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API Do
umentation with Exe
utable ExamplesDaniel Ho�man� Paul StrooperyAbstra
tThe rise of 
omponent-based software development has 
reated an urgent need fore�e
tive API do
umentation. Experien
e has shown that it is hard to 
reate pre
iseand readable do
umentation. Prose do
umentation 
an provide a good overview butla
ks pre
ision. Formal methods o�er pre
ision but the resulting do
umentation isexpensive to develop. Worse, few developers have the skill or in
lination to readformal do
umentation.We present a pragmati
 solution to the problem of API do
umentation. We aug-ment the prose do
umentation with exe
utable test 
ases, in
luding expe
ted outputs,and use the prose plus the test 
ases as the do
umentation. With appropriate toolsupport, the test 
ases are easy to develop and read. Su
h test 
ases 
onstitute a
ompletely formal, albeit partial, spe
i�
ation of input/output behavior. Equally im-portant, 
onsisten
y between 
ode and do
umentation is demonstrated by running thetest 
ases. This approa
h provides an attra
tive bridge between formal and informaldo
umentation. We also present a tool that supports 
ompa
t and readable test 
ases,and generation of test drivers and do
umentation, and illustrate the approa
h withdetailed 
ase studies.1 Introdu
tionWith the growth of 
omponent-based software development approa
hes, the importan
eof Appli
ation Program Interfa
e (API) do
umentation has grown as well. Class librariesand frameworks provide large and 
omplex APIs, making e�e
tive do
umentation essentialfor su

essful use. While the method names and prototypes are expressed in the imple-mentation language, the method behavior must be do
umented as well. Typi
ally, this isdone with brief prose des
riptions, fo
using on the situations that 
ommonly arise in APIuse. Su
h do
umentation is inevitably impre
ise and in
omplete, leading to 
ostly misun-derstandings between API implementors and API users. The formal methods 
ommunityre
ommends pre
ise spe
i�
ations, be
ause su
h spe
i�
ations 
an be 
omplete and unam-biguous. In some 
ases, the spe
i�
ations 
an also be used to generate implementationsor test ora
les. Unfortunately su
h spe
i�
ations are expensive to write and maintain.Worse, few developers are willing or able to read formal spe
i�
ations.�Dept. of Computer S
ien
e, University of Vi
toria, PO Box 3055 STN CSC, Vi
toria, B.C. V8W 3P6,Canada, dho�man�
sr.uvi
.
ayS
hool of Inf. Te
h. and Ele
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We present a pragmati
 s
heme for over
oming the problems of prose and formal spe
-i�
ations. The underlying idea is simple: augment traditional prose do
umentation withtest 
ases designed spe
i�
ally for use in do
umentation. Typi
ally, there are a few 
asesfor ea
h likely question about API behavior. In pra
ti
e, the test 
ases serve roughly thesame role that FAQs (\frequently asked questions") do on many web sites.Our \FAQ approa
h" to using test 
ases for do
umentation has four main bene�ts:1. Pre
ise (though partial) do
umentation. The test 
ases 
ontain both inputs andexpe
ted outputs in exe
utable form. Therefore, they are formal spe
i�
ations ofrequired behavior for sele
ted inputs.2. Guaranteed 
onsisten
y of 
ode and do
umentation. A single 
ommand 
an runall the test 
ases, automati
ally revealing in
onsisten
ies between a
tual and do
u-mented behavior.3. Good fault dete
tion. While the primary purpose of the FAQ test 
ases is 
ommu-ni
ation, they are also useful for quality assuran
e. For example, the test 
ases 
anprovide the kind of unit tests advo
ated in Extreme Programming (Be
k 1999a).4. Helpful examples of use. When �rst using an API, programmers often spend a lotof time getting the �rst simple example to run. Our test 
ases provide 
omplete,runnable examples suitable for 
opying and editing.With our approa
h to test 
ases as do
umentation, readability of the test 
ases is ofparamount importan
e. The next se
tion shows how we develop 
ompa
t, readable test
ases with the Roast tool (Daley, Ho�man, and Strooper 2000; Ho�man and Strooper2000). Se
tions 3 and 4 present detailed 
ase studies of the FAQ approa
h, in
ludingdo
umentation using test 
ases and, for 
omparison, in Z. Se
tion 5 presents related work.2 Tool supportTo illustrate the bene�ts of tool support for FAQ test 
ases, we present a 
onventionaltest driver and a Roast driver (Daley, Ho�man, and Strooper 2000; Ho�man and Strooper2000). Consider the test 
ases and output shown in Figure 1 for the Java StringBuffer
lass, whi
h is part of Sun's JDK (Sun Mi
rosystems 2001) and implements a mutablesequen
e of 
hara
ters. In Figure 1(a), the �rst two lines of method main initialize theStringBuffer s and display the initial value. Test 
ases 1{4 show what happens when
hara
ters are inserted at the boundary positions: f�1; 0; s.length(); s.length()+ 1g.As the output shows, the �rst and last of these positions are illegal. Some users aresurprised to see that 
ase 3 is legal, i.e., s.insert(s.length(),
) is equivalent tos.append(
). When StringBufferTest is 
ompiled and exe
uted, it produ
es the outputshown in Figure 1(b).The driver in Figure 1 is reasonably 
ompa
t, but is 
lumsy as a 
ommuni
ation me
h-anism. The reader must jump ba
k and forth between the method 
alls in the driver 
odeand the driver output to determine the behavior for ea
h 
ase. Also, the only ex
eption
he
king that is performed during test exe
ution is that the 
alls to insert in 
ases 1 and2



StringBuffer s = new StringBuffer("ab
");System.out.println("Starting value: " + s);try { s.insert(-1,'W'); } // CASE 1
at
h (Ex
eption x) { System.out.println("Ex
eption: 
ase 1" ); }s.insert(0,'X'); // CASE 2System.out.println("Following 
ase 2: " + s);s.insert(s.length(),'Y'); // CASE 3System.out.println("Following 
ase 3: " + s);try { s.insert(s.length()+1,'Z'); } // CASE 4
at
h (Ex
eption x) { System.out.println("Ex
eption: 
ase 4" ); }(a) Driver sour
e 
odeStarting value: ab
Ex
eption: 
ase 1Following 
ase 2: Xab
Following 
ase 3: Xab
YEx
eption: 
ase 4 (b) Driver outputFigure 1: StringBufferTest sour
e 
ode and output
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4 throw an ex
eption: whi
h ex
eption is not indi
ated. We 
ould augment the driver toin
lude 
ode to perform additional 
he
king, but this would make it bulky and unsuitablefor do
umentation purposes.We next introdu
e the Roast test driver generator and show how Roast test 
ase tem-plates 
an be used to 
ompa
tly de�ne the test 
ases shown in Figure 1.2.1 Test 
ase templatesRoast test 
ase templates are embedded in Java test drivers and are identi�ed by keywordspre
eded by the # 
hara
ter1. There are two types of Roast test 
ases: value-
he
king andex
eption-monitoring. The form of a value-
he
king test 
ase is:#valueChe
k a
tualValue # expe
tedValue #endwhere a
tualValue and expe
tedValue are expressions of the same type. For su
h a test 
asetemplate, Roast generates 
ode to 
ompare a
tualValue and expe
tedValue, while moni-toring the ex
eption behavior. The generated 
ode prints an error message if a
tualValueand expe
tedValue are di�erent or if an ex
eption is thrown during the 
omparison, and issilent otherwise.The general form of an ex
eption-monitoring test 
ase is:#ex
Monitor a
tion # expe
tedEx
eption #endwhere a
tion is any fragment of Java 
ode and expe
tedEx
eption is a Java ex
eption.Roast generates 
ode to exe
ute a
tion, while monitoring the ex
eption behavior. Thegenerated 
ode prints an error message if expe
tedEx
eption is not thrown or if anotherex
eption is thrown. In an ex
eption-monitoring test 
ase template expe
tedEx
eption 
anbe omitted, in whi
h 
ase an error message is printed if any ex
eption is thrown.The above templates are a generalized form of assertion, as found in languages su
h asC++ and Ei�el. The templates are designed for use in test drivers rather than for use inimplementations, whi
h is how assertions are typi
ally used. The templates are more gen-eral in that they perform ex
eption 
he
king, and they allow 
omparison of two arbitraryvalues rather than simply 
he
king for boolean 
onditions. As a result, meaningful errormessages are generated 
ontaining the values of a
tualValue and expe
tedValue.Roast test 
ases 
orresponding to the test 
ases shown in Figure 1 are shown in Figure 2.The test 
ases are more readable than in Figure 1 and the ex
eption-
he
king test 
asesare more 
ompa
t. No output �le is needed be
ause the inputs and expe
ted outputs are
ontained side-by-side in the driver 
ode and 
ompared by Roast at test exe
ution time.2.2 Do
umentation generationThe 
ow
hart in Figure 3 shows how 
ode and do
umentation are generated for 
lass C.The �le C.s
ript 
ontains the sour
e 
ode, prose do
umentation, and Roast test 
ases.Roast generates Driver.java by expanding ea
h #valueChe
k and #ex
Monitor template;typi
ally 10{15 lines of Java 
ode are generated for ea
h 
ase. The �le C.java 
ontains1Although it is possible to spe
ify test 
ases as synta
ti
ally valid Java 
ode, without using embeddedtest 
ases, this is 
lumsy and leads to test drivers that are hard to read and maintain.4



StringBuffer s = new StringBuffer("ab
");// CASE 1#ex
Monitor s.insert(-1,'W'); # new StringIndexOutOfBoundsEx
eption() #end// CASE 2#ex
Monitor s.insert(0,'X'); #end #valueChe
k s # "Xab
" #end// CASE 3#ex
Monitor s.insert(s.length(),'Y'); #end #valueChe
k s # "Xab
Y" #end// CASE 4#ex
Monitor s.insert(s.length()+1,'Z'); # new StringIndexOutOfBoundsEx
eption() #endFigure 2: Roast Stringbuffer test s
riptthe sour
e 
ode and prose do
umentation, and HTML links to the test 
ases. Javado
 isused to generate HTML suitable for browsing, in
luding both the prose and the test 
ases.C.java and Driver.java are 
ompiled and run, to ensure that C behaves as indi
ated inthe test 
ases.In FAQ do
umentation, a series of questions are posed and then linked to test 
ases, likethose in Figure 2, that answer the questions. We have found that posing good questionstakes experien
e; writing the 
orresponding test 
ases is easy. This approa
h is illustratedin detail in the following two se
tions.3 StringBu�er 
ase studyTo illustrate the FAQ approa
h, we do
ument the repla
emethod from the Java StringBuffer
lass. We 
ompare the API do
umentation for repla
e with the same do
umentation aug-mented with test 
ases, and with a Z spe
i�
ation (Spivey 1992).3.1 API do
umentationFigure 4 shows the API do
umentation for repla
e. The 
all s.repla
e(start,end,r)modi�es the sour
e string s by removing the substring s[start : : end � 1℄ and inserting therepla
ement string r at position start . Although repla
e seems straightforward, thereare a few subtle points. The substring is identi�ed by the half-open range [start ; end),familiar to users of the C++ Standard Template Library (Musser and Saini 1996), butoften 
onfusing to others. In the spe
ial 
ase where start = end , the substring is empty,but it is not entirely 
lear at what position the repla
ement string will be inserted. Finally,the situations where start and end are out of range are handled asymmetri
ally. The APIdo
umentation 
an easily be 
lari�ed with a few 
on
rete examples.3.2 FAQs in test 
ase formTypi
al questions that users might have about the behavior of repla
e are:5



javabrowser

C.classC.HTML

roast

javadoc javac javac

Driver.java

Driver.class

C.java

C.script

Figure 3: Roast system 
ow
hart
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publi
 StringBuffer repla
e(int start,int end,String str)Repla
es the 
hara
ters in a substring of this StringBufferwith 
hara
ters in the spe
i�ed String.The substring begins at the spe
i�ed start and extends to the 
hara
ter at index end � 1 or tothe end of the StringBuffer if no su
h 
hara
ter exists. First the 
hara
ters in the substring areremoved and then the spe
i�ed String is inserted at start. (The StringBufferwill be lengthenedto a

ommodate the spe
i�ed String if ne
essary.)Parameters:start - The beginning index, in
lusive.end - The ending index, ex
lusive.str - String that will repla
e previous 
ontents.Returns:This string bu�er.Throws:StringIndexOutOfBoundsEx
eption - if start is negative, greater than length(), orgreater than end.Figure 4: StringBuffer API do
umentation for the repla
e method1. What start values are legal?2. What end values are legal?3. Can the sour
e string be empty?4. Can the repla
ement string be empty?Figure 5 shows test 
ases that answer these questions. The �rst question is answeredwith four test 
ases. The �rst and fourth show the ex
eption that is thrown when startis outside the range [0 : : s:length()℄. The se
ond and third 
ases show the e�e
t at theboundaries of this range. The se
ond question is answered by four test 
ases, showing thatend may have any value greater than or equal to start and that a value of end larger thanthe length of s is treated the same as one equal to the length of s. The third and fourthquestions are answered in the positive, ea
h with a simple 
ase showing the e�e
t.Using the approa
h shown in Figure 5, we do
umented 13 out of the 34 StringBuffermethods. Ea
h of the 21 methods that we did not do
ument was a simple variation of oneof the methods that we did do
ument. For example, there are 10 versions of insert thatvary only in the type of element that is inserted (
har, int, et
.), and we only do
umentedone of these. For ea
h of the methods we do
umented, we added 3{10 test 
ases to the APIdo
umentation. In doing so, we dis
overed a surprising number of problems. For example,the API do
umentation for insert states that StringIndexOutOfBoundsEx
eption isthrown if the o�set is invalid, but in fa
t ArrayIndexOutOfBoundsEx
eption is thrown.As a result, the test driver shown in Figures 2 generates a failure message for ea
h of the#ex
Monitor test 
ases. In the 13 methods tested, we found 10 su
h in
onsisten
ies inthe do
umentation of the ex
eption behavior. In addition, the API do
umentation for oneof the methods (substring) is 
learly in
omplete, as one of the senten
es ends half-waythrough. 7



StringBuffer s = null;Ex
eption BoundsEx
eption = new StringIndexOutOfBoundsEx
eption();// What start values are legal?s = new StringBuffer("ab
de");#ex
Monitor s.repla
e(-1,1,"XYZ"); # BoundsEx
eption #ends = new StringBuffer("ab
de"); s.repla
e(0,2,"XYZ");#valueChe
k s # "XYZ
de" #ends = new StringBuffer("ab
de"); s.repla
e(s.length(),s.length()+2,"XYZ");#valueChe
k s # "ab
deXYZ" #ends = new StringBuffer("ab
de");#ex
Monitor s.repla
e(s.length()+1,s.length()+3,"XYZ"); # BoundsEx
eption #end// What end values are legal?s = new StringBuffer("ab
de"); s.repla
e(3,s.length(),"XYZ");#valueChe
k s # "ab
XYZ" #ends = new StringBuffer("ab
de"); s.repla
e(3,3,"XYZ");#valueChe
k s # "ab
XYZde" #ends = new StringBuffer("ab
de"); s.repla
e(3,s.length()+100,"XYZ");#valueChe
k s # "ab
XYZ" #ends = new StringBuffer("ab
de");#ex
Monitor s.repla
e(2,1,"XYZ"); # BoundsEx
eption #end// Can the sour
e string be empty?s = new StringBuffer(); s.repla
e(0,0,"XYZ");#valueChe
k s # "XYZ" #end// Can the repla
ement string be empty?s = new StringBuffer("ab
de"); s.repla
e(1,3,"");#valueChe
k s # "ade" #endFigure 5: repla
e FAQ test 
ases
8



3.3 Z spe
i�
ationTo 
ompare the prose des
ription and test 
ases with a formal spe
i�
ation, we now presenta Z spe
i�
ation of repla
e. We assume the reader is familiar with the basi
s of the Znotation (Spivey 1992).Sin
e Z sequen
es are indexed starting from 1, we �rst de�ne the type seq0 to representsequen
es starting at index 0 (in Z, we de�ne this as a �nite, partial fun
tion whose domainis a segment 0 : : n for some natural number n).seq0X == ff : N 7 7! X j dom f = 0 : :#f � 1gWe model the state of the StringBuffer 
lass using a Z s
hema as a sequen
e of 
hara
ters.Statestr : seq0CharTo de�ne repla
e, we will also use versions of the Z mathemati
al toolkit (Spivey 1992)operations a (
on
atenation) and squash , ex
ept that we need to de�ne them for sequen
esstarting at index 0 instead of index 1. The fun
tion squash takes a �nite fun
tion de�nedon the natural numbers and 
ompa
ts it into a sequen
e. The de�nitions are:[X ℄a : seq0X � seq0X ! seq0Xsquash : (N 7 7! X )! seq0X8 s; t : seq0X �s a t = s [ fn : dom t � n +#s 7! t(n)g8 f : N 7 7! X �squash f = f Æ (� p : 0 : :#f � 1�! dom f j p Æ su

 Æp� � ( � ))With these de�nitions, we 
an spe
ify the repla
e operation.repla
eStateState 0start?; end? : ZnewStr? : seq0Char(start? < 0) _ (start? > #str) _ (start? > end?)�! StringIndexOutOfBoundsEx
eptionstr 0 = ((0 : : start?� 1)C str)a newStr?a squash((end? � 1 : : (#dom str)� 1)C str)For brevity, we have abused the Z notation. To spe
ify ex
eptions, we have added an\ex
eption part" between the de
laration and the predi
ate part of the s
hema. Ea
hstatement in the ex
eption part 
onsists of a 
ondition and an ex
eption that is to bethrown when that 
ondition is true. When none of the ex
eption 
onditions are true,9



the predi
ate part of the s
hema is appli
able. This approa
h to spe
ifying ex
eptions hasbeen taken from (M
Donald and Strooper 1998) and 
an be translated in a straightforwardmanner to standard Z.Although the Z spe
i�
ation is 
on
ise, it is non-trivial, espe
ially the use of squashto ensure that the indi
es of the third sequen
e appended to the result are 
orre
t. Inaddition, we note that the above spe
i�
ation does not fully spe
ify the behavior of theJava implementation, whi
h is partly be
ause we have not de�ned the mapping from ourformal spe
i�
ation language (Z) to our implementation language (Java). In parti
ular:� there is no support in Z for de�ning ex
eptions,� we have not modeled the return value of the fun
tion, whi
h is a referen
e to thestring bu�er obje
t itself (there is no 
onvenient way to model this in Z), and� we have not modeled the fa
t that the string bu�er size will be 
hanged.4 Command line 
ase studyThis se
tion presents a 
ase study based on a Java module for pro
essing Unix 
ommand-line arguments. Although modern GUIs have made 
ommand-line interfa
es old-fashioned,they are still in widespread use, espe
ially by system and network administrators.This se
tion is based on one solution to the 
ommand-line problem. The value of thissolution is its 
on
reteness: it has been thoroughly do
umented, implemented and tested.In so doing, we made many de
isions about module behavior. We expe
t that most readerswould have made some of those de
isions di�erently. Our fo
us here, however, is on howto do
ument de
isions about module behavior, not on the de
isions themselves.4.1 Command Line module overviewIn Unix, arguments are entered on the 
ommand line, pro
essed by the shell, and passedto a Java main method as an array of strings. For example, a user might enterlpr -P rp -p footo request that �le foo be sent to the printer queue rp. The -p 
ag spe
i�es that astandardized header be pla
ed on ea
h page of output. The array passed to main will havethe following value:{"-P", "rp", "-p", "foo"}The Command Line module o�ers a generi
 servi
e for parsing 
ommand-line argu-ments, for use by programmers developing Java appli
ations. The argument array 
ontainszero or more 
ags followed by zero or more suÆx arguments. A 
ag 
an be any stringbeginning with `-'. Some 
ags are optional and others are required. Some 
ags take a 
agargument ; others do not. Often there are restri
tions on the 
ag argument type, e.g., from1 to 3 de
imal digits. The suÆx arguments (typi
ally �lenames) are always optional andhave no type restri
tions. 10



In the example above, "-P" is a 
ag with 
ag argument "rp", "-p" is a 
ag with no
ag arguments, and "foo" is a suÆx argument.The Command Line user will spe
ify, for ea
h legal 
ag:� 
ag name, e.g., -f,� 
ag required or optional,� 
ag argument: required or prohibited, and� 
ag argument type:{ INTEGER, and maximum length,{ FIXEDPOINT, and maximum lengths to the left and right of the de
imal point,{ ALPHA, and maximum length, or{ ANY, and maximum length.The 
ommand-line arguments will be passed to the Command Line module as a Stringarray. If the arguments satisfy the user spe
i�
ation, then a

ess is provided to the 
agsand arguments present. Otherwise, an error message is made available.The fun
tion prototypes for four 
lasses in the Command Line module are shown inFigure 6. In the CommandLine 
lass, the 
onstru
tor takes an array of 
ag spe
i�
ations andan array of argument strings. The method isValid returns true if the argument stringssatisfy the 
ag spe
i�
ations. Otherwise, getErrorMessage returns a suitable message.The 
all isArgPresent(f ) returns true if 
ag f was present; getArgFlag(f ) returns the
ag argument following f . Finally, getSuffixArgs returns all the suÆx arguments.In the FlagSpe
 
lass, the 
onstru
tor takes the four values needed to spe
ify a 
ag.The fourth �eld is of type ArgType, an abstra
t 
lass. An ArgType sub
lass must imple-ment isValid, whi
h takes a string that represents an argument and returns true (false)indi
ating that the string is (is not) a valid argument of that type. In the IntegerArgType
lass, the 
onstru
tor takes a single integer n and isValid(s) returns true if s 
onsists offrom 1 to n de
imal digits.The other 
lasses in the Command Line module|the ex
eption 
lasses, FixedPointArgType,Alphabeti
ArgType, and AnyArgType|have been omitted for brevity.4.2 FAQs in test 
ase formGiven the method prototypes and prose des
ription just presented, many questions remainabout the Command Line module behavior:1. How do you �nd out what was on the 
ommand line?(a) Whi
h 
ags were present?(b) What were the arguments to the 
ags?(
) What were the suÆx arguments?2. Is the 
ag order signi�
ant? 11



publi
 
lass CommandLine {publi
 CommandLine(FlagSpe
[℄ flagSpe
, String[℄ args)throws ParameterEx
eption;publi
 boolean isValid();publi
 String getErrorMessage() throws ValidArgsEx
eption;publi
 boolean isArgPresent(String flagName) throws ParseEx
eption;publi
 String getFlagArg(String flagName)throws ParseEx
eption, FlagNotPresentEx
eption, NoArgEx
eption;publi
 String[℄ getSuffixArgs() throws ParseEx
eption;}publi
 
lass FlagSpe
 {publi
 FlagSpe
(String flagName, boolean isRequired,boolean argRequired, ArgType argType);publi
 String flagName;publi
 boolean isRequired, argRequired;publi
 ArgType argType;}abstra
t 
lass ArgType {abstra
t boolean isValid(String s);}
lass IntegerArgType extends ArgType {publi
 IntegerArgType(int maxLength);publi
 boolean isValid(String s);} Figure 6: Command Line module: fun
tion prototypes
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3. Are there any 
onstraints on the number of suÆx arguments?4. Are there any 
onstraints on the value of a suÆx argument?5. What if the arguments have errors?(a) How is the error status 
ommuni
ated?(b) What other information is available about the arguments?6. What if a required 
ag is omitted?7. What if a 
ag is repeated?The answers to these questions are not obvious be
ause ea
h question has multiple de-fensible answers. We saw many su
h answers in the implementations of parti
ular Unix
ommands and in other generi
 
ommand-line modules we found on the web. Figure 7
ontains portions of a driver that provides answers to these questions.The driver begins by 
reating spe
i�
ations for three 
ags:1. -a: optional, with no 
ag argument2. -b: required, with no 
ag argument3. -
: optional, with an INTEGER argument, of maximum length 3Then, there are blo
ks of test 
ases for questions 1, 4, and 5 in the list presented earlier.The �rst blo
k 
overs the typi
al uses by showing how to determine whi
h 
ags werepresent, the value of the 
ag arguments, and the values of the suÆx arguments.The se
ond blo
k of test 
ases handles questions about suÆx arguments. There issigni�
ant ambiguity here regarding the rules for distinguishing 
ag and suÆx arguments.The �rst 
ase shows that, even though -y has a leading \-", it is interpreted as a suÆxargument. This follows the 
ommon poli
y in Unix 
ommands that all arguments followingthe �rst suÆx argument (x in this 
ase) are interpreted as suÆx arguments. The se
ond
ase shows that this poli
y is followed even though -b is a de
lared 
ag. The third 
aseshows that the value of a suÆx argument need not resemble a typi
al �le name.The third blo
k of test 
ases shows what happens when the 
ommand line is in error:isValid is false, getErrorMessage is non-null, and attempts to provide information aboutwhy the arguments are refused. The detailed error message returned by getErrorMessageis not tested, sin
e the message itself is not important and likely to 
hange.Note that Figure 7 
ontains tests 
ases for only the CommandLine 
lass; separate 
ases(very simple ones) are needed for the Argtype 
lasses.While the driver illustrated in Figure 7 fo
uses on 
ommuni
ating module behavior tothe user, it has value in defe
t dete
tion as well. The full driver 
ontains 86 lines of 
odeand exe
utes 34 test 
ases, a
hieving 86.1% statement 
overage of the CommandLine 
lass.For 
omparison purposes, we wrote another driver, taking full advantage of all the Roastfeatures. This driver is aimed solely at �nding defe
ts. It generates argument arrays ofvarying lengths and pla
es legal, illegal, required, and optional 
ags, with and without ar-guments, at boundary positions in ea
h argument array. This driver is 
omplex, espe
ially13



FlagSpe
[℄ flagSpe
s = {new FlagSpe
("-a",false,false,null), //flag,isReq,argReq,argTypenew FlagSpe
("-b",true,false,null),new FlagSpe
("-
",false,true,new IntegerArgType(3))};CommandLine 
ut = null;// ***** How do you find out what was on the 
ommand line?#ex
Monitor 
ut = new CommandLine(flagSpe
s,new String[℄ { "-b","-
","5","suffixArg" }); #end#valueChe
k 
ut.isArgPresent("-a") # false #end#valueChe
k 
ut.isArgPresent("-b") # true #end#valueChe
k 
ut.isArgPresent("-
") # true #end#valueChe
k 
ut.getFlagArg("-
") # "5" #end#valueChe
k (
ut.getSuffixArgs())[0℄ # "suffixArg" #end// ***** Are there any 
ontraints on the value of a suffix argument?#ex
Monitor 
ut = new CommandLine(flagSpe
s,new String[℄ { "-b","x","-y" }); #end#valueChe
k 
ut.isValid() # true #end#ex
Monitor 
ut = new CommandLine(flagSpe
s,new String[℄ { "-b","x","-b" }); #end#valueChe
k 
ut.isValid() # true #end#ex
Monitor 
ut = new CommandLine(flagSpe
s,new String[℄ { "-b","x","!$ %" }); #end#valueChe
k 
ut.isValid() # true #end// ***** What if the arguments have errors?#ex
Monitor 
ut = new CommandLine(flagSpe
s,new String[℄ { "-a","-
","5" }); #end#valueChe
k 
ut.isValid() # false #end#valueChe
k (
ut.getErrorMessage() != null) # true #end#ex
Monitor 
ut.isArgPresent("-a"); # new ParseEx
eption() #endFigure 7: Command Line Driver: answers to sele
ted FAQs
14



the test ora
le. It 
ontains 261 lines of 
ode and exe
utes 307 test 
ases, a
hieving 91.1%statement 
overage. While statement 
overage is a 
rude measure of test e�e
tiveness, the
overage numbers suggest that FAQ drivers 
an be useful in defe
t dete
tion.4.3 A spe
i�
ation in ZTo 
ompare the prose des
ription (see Se
tion 4.1) and test 
ases with a formal spe
i�
a-tion, we again present a Z spe
i�
ation of the Command Line module.We de�ne String as a sequen
e of 
hara
ters.String == seqCharWe model the FlagSpe
 and ArgType 
lasses (see Figure 6) as Z s
hemas.FlagSpe
name : StringisReq ; hasArg : Barg : ArgTypeArgTypeisValid : String ! BNext we de�ne the spe
i�
ation state of the CommandLine 
lass.StateerrorMsg : String
ags : F StringargFlags : String 7! StringsuÆx : seq Stringdom argFlags � 
agsThe state 
ontains four 
omponents: errorMsg stores the error message generated, orthe empty string (h i) to indi
ate that there was no error; 
ags stores the set of all 
ags;argFlags stores the set of 
ag arguments as a partial fun
tion from 
ags to their arguments(for a 
ag f with argument a, f is in the domain of argFlags and argFlags(f ) = a); andsuÆx stores the suÆx arguments as a sequen
e of strings.We 
an then model the CommandLine 
onstru
tor.
15



CommandLinefs? : seqFlagSpe
args? : seq StringState 0fs? = null _ args? = null �! ParameterEx
eption9 i : dom args? � args?(i) = h i �! ParameterEx
eption9 i ; j : dom fs? � i 6= j ^ fs?(i):name = fs?(j ):name �! ParameterEx
eptionlet (f == fi : dom fs? � fs?(i):nameg;rF == fi : dom fs? j fs?(i):isReq = true � fs?(i):nameg;aF == fi : dom fs? j fs?(i):hasArg = true � fs?(i):name 7! fs?(i):argg� �State 0 = parseFlag(f ; rF ; aF ; args?;?;?))We have abused the Z notation in that we have used the value null to model a null pointer;note that this is not the same as the empty sequen
e (h i). To model this properly in Z,we would have to use a free type.The ex
eption part of the spe
i�
ation states that ParameterEx
eption is thrown ifeither input parameter is a null pointer, if there is a 
ommand-line argument that is theempty string, or if there are two 
ag arguments in the 
ag spe
i�
ation that have thesame name. In the predi
ate part, we �rst 
onstru
t three sets: f , the set of all 
ags inthe 
ag spe
i�
ation, rF , the set of required 
ags, and aF , the set 
onsisting of mappingsfrom 
ags with arguments to their argument type. The predi
ate part of the spe
i�
ationis de�ned using the re
ursive fun
tion parseFlag , whi
h is de�ned in Figure 8. It takesthe three sets, the 
ommand-line arguments, and partially 
onstru
ted sets of 
ags andargument 
ags as inputs, and returns the 
lass state as its output. Note that the auxiliaryarguments (the �fth and sixth arguments to parseFlag) are used to 
onstru
t the statein
rementally.Initially, the sets of 
ags and argument 
ags are empty. Ea
h re
ursive 
all removes oneor two arguments from the list of arguments, depending on whether or not the next 
aghas an argument, augmenting the partially 
onstru
ted sets of 
ags and 
ag arguments.The re
ursion terminates when an error is dis
overed or when the �rst non-
ag argumentis en
ountered. In the latter 
ase, all the remaining arguments are returned as suÆxarguments.With the above spe
i�
ations for the state s
hema and the CommandLine 
onstru
tor,the spe
i�
ation for the other 
lass methods is straightforward and shown in Figure 9.4.4 Dis
ussionThe 
omparison 
learly shows that the Z spe
i�
ation is 
omplex and would be hardto understand by people with little training in formal methods. People with trainingin formal methods might prefer it over the prose do
umentation, be
ause it provides a
omplete spe
i�
ation of the behavior of the Command Line module. However, peoplethat reviewed the formal spe
i�
ation and the test 
ases 
ommented that the test 
aseshelped them with understanding the spe
i�
ation be
ause they provided 
on
rete examples16



parseFlag : F String � F String � (String 7! ArgType)� seqString � F String�(String 7! String)! State8 f ; rf ; f 1 : F String ; af : (String 7! ArgType); args : seqString ;af 1 : (String 7! String); out : State �((f ; rf ; af ; args ; f 1; af 1); out) 2 parseFlag ,if (args 6= h i ^ args(1)(1) = `-') thenif args(1) 62 f thenout :errorMsg = INVALIDFLAG a args(1)else if args(1) 2 f 1 thenout :errorMsg = DUPLICATEFLAG a args(1)else if (args(1) 2 dom af ) thenif #args = 1 thenout :errorMsg = MISSINGFLAGARG a args(1)else if af (args(1)):isValid(args(2)) = false thenout :errorMsg = INVALIDFLAGARG a args(2)else out = parseFlag(f ; rf ; af ; tail (tail(args));f 1 [ fargs(1)g; af 1 [ fargs(1) 7! args(2)g)else out = parseFlag(f ; rf ; af ; tail(args); f 1 [ fargs(1)g; af 1)else if rf � f 1 thenout :errorMsg = h i ^ out :
ags = f 1 ^ out :argFlags = af 1 ^ out :suÆx = argselse (9 s : String � s 2 rf n f 1 ^out :errorMsg = REQUIREDFLAGMISSING a s)Figure 8: De�nition of parseFlag
17



isValidvalid ! : BStatevalid ! = true , errorMsg = h igetErrorMessagem! : StringStateerrorMsg = h i �! ValidArgsEx
eptionm! = errorMsgisArgPresent
agname? : Stringpresent ! : BStateerrorMsg 6= h i �! ParseEx
eptionpresent ! = true , 
agname? 2 dom argFlagsgetFlagArg
agname? : Stringarg ! : StringStateerrorMsg 6= h i �! ParseEx
eption
agname? 62 
ags �! FlagNotPresentEx
eption
agname? 2 
ags n dom argFlags �! NoArgEx
eptionarg ! = argFlags(
agname?)getSuÆxArgsarg ! : seqStringStateerrorMsg 6= h i �! ParseEx
eptionarg ! = suÆxFigure 9: Z spe
i�
ation of CommandLine methods18



of the use of the module before trying to understand the module in its full generality. Thissuggests that test 
ases 
an not only be useful in augmenting prose do
umentation, butalso to augment and 
larify formal spe
i�
ations.5 Related workThe use of examples in do
umentation is an old idea. Today, use 
ases (Ja
obsen 1992)are probably the best known te
hnique for software do
umentation based on examples.While use 
ases are usually informal and not exe
utable, they 
an be made exe
utable, asresear
h on SCR requirements do
uments has shown (Miller 1998). Our test 
ases 
an bethought of as exe
utable API use 
ases.Hsia et al. present a systemati
, formal method for s
enario analysis that supportsrequirements analysis and 
hange, and a

eptan
e testing (Hsia, Gao, Samuel, Kung,Toyoshima, and Chen 1994b). The method is extended to serve as a starting point for aformal model for s
enario-based a

eptan
e testing (Hsia, Gao, Samuel, Kung, Toyoshima,and Chen 1994a; Hsia, Kung, and Sell 1997). The systemati
 approa
h allows a set of 
om-plete and 
onsistent s
enarios to be derived for a

eptan
e testing. Similarly, Chang etal. des
ribe a method for generating test s
enarios for integration and system testing fromformal, Obje
t-Z spe
i�
ations and usage pro�les (Chang, Liao, Seidman, and Chapman1998; Chen, Chang, and Chapman 1999).Using test 
ases in do
umentation involves test 
ase sele
tion, a 
entral topi
 in testingresear
h (White and Cohen 1980; Weyuker and Ostrand 1980; Ri
hardson and Clarke1985). Our approa
h is also 
onsistent with proposals for extreme programming (Be
k1999b; Be
k 1999a), where API test 
ases play a 
entral role (Je�ries 1999). Like Roast ,the JUnit testing framework (Fowler 1999) supports the testing of Java 
lasses and and hasbeen applied in a number of appli
ation domains, in
luding Enterprise JavaBeans (Nygardand Karsjens 2000).In an approa
h similar to ours, Deveaux et al. (Deveaux, Frison, and J�ez�equel 2001)
ombine embedded textual do
umentation and semi-formal spe
i�
ation to support self-testable 
lasses in Java (the same approa
h has also been applied to Ei�el). The maindi�eren
e between the two approea
hes is that the tests in our approa
h are in
ludedmainly for do
umentation purposes (whi
h means that readability is a prime 
on
ern),whereas in their approa
h the tests are used primarily for veri�
ation and validation.Another di�eren
e is that their approa
h is based around semi-formal spe
i�
ations usingdesign by 
ontra
t (J�ez�equel and Meyer 1997; Meyer 1997).Te
hniques for programming by example have long been studied in the arti�
ial intel-ligen
e resear
h 
ommunity. For example, Winston (Winston 1975) examines the impor-tan
e of \hit" and \near miss" examples in ma
hine learning. In this AI work, however,a ma
hine generalizes from examples, while our goal is to get humans to generalize fromexamples.Engelmann and Carnine (Engelmann and Carnine 1991), provide an extensive treat-ment of how to sele
t examples and 
ounter-examples to produ
e a 
hosen generalizationin the mind of the reader. They emphasize eÆ
ien
y|using as few examples as possible|and a

ura
y|
hoosing examples to minimize the probability of misunderstanding. Their19



work is dire
tly relevant to ours be
ause the goals are the same: pre
ise 
ommuni
ationwith humans of a general rule through a small number of spe
i�
 examples.There is 
onsiderable argument as to whether formal methods require mathemati
alsophisti
ation. Some argue that the mathemati
s for spe
i�
ation is easy (Hall 1990),while others argue that this is not quite the 
ase (Finney 1996). The only substantialexperimental study that we are aware of is (Finney, Rennolls, and Fedore
 1998), whi
hevaluated the e�e
ts of natural language 
omments, variable naming, and stru
turing onthe 
omprehensibility of Z spe
i�
ations. Kneuper 
orre
tly points out that it is not onlythe ability of the developers to use formal methods that needs to be 
onsidered, but alsotheir willingness to do so (Kneuper 1997). We 
on
ur and note that while it is unlikely thatformal spe
i�
ations will be used for API do
umentation in the next 5{10 years, the test
ases that we have presented are formal, partial spe
i�
ations that are easily understoodby developers.Finally, we note that our mixing of prose, test 
ases, and 
ode, and the pro
essingof these, 
ontains some similarity with literate programming (Knuth 1984; Knuth 1992),although the details and motivation are quite di�erent. With literate programming, thepurpose of the mixing of do
umentation and 
ode is to allow humans to better understandhow the program is implemented. With our approa
h, the purpose is to allow humans tobetter understand what the program is supposed to do.6 Summary6.1 Dis
ussionDespite o

asional 
laims to the 
ontrary, a set of examples is rarely a 
omplete spe
i�
a-tion, for the same reason that testing 
annot prove a program 
orre
t. There are signi�
antadvantages to a formal spe
i�
ation: pre
ision, 
ompleteness, and ma
hine pro
essabilityto name a few. In parti
ular, pre
onditions and nondeterminism are diÆ
ult to expresswith test 
ases. Nonetheless, it is important to re
ognize the role that examples 
an playand, in fa
t, have played for 
enturies in mathemati
s.The most important di�eren
e between formal methods and our approa
h involves thegoals.� With formal methods, the goal is a 
omplete des
ription of the required behavior inall 
ir
umstan
es.� With our approa
h, we envision a family of plausible behaviors determined by themethod prototypes, the prose do
umentation, and the domain knowledge of thereader. The purpose of the test 
ases is to indi
ate whi
h behavior in the family isthe one a
tually provided.These are radi
ally di�erent goals. If the domain knowledge of the reader is 
onsiderable,prose and test 
ases 
an be very e�e
tive. If it is not, formal methods may be superior.From the FAQ perspe
tive, the formal spe
i�
ation attempts to answer every possiblequestion while our approa
h attempts to answer every likely question.20



The two approa
hes 
an be used together. Formal pre
onditions are often short andreadable while post
onditions are often long and 
omplex. Thus, an e�e
tive hybrid mightexpress pre
onditions formally and use prose plus test 
ases for post
onditions. For ex-ample, the Ei�el libraries are do
umented using a mix of prose and formal notation (inthe form of assertions) (Meyer 1994). The pre
onditions are often formal and 
omplete,whereas the formal parts of the post
onditions are typi
ally partial, if present at all. Fur-ther, even if a formal spe
i�
ation is developed, the FAQ test 
ases 
an be helpful inexplaining and testing the spe
i�
ation.6.2 Con
lusionsThe rise of 
omponent-based software development has 
reated an urgent need for e�e
tiveAPI do
umentation. Prose do
umentation 
an provide a good overview but la
ks pre
ision.Formal methods o�er pre
ision but the resulting do
umentation is expensive to develop.Worse, few developers have the skill or in
lination to read formal do
umentation. Wepresent a pragmati
 solution: augment the prose do
umentation with exe
utable test 
asesand use the prose plus the test 
ases as the do
umentation. This approa
h provides anattra
tive bridge between formal and informal do
umentation.Our \FAQ approa
h" to using test 
ases for do
umentation has four main bene�ts:1. Pre
ise (though partial) do
umentation.2. Guaranteed 
onsisten
y of 
ode and do
umentation by running the test 
ases.3. Good fault dete
tion.4. Helpful examples of API use.This approa
h depends 
riti
ally on the test 
ases being 
ompa
t and readable. We haveshown that, with a testing tool su
h as Roast , the test 
ases themselves 
an satisfy theseproperties.Most important, our approa
h is ready for use today. While the FAQ approa
h todo
umentation is new, we have had 
onsiderable pra
ti
al experien
e with writing auto-mated test 
ases with Roast. We have written su
h 
ases in multiple languages, in
ludingC, C++, Ada, and Java, and in a variety of industrial domains, in
luding 
ontainer 
lasslibraries, safety-
riti
al systems, and 
on
urrent systems (Ho�man 1989; Ho�man andStrooper 1997; Ho�man, Nair, and Strooper 1998; Murphy, Townsend, and Wong 1994;M
Donald, Ho�man, and Strooper 1998; Harvey and Strooper 2001; Long and Strooper2001). We know the Roast tool is tea
hable be
ause we have used it extensively in un-dergraduate tea
hing at the Universities of Queensland and Vi
toria. Students write test
ases, and read 
ases we write in do
umentation and in exam questions. We have foundthat students learn to use Roast with minimal e�ort: after a few le
tures or just simplyusing the manual and on-line examples.Finally, we note that many re
ent text and referen
e books have adapted an FAQ style,to the extent that prose explanations are mixed with fully worked and runnable 
ode. Somenotable examples in
lude the Standard Template Library Tutorial and Referen
e Guide(Musser and Saini 1996) and the Java Language Spe
i�
ation (Gosling, Joy, and Steele1996). 21
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