 3: Xab
YEx
eption:
ase 4 (b) Driver outputFigure 1: StringBufferTest sour
e
ode and output

3

4 throw an ex
eption: whi
h ex
eption is not indi
ated. We
ould augment the driver toin
lude
ode to perform additional
he
king, but this would make it bulky and unsuitablefor do
umentation purposes.We next introdu
e the Roast test driver generator and show how Roast test
ase tem-plates
an be used to
ompa
tly de�ne the test
ases shown in Figure 1.2.1 Test
ase templatesRoast test
ase templates are embedded in Java test drivers and are identi�ed by keywordspre
eded by the #
hara
ter1. There are two types of Roast test
ases: value-
he
king andex
eption-monitoring. The form of a value-
he
king test
ase is:#valueChe
k a
tualValue # expe
tedValue #endwhere a
tualValue and expe
tedValue are expressions of the same type. For su
h a test
asetemplate, Roast generates
ode to
ompare a
tualValue and expe
tedValue, while moni-toring the ex
eption behavior. The generated
ode prints an error message if a
tualValueand expe
tedValue are di�erent or if an ex
eption is thrown during the
omparison, and issilent otherwise.The general form of an ex
eption-monitoring test
ase is:#ex
Monitor a
tion # expe
tedEx
eption #endwhere a
tion is any fragment of Java
ode and expe
tedEx
eption is a Java ex
eption.Roast generates
ode to exe
ute a
tion, while monitoring the ex
eption behavior. Thegenerated
ode prints an error message if expe
tedEx
eption is not thrown or if anotherex
eption is thrown. In an ex
eption-monitoring test
ase template expe
tedEx
eption
anbe omitted, in whi
h
ase an error message is printed if any ex
eption is thrown.The above templates are a generalized form of assertion, as found in languages su
h asC++ and Ei�el. The templates are designed for use in test drivers rather than for use inimplementations, whi
h is how assertions are typi
ally used. The templates are more gen-eral in that they perform ex
eption
he
king, and they allow
omparison of two arbitraryvalues rather than simply
he
king for boolean
onditions. As a result, meaningful errormessages are generated
ontaining the values of a
tualValue and expe
tedValue.Roast test
ases
orresponding to the test
ases shown in Figure 1 are shown in Figure 2.The test
ases are more readable than in Figure 1 and the ex
eption-
he
king test
asesare more
ompa
t. No output �le is needed be
ause the inputs and expe
ted outputs are
ontained side-by-side in the driver
ode and
ompared by Roast at test exe
ution time.2.2 Do
umentation generationThe
ow
hart in Figure 3 shows how
ode and do
umentation are generated for
lass C.The �le C.s
ript
ontains the sour
e
ode, prose do
umentation, and Roast test
ases.Roast generates Driver.java by expanding ea
h #valueChe
k and #ex
Monitor template;typi
ally 10{15 lines of Java
ode are generated for ea
h
ase. The �le C.java
ontains1Although it is possible to spe
ify test
ases as synta
ti
ally valid Java
ode, without using embeddedtest
ases, this is
lumsy and leads to test drivers that are hard to read and maintain.4

StringBuffer s = new StringBuffer("ab
");// CASE 1#ex
Monitor s.insert(-1,'W'); # new StringIndexOutOfBoundsEx
eption() #end// CASE 2#ex
Monitor s.insert(0,'X'); #end #valueChe
k s # "Xab
" #end// CASE 3#ex
Monitor s.insert(s.length(),'Y'); #end #valueChe
k s # "Xab
Y" #end// CASE 4#ex
Monitor s.insert(s.length()+1,'Z'); # new StringIndexOutOfBoundsEx
eption() #endFigure 2: Roast Stringbuffer test s
riptthe sour
e
ode and prose do
umentation, and HTML links to the test
ases. Javado
 isused to generate HTML suitable for browsing, in
luding both the prose and the test
ases.C.java and Driver.java are
ompiled and run, to ensure that C behaves as indi
ated inthe test
ases.In FAQ do
umentation, a series of questions are posed and then linked to test
ases, likethose in Figure 2, that answer the questions. We have found that posing good questionstakes experien
e; writing the
orresponding test
ases is easy. This approa
h is illustratedin detail in the following two se
tions.3 StringBu�er
ase studyTo illustrate the FAQ approa
h, we do
ument the repla
emethod from the Java StringBuffer
lass. We
ompare the API do
umentation for repla
e with the same do
umentation aug-mented with test
ases, and with a Z spe
i�
ation (Spivey 1992).3.1 API do
umentationFigure 4 shows the API do
umentation for repla
e. The
all s.repla
e(start,end,r)modi�es the sour
e string s by removing the substring s[start : : end � 1℄ and inserting therepla
ement string r at position start . Although repla
e seems straightforward, thereare a few subtle points. The substring is identi�ed by the half-open range [start ; end),familiar to users of the C++ Standard Template Library (Musser and Saini 1996), butoften
onfusing to others. In the spe
ial
ase where start = end , the substring is empty,but it is not entirely
lear at what position the repla
ement string will be inserted. Finally,the situations where start and end are out of range are handled asymmetri
ally. The APIdo
umentation
an easily be
lari�ed with a few
on
rete examples.3.2 FAQs in test
ase formTypi
al questions that users might have about the behavior of repla
e are:5

javabrowser

C.classC.HTML

roast

javadoc javac javac

Driver.java

Driver.class

C.java

C.script

Figure 3: Roast system
ow
hart
6

publi
 StringBuffer repla
e(int start,int end,String str)Repla
es the
hara
ters in a substring of this StringBufferwith
hara
ters in the spe
i�ed String.The substring begins at the spe
i�ed start and extends to the
hara
ter at index end � 1 or tothe end of the StringBuffer if no su
h
hara
ter exists. First the
hara
ters in the substring areremoved and then the spe
i�ed String is inserted at start. (The StringBufferwill be lengthenedto a

ommodate the spe
i�ed String if ne
essary.)Parameters:start - The beginning index, in
lusive.end - The ending index, ex
lusive.str - String that will repla
e previous
ontents.Returns:This string bu�er.Throws:StringIndexOutOfBoundsEx
eption - if start is negative, greater than length(), orgreater than end.Figure 4: StringBuffer API do
umentation for the repla
e method1. What start values are legal?2. What end values are legal?3. Can the sour
e string be empty?4. Can the repla
ement string be empty?Figure 5 shows test
ases that answer these questions. The �rst question is answeredwith four test
ases. The �rst and fourth show the ex
eption that is thrown when startis outside the range [0 : : s:length()℄. The se
ond and third
ases show the e�e
t at theboundaries of this range. The se
ond question is answered by four test
ases, showing thatend may have any value greater than or equal to start and that a value of end larger thanthe length of s is treated the same as one equal to the length of s. The third and fourthquestions are answered in the positive, ea
h with a simple
ase showing the e�e
t.Using the approa
h shown in Figure 5, we do
umented 13 out of the 34 StringBuffermethods. Ea
h of the 21 methods that we did not do
ument was a simple variation of oneof the methods that we did do
ument. For example, there are 10 versions of insert thatvary only in the type of element that is inserted (
har, int, et
.), and we only do
umentedone of these. For ea
h of the methods we do
umented, we added 3{10 test
ases to the APIdo
umentation. In doing so, we dis
overed a surprising number of problems. For example,the API do
umentation for insert states that StringIndexOutOfBoundsEx
eption isthrown if the o�set is invalid, but in fa
t ArrayIndexOutOfBoundsEx
eption is thrown.As a result, the test driver shown in Figures 2 generates a failure message for ea
h of the#ex
Monitor test
ases. In the 13 methods tested, we found 10 su
h in
onsisten
ies inthe do
umentation of the ex
eption behavior. In addition, the API do
umentation for oneof the methods (substring) is
learly in
omplete, as one of the senten
es ends half-waythrough. 7

StringBuffer s = null;Ex
eption BoundsEx
eption = new StringIndexOutOfBoundsEx
eption();// What start values are legal?s = new StringBuffer("ab
de");#ex
Monitor s.repla
e(-1,1,"XYZ"); # BoundsEx
eption #ends = new StringBuffer("ab
de"); s.repla
e(0,2,"XYZ");#valueChe
k s # "XYZ
de" #ends = new StringBuffer("ab
de"); s.repla
e(s.length(),s.length()+2,"XYZ");#valueChe
k s # "ab
deXYZ" #ends = new StringBuffer("ab
de");#ex
Monitor s.repla
e(s.length()+1,s.length()+3,"XYZ"); # BoundsEx
eption #end// What end values are legal?s = new StringBuffer("ab
de"); s.repla
e(3,s.length(),"XYZ");#valueChe
k s # "ab
XYZ" #ends = new StringBuffer("ab
de"); s.repla
e(3,3,"XYZ");#valueChe
k s # "ab
XYZde" #ends = new StringBuffer("ab
de"); s.repla
e(3,s.length()+100,"XYZ");#valueChe
k s # "ab
XYZ" #ends = new StringBuffer("ab
de");#ex
Monitor s.repla
e(2,1,"XYZ"); # BoundsEx
eption #end// Can the sour
e string be empty?s = new StringBuffer(); s.repla
e(0,0,"XYZ");#valueChe
k s # "XYZ" #end// Can the repla
ement string be empty?s = new StringBuffer("ab
de"); s.repla
e(1,3,"");#valueChe
k s # "ade" #endFigure 5: repla
e FAQ test
ases
8

3.3 Z spe
i�
ationTo
ompare the prose des
ription and test
ases with a formal spe
i�
ation, we now presenta Z spe
i�
ation of repla
e. We assume the reader is familiar with the basi
s of the Znotation (Spivey 1992).Sin
e Z sequen
es are indexed starting from 1, we �rst de�ne the type seq0 to representsequen
es starting at index 0 (in Z, we de�ne this as a �nite, partial fun
tion whose domainis a segment 0 : : n for some natural number n).seq0X == ff : N 7 7! X j dom f = 0 : :#f � 1gWe model the state of the StringBuffer
lass using a Z s
hema as a sequen
e of
hara
ters.Statestr : seq0CharTo de�ne repla
e, we will also use versions of the Z mathemati
al toolkit (Spivey 1992)operations a (
on
atenation) and squash , ex
ept that we need to de�ne them for sequen
esstarting at index 0 instead of index 1. The fun
tion squash takes a �nite fun
tion de�nedon the natural numbers and
ompa
ts it into a sequen
e. The de�nitions are:[X ℄a : seq0X � seq0X ! seq0Xsquash : (N 7 7! X)! seq0X8 s; t : seq0X �s a t = s [fn : dom t � n +#s 7! t(n)g8 f : N 7 7! X �squash f = f Æ (� p : 0 : :#f � 1�! dom f j p Æ su

 Æp� � (�))With these de�nitions, we
an spe
ify the repla
e operation.repla
eStateState 0start?; end? : ZnewStr? : seq0Char(start? < 0) _ (start? > #str) _ (start? > end?)�! StringIndexOutOfBoundsEx
eptionstr 0 = ((0 : : start?� 1)C str)a newStr?a squash((end? � 1 : : (#dom str)� 1)C str)For brevity, we have abused the Z notation. To spe
ify ex
eptions, we have added an\ex
eption part" between the de
laration and the predi
ate part of the s
hema. Ea
hstatement in the ex
eption part
onsists of a
ondition and an ex
eption that is to bethrown when that
ondition is true. When none of the ex
eption
onditions are true,9

the predi
ate part of the s
hema is appli
able. This approa
h to spe
ifying ex
eptions hasbeen taken from (M
Donald and Strooper 1998) and
an be translated in a straightforwardmanner to standard Z.Although the Z spe
i�
ation is
on
ise, it is non-trivial, espe
ially the use of squashto ensure that the indi
es of the third sequen
e appended to the result are
orre
t. Inaddition, we note that the above spe
i�
ation does not fully spe
ify the behavior of theJava implementation, whi
h is partly be
ause we have not de�ned the mapping from ourformal spe
i�
ation language (Z) to our implementation language (Java). In parti
ular:� there is no support in Z for de�ning ex
eptions,� we have not modeled the return value of the fun
tion, whi
h is a referen
e to thestring bu�er obje
t itself (there is no
onvenient way to model this in Z), and� we have not modeled the fa
t that the string bu�er size will be
hanged.4 Command line
ase studyThis se
tion presents a
ase study based on a Java module for pro
essing Unix
ommand-line arguments. Although modern GUIs have made
ommand-line interfa
es old-fashioned,they are still in widespread use, espe
ially by system and network administrators.This se
tion is based on one solution to the
ommand-line problem. The value of thissolution is its
on
reteness: it has been thoroughly do
umented, implemented and tested.In so doing, we made many de
isions about module behavior. We expe
t that most readerswould have made some of those de
isions di�erently. Our fo
us here, however, is on howto do
ument de
isions about module behavior, not on the de
isions themselves.4.1 Command Line module overviewIn Unix, arguments are entered on the
ommand line, pro
essed by the shell, and passedto a Java main method as an array of strings. For example, a user might enterlpr -P rp -p footo request that �le foo be sent to the printer queue rp. The -p
ag spe
i�es that astandardized header be pla
ed on ea
h page of output. The array passed to main will havethe following value:{"-P", "rp", "-p", "foo"}The Command Line module o�ers a generi
 servi
e for parsing
ommand-line argu-ments, for use by programmers developing Java appli
ations. The argument array
ontainszero or more
ags followed by zero or more suÆx arguments. A
ag
an be any stringbeginning with `-'. Some
ags are optional and others are required. Some
ags take a
agargument ; others do not. Often there are restri
tions on the
ag argument type, e.g., from1 to 3 de
imal digits. The suÆx arguments (typi
ally �lenames) are always optional andhave no type restri
tions. 10

In the example above, "-P" is a
ag with
ag argument "rp", "-p" is a
ag with no
ag arguments, and "foo" is a suÆx argument.The Command Line user will spe
ify, for ea
h legal
ag:�
ag name, e.g., -f,�
ag required or optional,�
ag argument: required or prohibited, and�
ag argument type:{ INTEGER, and maximum length,{ FIXEDPOINT, and maximum lengths to the left and right of the de
imal point,{ ALPHA, and maximum length, or{ ANY, and maximum length.The
ommand-line arguments will be passed to the Command Line module as a Stringarray. If the arguments satisfy the user spe
i�
ation, then a

ess is provided to the
agsand arguments present. Otherwise, an error message is made available.The fun
tion prototypes for four
lasses in the Command Line module are shown inFigure 6. In the CommandLine
lass, the
onstru
tor takes an array of
ag spe
i�
ations andan array of argument strings. The method isValid returns true if the argument stringssatisfy the
ag spe
i�
ations. Otherwise, getErrorMessage returns a suitable message.The
all isArgPresent(f) returns true if
ag f was present; getArgFlag(f) returns the
ag argument following f . Finally, getSuffixArgs returns all the suÆx arguments.In the FlagSpe

lass, the
onstru
tor takes the four values needed to spe
ify a
ag.The fourth �eld is of type ArgType, an abstra
t
lass. An ArgType sub
lass must imple-ment isValid, whi
h takes a string that represents an argument and returns true (false)indi
ating that the string is (is not) a valid argument of that type. In the IntegerArgType
lass, the
onstru
tor takes a single integer n and isValid(s) returns true if s
onsists offrom 1 to n de
imal digits.The other
lasses in the Command Line module|the ex
eption
lasses, FixedPointArgType,Alphabeti
ArgType, and AnyArgType|have been omitted for brevity.4.2 FAQs in test
ase formGiven the method prototypes and prose des
ription just presented, many questions remainabout the Command Line module behavior:1. How do you �nd out what was on the
ommand line?(a) Whi
h
ags were present?(b) What were the arguments to the
ags?(
) What were the suÆx arguments?2. Is the
ag order signi�
ant? 11

publi

lass CommandLine {publi
 CommandLine(FlagSpe
[℄ flagSpe
, String[℄ args)throws ParameterEx
eption;publi
 boolean isValid();publi
 String getErrorMessage() throws ValidArgsEx
eption;publi
 boolean isArgPresent(String flagName) throws ParseEx
eption;publi
 String getFlagArg(String flagName)throws ParseEx
eption, FlagNotPresentEx
eption, NoArgEx
eption;publi
 String[℄ getSuffixArgs() throws ParseEx
eption;}publi

lass FlagSpe
 {publi
 FlagSpe
(String flagName, boolean isRequired,boolean argRequired, ArgType argType);publi
 String flagName;publi
 boolean isRequired, argRequired;publi
 ArgType argType;}abstra
t
lass ArgType {abstra
t boolean isValid(String s);}
lass IntegerArgType extends ArgType {publi
 IntegerArgType(int maxLength);publi
 boolean isValid(String s);} Figure 6: Command Line module: fun
tion prototypes

12

3. Are there any
onstraints on the number of suÆx arguments?4. Are there any
onstraints on the value of a suÆx argument?5. What if the arguments have errors?(a) How is the error status
ommuni
ated?(b) What other information is available about the arguments?6. What if a required
ag is omitted?7. What if a
ag is repeated?The answers to these questions are not obvious be
ause ea
h question has multiple de-fensible answers. We saw many su
h answers in the implementations of parti
ular Unix
ommands and in other generi

ommand-line modules we found on the web. Figure 7
ontains portions of a driver that provides answers to these questions.The driver begins by
reating spe
i�
ations for three
ags:1. -a: optional, with no
ag argument2. -b: required, with no
ag argument3. -
: optional, with an INTEGER argument, of maximum length 3Then, there are blo
ks of test
ases for questions 1, 4, and 5 in the list presented earlier.The �rst blo
k
overs the typi
al uses by showing how to determine whi
h
ags werepresent, the value of the
ag arguments, and the values of the suÆx arguments.The se
ond blo
k of test
ases handles questions about suÆx arguments. There issigni�
ant ambiguity here regarding the rules for distinguishing
ag and suÆx arguments.The �rst
ase shows that, even though -y has a leading \-", it is interpreted as a suÆxargument. This follows the
ommon poli
y in Unix
ommands that all arguments followingthe �rst suÆx argument (x in this
ase) are interpreted as suÆx arguments. The se
ond
ase shows that this poli
y is followed even though -b is a de
lared
ag. The third
aseshows that the value of a suÆx argument need not resemble a typi
al �le name.The third blo
k of test
ases shows what happens when the
ommand line is in error:isValid is false, getErrorMessage is non-null, and attempts to provide information aboutwhy the arguments are refused. The detailed error message returned by getErrorMessageis not tested, sin
e the message itself is not important and likely to
hange.Note that Figure 7
ontains tests
ases for only the CommandLine
lass; separate
ases(very simple ones) are needed for the Argtype
lasses.While the driver illustrated in Figure 7 fo
uses on
ommuni
ating module behavior tothe user, it has value in defe
t dete
tion as well. The full driver
ontains 86 lines of
odeand exe
utes 34 test
ases, a
hieving 86.1% statement
overage of the CommandLine
lass.For
omparison purposes, we wrote another driver, taking full advantage of all the Roastfeatures. This driver is aimed solely at �nding defe
ts. It generates argument arrays ofvarying lengths and pla
es legal, illegal, required, and optional
ags, with and without ar-guments, at boundary positions in ea
h argument array. This driver is
omplex, espe
ially13

FlagSpe
[℄ flagSpe
s = {new FlagSpe
("-a",false,false,null), //flag,isReq,argReq,argTypenew FlagSpe
("-b",true,false,null),new FlagSpe
("-
",false,true,new IntegerArgType(3))};CommandLine
ut = null;// ***** How do you find out what was on the
ommand line?#ex
Monitor
ut = new CommandLine(flagSpe
s,new String[℄ { "-b","-
","5","suffixArg" }); #end#valueChe
k
ut.isArgPresent("-a") # false #end#valueChe
k
ut.isArgPresent("-b") # true #end#valueChe
k
ut.isArgPresent("-
") # true #end#valueChe
k
ut.getFlagArg("-
") # "5" #end#valueChe
k (
ut.getSuffixArgs())[0℄ # "suffixArg" #end// ***** Are there any
ontraints on the value of a suffix argument?#ex
Monitor
ut = new CommandLine(flagSpe
s,new String[℄ { "-b","x","-y" }); #end#valueChe
k
ut.isValid() # true #end#ex
Monitor
ut = new CommandLine(flagSpe
s,new String[℄ { "-b","x","-b" }); #end#valueChe
k
ut.isValid() # true #end#ex
Monitor
ut = new CommandLine(flagSpe
s,new String[℄ { "-b","x","!$ %" }); #end#valueChe
k
ut.isValid() # true #end// ***** What if the arguments have errors?#ex
Monitor
ut = new CommandLine(flagSpe
s,new String[℄ { "-a","-
","5" }); #end#valueChe
k
ut.isValid() # false #end#valueChe
k (
ut.getErrorMessage() != null) # true #end#ex
Monitor
ut.isArgPresent("-a"); # new ParseEx
eption() #endFigure 7: Command Line Driver: answers to sele
ted FAQs
14

the test ora
le. It
ontains 261 lines of
ode and exe
utes 307 test
ases, a
hieving 91.1%statement
overage. While statement
overage is a
rude measure of test e�e
tiveness, the
overage numbers suggest that FAQ drivers
an be useful in defe
t dete
tion.4.3 A spe
i�
ation in ZTo
ompare the prose des
ription (see Se
tion 4.1) and test
ases with a formal spe
i�
a-tion, we again present a Z spe
i�
ation of the Command Line module.We de�ne String as a sequen
e of
hara
ters.String == seqCharWe model the FlagSpe
 and ArgType
lasses (see Figure 6) as Z s
hemas.FlagSpe
name : StringisReq ; hasArg : Barg : ArgTypeArgTypeisValid : String ! BNext we de�ne the spe
i�
ation state of the CommandLine
lass.StateerrorMsg : String
ags : F StringargFlags : String 7! StringsuÆx : seq Stringdom argFlags �
agsThe state
ontains four
omponents: errorMsg stores the error message generated, orthe empty string (h i) to indi
ate that there was no error;
ags stores the set of all
ags;argFlags stores the set of
ag arguments as a partial fun
tion from
ags to their arguments(for a
ag f with argument a, f is in the domain of argFlags and argFlags(f) = a); andsuÆx stores the suÆx arguments as a sequen
e of strings.We
an then model the CommandLine
onstru
tor.
15

CommandLinefs? : seqFlagSpe
args? : seq StringState 0fs? = null _ args? = null �! ParameterEx
eption9 i : dom args? � args?(i) = h i �! ParameterEx
eption9 i ; j : dom fs? � i 6= j ^ fs?(i):name = fs?(j):name �! ParameterEx
eptionlet (f == fi : dom fs? � fs?(i):nameg;rF == fi : dom fs? j fs?(i):isReq = true � fs?(i):nameg;aF == fi : dom fs? j fs?(i):hasArg = true � fs?(i):name 7! fs?(i):argg� �State 0 = parseFlag(f ; rF ; aF ; args?;?;?))We have abused the Z notation in that we have used the value null to model a null pointer;note that this is not the same as the empty sequen
e (h i). To model this properly in Z,we would have to use a free type.The ex
eption part of the spe
i�
ation states that ParameterEx
eption is thrown ifeither input parameter is a null pointer, if there is a
ommand-line argument that is theempty string, or if there are two
ag arguments in the
ag spe
i�
ation that have thesame name. In the predi
ate part, we �rst
onstru
t three sets: f , the set of all
ags inthe
ag spe
i�
ation, rF , the set of required
ags, and aF , the set
onsisting of mappingsfrom
ags with arguments to their argument type. The predi
ate part of the spe
i�
ationis de�ned using the re
ursive fun
tion parseFlag , whi
h is de�ned in Figure 8. It takesthe three sets, the
ommand-line arguments, and partially
onstru
ted sets of
ags andargument
ags as inputs, and returns the
lass state as its output. Note that the auxiliaryarguments (the �fth and sixth arguments to parseFlag) are used to
onstru
t the statein
rementally.Initially, the sets of
ags and argument
ags are empty. Ea
h re
ursive
all removes oneor two arguments from the list of arguments, depending on whether or not the next
aghas an argument, augmenting the partially
onstru
ted sets of
ags and
ag arguments.The re
ursion terminates when an error is dis
overed or when the �rst non-
ag argumentis en
ountered. In the latter
ase, all the remaining arguments are returned as suÆxarguments.With the above spe
i�
ations for the state s
hema and the CommandLine
onstru
tor,the spe
i�
ation for the other
lass methods is straightforward and shown in Figure 9.4.4 Dis
ussionThe
omparison
learly shows that the Z spe
i�
ation is
omplex and would be hardto understand by people with little training in formal methods. People with trainingin formal methods might prefer it over the prose do
umentation, be
ause it provides a
omplete spe
i�
ation of the behavior of the Command Line module. However, peoplethat reviewed the formal spe
i�
ation and the test
ases
ommented that the test
aseshelped them with understanding the spe
i�
ation be
ause they provided
on
rete examples16

parseFlag : F String � F String � (String 7! ArgType)� seqString � F String�(String 7! String)! State8 f ; rf ; f 1 : F String ; af : (String 7! ArgType); args : seqString ;af 1 : (String 7! String); out : State �((f ; rf ; af ; args ; f 1; af 1); out) 2 parseFlag ,if (args 6= h i ^ args(1)(1) = `-') thenif args(1) 62 f thenout :errorMsg = INVALIDFLAG a args(1)else if args(1) 2 f 1 thenout :errorMsg = DUPLICATEFLAG a args(1)else if (args(1) 2 dom af) thenif #args = 1 thenout :errorMsg = MISSINGFLAGARG a args(1)else if af (args(1)):isValid(args(2)) = false thenout :errorMsg = INVALIDFLAGARG a args(2)else out = parseFlag(f ; rf ; af ; tail (tail(args));f 1 [fargs(1)g; af 1 [fargs(1) 7! args(2)g)else out = parseFlag(f ; rf ; af ; tail(args); f 1 [fargs(1)g; af 1)else if rf � f 1 thenout :errorMsg = h i ^ out :
ags = f 1 ^ out :argFlags = af 1 ^ out :suÆx = argselse (9 s : String � s 2 rf n f 1 ^out :errorMsg = REQUIREDFLAGMISSING a s)Figure 8: De�nition of parseFlag
17

isValidvalid ! : BStatevalid ! = true , errorMsg = h igetErrorMessagem! : StringStateerrorMsg = h i �! ValidArgsEx
eptionm! = errorMsgisArgPresent
agname? : Stringpresent ! : BStateerrorMsg 6= h i �! ParseEx
eptionpresent ! = true ,
agname? 2 dom argFlagsgetFlagArg
agname? : Stringarg ! : StringStateerrorMsg 6= h i �! ParseEx
eption
agname? 62
ags �! FlagNotPresentEx
eption
agname? 2
ags n dom argFlags �! NoArgEx
eptionarg ! = argFlags(
agname?)getSuÆxArgsarg ! : seqStringStateerrorMsg 6= h i �! ParseEx
eptionarg ! = suÆxFigure 9: Z spe
i�
ation of CommandLine methods18

of the use of the module before trying to understand the module in its full generality. Thissuggests that test
ases
an not only be useful in augmenting prose do
umentation, butalso to augment and
larify formal spe
i�
ations.5 Related workThe use of examples in do
umentation is an old idea. Today, use
ases (Ja
obsen 1992)are probably the best known te
hnique for software do
umentation based on examples.While use
ases are usually informal and not exe
utable, they
an be made exe
utable, asresear
h on SCR requirements do
uments has shown (Miller 1998). Our test
ases
an bethought of as exe
utable API use
ases.Hsia et al. present a systemati
, formal method for s
enario analysis that supportsrequirements analysis and
hange, and a

eptan
e testing (Hsia, Gao, Samuel, Kung,Toyoshima, and Chen 1994b). The method is extended to serve as a starting point for aformal model for s
enario-based a

eptan
e testing (Hsia, Gao, Samuel, Kung, Toyoshima,and Chen 1994a; Hsia, Kung, and Sell 1997). The systemati
 approa
h allows a set of
om-plete and
onsistent s
enarios to be derived for a

eptan
e testing. Similarly, Chang etal. des
ribe a method for generating test s
enarios for integration and system testing fromformal, Obje
t-Z spe
i�
ations and usage pro�les (Chang, Liao, Seidman, and Chapman1998; Chen, Chang, and Chapman 1999).Using test
ases in do
umentation involves test
ase sele
tion, a
entral topi
 in testingresear
h (White and Cohen 1980; Weyuker and Ostrand 1980; Ri
hardson and Clarke1985). Our approa
h is also
onsistent with proposals for extreme programming (Be
k1999b; Be
k 1999a), where API test
ases play a
entral role (Je�ries 1999). Like Roast ,the JUnit testing framework (Fowler 1999) supports the testing of Java
lasses and and hasbeen applied in a number of appli
ation domains, in
luding Enterprise JavaBeans (Nygardand Karsjens 2000).In an approa
h similar to ours, Deveaux et al. (Deveaux, Frison, and J�ez�equel 2001)
ombine embedded textual do
umentation and semi-formal spe
i�
ation to support self-testable
lasses in Java (the same approa
h has also been applied to Ei�el). The maindi�eren
e between the two approea
hes is that the tests in our approa
h are in
ludedmainly for do
umentation purposes (whi
h means that readability is a prime
on
ern),whereas in their approa
h the tests are used primarily for veri�
ation and validation.Another di�eren
e is that their approa
h is based around semi-formal spe
i�
ations usingdesign by
ontra
t (J�ez�equel and Meyer 1997; Meyer 1997).Te
hniques for programming by example have long been studied in the arti�
ial intel-ligen
e resear
h
ommunity. For example, Winston (Winston 1975) examines the impor-tan
e of \hit" and \near miss" examples in ma
hine learning. In this AI work, however,a ma
hine generalizes from examples, while our goal is to get humans to generalize fromexamples.Engelmann and Carnine (Engelmann and Carnine 1991), provide an extensive treat-ment of how to sele
t examples and
ounter-examples to produ
e a
hosen generalizationin the mind of the reader. They emphasize eÆ
ien
y|using as few examples as possible|and a

ura
y|
hoosing examples to minimize the probability of misunderstanding. Their19

work is dire
tly relevant to ours be
ause the goals are the same: pre
ise
ommuni
ationwith humans of a general rule through a small number of spe
i�
 examples.There is
onsiderable argument as to whether formal methods require mathemati
alsophisti
ation. Some argue that the mathemati
s for spe
i�
ation is easy (Hall 1990),while others argue that this is not quite the
ase (Finney 1996). The only substantialexperimental study that we are aware of is (Finney, Rennolls, and Fedore
 1998), whi
hevaluated the e�e
ts of natural language
omments, variable naming, and stru
turing onthe
omprehensibility of Z spe
i�
ations. Kneuper
orre
tly points out that it is not onlythe ability of the developers to use formal methods that needs to be
onsidered, but alsotheir willingness to do so (Kneuper 1997). We
on
ur and note that while it is unlikely thatformal spe
i�
ations will be used for API do
umentation in the next 5{10 years, the test
ases that we have presented are formal, partial spe
i�
ations that are easily understoodby developers.Finally, we note that our mixing of prose, test
ases, and
ode, and the pro
essingof these,
ontains some similarity with literate programming (Knuth 1984; Knuth 1992),although the details and motivation are quite di�erent. With literate programming, thepurpose of the mixing of do
umentation and
ode is to allow humans to better understandhow the program is implemented. With our approa
h, the purpose is to allow humans tobetter understand what the program is supposed to do.6 Summary6.1 Dis
ussionDespite o

asional
laims to the
ontrary, a set of examples is rarely a
omplete spe
i�
a-tion, for the same reason that testing
annot prove a program
orre
t. There are signi�
antadvantages to a formal spe
i�
ation: pre
ision,
ompleteness, and ma
hine pro
essabilityto name a few. In parti
ular, pre
onditions and nondeterminism are diÆ
ult to expresswith test
ases. Nonetheless, it is important to re
ognize the role that examples
an playand, in fa
t, have played for
enturies in mathemati
s.The most important di�eren
e between formal methods and our approa
h involves thegoals.� With formal methods, the goal is a
omplete des
ription of the required behavior inall
ir
umstan
es.� With our approa
h, we envision a family of plausible behaviors determined by themethod prototypes, the prose do
umentation, and the domain knowledge of thereader. The purpose of the test
ases is to indi
ate whi
h behavior in the family isthe one a
tually provided.These are radi
ally di�erent goals. If the domain knowledge of the reader is
onsiderable,prose and test
ases
an be very e�e
tive. If it is not, formal methods may be superior.From the FAQ perspe
tive, the formal spe
i�
ation attempts to answer every possiblequestion while our approa
h attempts to answer every likely question.20

The two approa
hes
an be used together. Formal pre
onditions are often short andreadable while post
onditions are often long and
omplex. Thus, an e�e
tive hybrid mightexpress pre
onditions formally and use prose plus test
ases for post
onditions. For ex-ample, the Ei�el libraries are do
umented using a mix of prose and formal notation (inthe form of assertions) (Meyer 1994). The pre
onditions are often formal and
omplete,whereas the formal parts of the post
onditions are typi
ally partial, if present at all. Fur-ther, even if a formal spe
i�
ation is developed, the FAQ test
ases
an be helpful inexplaining and testing the spe
i�
ation.6.2 Con
lusionsThe rise of
omponent-based software development has
reated an urgent need for e�e
tiveAPI do
umentation. Prose do
umentation
an provide a good overview but la
ks pre
ision.Formal methods o�er pre
ision but the resulting do
umentation is expensive to develop.Worse, few developers have the skill or in
lination to read formal do
umentation. Wepresent a pragmati
 solution: augment the prose do
umentation with exe
utable test
asesand use the prose plus the test
ases as the do
umentation. This approa
h provides anattra
tive bridge between formal and informal do
umentation.Our \FAQ approa
h" to using test
ases for do
umentation has four main bene�ts:1. Pre
ise (though partial) do
umentation.2. Guaranteed
onsisten
y of
ode and do
umentation by running the test
ases.3. Good fault dete
tion.4. Helpful examples of API use.This approa
h depends
riti
ally on the test
ases being
ompa
t and readable. We haveshown that, with a testing tool su
h as Roast , the test
ases themselves
an satisfy theseproperties.Most important, our approa
h is ready for use today. While the FAQ approa
h todo
umentation is new, we have had
onsiderable pra
ti
al experien
e with writing auto-mated test
ases with Roast. We have written su
h
ases in multiple languages, in
ludingC, C++, Ada, and Java, and in a variety of industrial domains, in
luding
ontainer
lasslibraries, safety-
riti
al systems, and
on
urrent systems (Ho�man 1989; Ho�man andStrooper 1997; Ho�man, Nair, and Strooper 1998; Murphy, Townsend, and Wong 1994;M
Donald, Ho�man, and Strooper 1998; Harvey and Strooper 2001; Long and Strooper2001). We know the Roast tool is tea
hable be
ause we have used it extensively in un-dergraduate tea
hing at the Universities of Queensland and Vi
toria. Students write test
ases, and read
ases we write in do
umentation and in exam questions. We have foundthat students learn to use Roast with minimal e�ort: after a few le
tures or just simplyusing the manual and on-line examples.Finally, we note that many re
ent text and referen
e books have adapted an FAQ style,to the extent that prose explanations are mixed with fully worked and runnable
ode. Somenotable examples in
lude the Standard Template Library Tutorial and Referen
e Guide(Musser and Saini 1996) and the Java Language Spe
i�
ation (Gosling, Joy, and Steele1996). 21

A
knowledgementsThanks to Nigel Daley for development of the Command Line
ode, Andrew Har
ourt forhis extensions to Roast to support FAQ spe
i�
ations, Ian Hayes and Alena GriÆths fortheir suggestions on previous versions of the Z spe
i�
ation for Command Line, and DavidHemer, Tim Miller, and Hagen V�olzer for their
onstru
tive
omments on earlier versionsof this paper.Referen
esBe
k, K. (1999a, O
tober). Embra
ing
hange with extreme programming. Computer ,70{77.Be
k, K. (1999b). Extreme Programming Explained. Addison-Wesley.Chang, K., S.-S. Liao, S. Seidman, and R. Chapman (1998). Testing obje
t-oriented pro-grams: from formal spe
i�
ation to test s
enario generation. The Journal of Systemsand Software 42 (2), 141{151.Chen, C.-Y., K. Chang, and R. Chapman (1999). Test s
enario and test
ase generationbased on Obje
t-Z formal spe
i�
ation. In Pro
eedings of SEKE'99, pp. 207{211.Daley, N., D. Ho�man, and P. Strooper (2000). Unit operations for automated
lasstesting. Te
hni
al Report 00{04, Software Veri�
ation Resear
h Centre, The Univ.of Queensland.Deveaux, D., P. Frison, and J.-M. J�ez�equel (2001). In
rease software trustability withself-testable
lasses in java. In Pro
eedings 2001 Australian Software EngineeringConferen
e, pp. 3{11. IEEE Computer So
iety.Engelmann, S. and D. Carnine (1991). Theory of Instru
tion: Prin
iples and Appli
a-tions (se
ond ed.). Eugene, Oregon: ADI Press.Finney, K. (1996). Mathemati
al notation in formal spe
i�
ation: Too diÆ
ult for themasses? IEEE Transa
tions on Software Engineering 22 (2), 158{159.Finney, K., K. Rennolls, and A. Fedore
 (1998). Measuring the
omprehensibility of Zspe
i�
ations. The Journal of Systems and Software 42 (1), 3{15.Fowler, M. (1999). Refa
toring { Improving the Design of Existing Code, Chapter 4:Building Tests. Addison-Wesley.Gosling, J., B. Joy, and G. Steele (1996). The Java Language Spe
i�
ation. Addison-Wesley.Hall, J. (1990). Seven myths of formal methods. IEEE Software 7 (9), 11{19.Harvey, C. and P. Strooper (2001). Testing java monitors through deterministi
 exe
u-tion. In Pro
eedings 2001 Australian Software Engineering Conferen
e, pp. 61{67.IEEE Computer So
iety.Ho�man, D. (1989, O
tober). A CASE study in module testing. In Pro
. Conf. SoftwareMaintenan
e, pp. 100{105. IEEE Computer So
iety.22

Ho�man, D., J. Nair, and P. Strooper (1998). Testing generi
 ada pa
kages with APE.In Pro
eedings ACM SIGAda Annual International Conferen
e (SIGAda'98), pp.255{262. ACM Press.Ho�man, D. and P. Strooper (1997). ClassBen
h: A methodology and framework forautomated
lass testing. Software: Pra
ti
e and Experien
e 27 (5), 573{597.Ho�man, D. and P. Strooper (2000). Tools and te
hniques for Java API testing. InPro
eedings 2000 Australian Software Engineering Conferen
e, pp. 235{245. IEEEComputer So
iety.Hsia, P., J. Gao, J. Samuel, D. Kung, Y. Toyoshima, and C. Chen (1994a). Behavior-based a

eptan
e testing of software systems: A formal s
enario approa
h. In Pro-
eedings of COMPSAC'94, pp. 293{298. IEEE Computer So
iety Press.Hsia, P., J. Gao, J. Samuel, D. Kung, Y. Toyoshima, and C. Chen (1994b). A formalapproa
h to s
enario analysis. IEEE Software 11 (2), 33{41.Hsia, P., D. Kung, and C. Sell (1997). Software requirements and a

eptan
e testing.Annals of Software Engineering 3, 291{317.Ja
obsen, I. (1992). Obje
t-Oriented Software Engineering. New York: Addison-Wesley.Je�ries, R. (1999, Mar
h/April). Extreme testing. Software Testing & Quality Engineer-ing , 23{26.J�ez�equel, J.-M. and B. Meyer (1997). Design by
ontra
t: the lessons Ariane. IEEEComputer 30 (2), 129{130.Kneuper, R. (1997). Limits of formal methods. Formal Aspe
ts of Computing 9, 379{394.Knuth, D. (1984). Literate programming. The Computer Journal 27 (2), 97{110.Knuth, D. (1992). Literate Programming. Center for the Study of Language and Infor-mation.Long, B. and P. Strooper (2001). A
ase study in testing distributed systems. InPro
eedings 3rd International Symposium on Distributed Obje
ts and Appli
ations(DOA'01), pp. 20{30. IEEE Computer So
iety.M
Donald, J., D. Ho�man, and P. Strooper (1998, November). Programmati
 testing ofthe Standard Template Library
ontainer
lasses. In Pro
eedings of IEEE Intl. Conf.Automated Software Engineering, pp. 147{156.M
Donald, J. and P. Strooper (1998). Translating Obje
t-Z spe
i�
ations to passive testora
les. In International Conferen
e on Formal Engineering Methods (ICFEM98),pp. 165{174. IEEE.Meyer, B. (1994). Reusable Software The Base Obje
t-Oriented Component Libraries.Prenti
e Hall.Meyer, B. (1997). Obje
t-Oriented Software Constru
tion (Se
ond ed.). Prenti
e Hall.Miller, S. (1998). Spe
ifying the mode logi
 of a
ight guidan
e system in CoRE andSCR. In 2nd ACM Workshop on Formal Methods in Softwre Pra
ti
e.Murphy, G., P. Townsend, and P. Wong (1994). Experien
es with
luster and
lasstesting. Commun. ACM 37 (9), 39{47.23

Musser, D. and A. Saini (1996). STL Tutorial and Referen
e Guide. Addison-Wesley.Nygard, M. and T. Karsjens (2000, May). Test infe
t your Enterprise JavaBeans. JavaWorld .Ri
hardson, D. and L. Clarke (1985). Partition analysis: a method
ombining testingand veri�
ation. IEEE Trans. Soft. Eng. SE-11 (12), 1477{1490.Spivey, J. (1992). The Z Notation: a Referen
e Manual (se
ond ed.). New York:Prenti
e-Hall.Sun Mi
rosystems (2001). Java Development Kit. http://java.sun.
om.produ
ts/jdk:Sun Mi
rosystems.Weyuker, E. and T. Ostrand (1980). Theories of program testing and the appli
ation ofrevealing subdomains. IEEE Trans. Soft. Eng. SE-6 (3), 236{246.White, L. and E. Cohen (1980). A domain strategy for
omputer program testing. IEEETrans. Soft. Eng. SE-6 (3), 247{257.Winston, P. (1975). The Psy
hology of Computer Vision. M
Graw-Hill.

24

