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API Documentation with Executable Examples

Daniel Hoffman* Paul Strooper!

Abstract

The rise of component-based software development has created an urgent need for
effective API documentation. Experience has shown that it is hard to create precise
and readable documentation. Prose documentation can provide a good overview but
lacks precision. Formal methods offer precision but the resulting documentation is
expensive to develop. Worse, few developers have the skill or inclination to read
formal documentation.

We present a pragmatic solution to the problem of API documentation. We aug-
ment the prose documentation with executable test cases, including expected outputs,
and use the prose plus the test cases as the documentation. With appropriate tool
support, the test cases are easy to develop and read. Such test cases constitute a
completely formal, albeit partial, specification of input/output behavior. Equally im-
portant, consistency between code and documentation is demonstrated by running the
test cases. This approach provides an attractive bridge between formal and informal
documentation. We also present a tool that supports compact and readable test cases,
and generation of test drivers and documentation, and illustrate the approach with
detailed case studies.

1 Introduction

With the growth of component-based software development approaches, the importance
of Application Program Interface (API) documentation has grown as well. Class libraries
and frameworks provide large and complex APIs, making effective documentation essential
for successful use. While the method names and prototypes are expressed in the imple-
mentation language, the method behavior must be documented as well. Typically, this is
done with brief prose descriptions, focusing on the situations that commonly arise in API
use. Such documentation is inevitably imprecise and incomplete, leading to costly misun-
derstandings between APT implementors and API users. The formal methods community
recommends precise specifications, because such specifications can be complete and unam-
biguous. In some cases, the specifications can also be used to generate implementations
or test oracles. Unfortunately such specifications are expensive to write and maintain.
Worse, few developers are willing or able to read formal specifications.
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We present a pragmatic scheme for overcoming the problems of prose and formal spec-
ifications. The underlying idea is simple: augment traditional prose documentation with
test cases designed specifically for use in documentation. Typically, there are a few cases
for each likely question about API behavior. In practice, the test cases serve roughly the
same role that FAQs (“frequently asked questions”) do on many web sites.

Our “FAQ approach” to using test cases for documentation has four main benefits:

1. Precise (though partial) documentation. The test cases contain both inputs and
expected outputs in executable form. Therefore, they are formal specifications of
required behavior for selected inputs.

2. Guaranteed consistency of code and documentation. A single command can run
all the test cases, automatically revealing inconsistencies between actual and docu-
mented behavior.

3. Good fault detection. While the primary purpose of the FAQ test cases is commu-
nication, they are also useful for quality assurance. For example, the test cases can
provide the kind of unit tests advocated in Extreme Programming (Beck 1999a).

4. Helpful examples of use. When first using an API, programmers often spend a lot
of time getting the first simple example to run. Our test cases provide complete,
runnable examples suitable for copying and editing.

With our approach to test cases as documentation, readability of the test cases is of
paramount importance. The next section shows how we develop compact, readable test
cases with the Roast tool (Daley, Hoffman, and Strooper 2000; Hoffman and Strooper
2000). Sections 3 and 4 present detailed case studies of the FAQ approach, including
documentation using test cases and, for comparison, in Z. Section 5 presents related work.

2 Tool support

To illustrate the benefits of tool support for FAQ test cases, we present a conventional
test driver and a Roast driver (Daley, Hoffman, and Strooper 2000; Hoffman and Strooper
2000). Consider the test cases and output shown in Figure 1 for the Java StringBuffer
class, which is part of Sun’s JDK (Sun Microsystems 2001) and implements a mutable
sequence of characters. In Figure 1(a), the first two lines of method main initialize the
StringBuffer s and display the initial value. Test cases 1-4 show what happens when
characters are inserted at the boundary positions: {—1,0,s.length(),s.length() + 1}.
As the output shows, the first and last of these positions are illegal. Some users are
surprised to see that case 3 is legal, i.e., s.insert(s.length(),c) 1is equivalent to
s.append(c). When StringBufferTest is compiled and executed, it produces the output
shown in Figure 1(b).

The driver in Figure 1 is reasonably compact, but is clumsy as a communication mech-
anism. The reader must jump back and forth between the method calls in the driver code
and the driver output to determine the behavior for each case. Also, the only exception
checking that is performed during test execution is that the calls to insert in cases 1 and



StringBuffer s = new StringBuffer("abc");
System.out.println("Starting value: " + s);

try { s.insert(-1,’W?); } // CASE 1
catch (Exception x) { System.out.println("Exception: case 1" ); }

s.insert(0,’X’); // CASE 2

System.out.println("Following case 2: " + s);
s.insert(s.length(),’Y’); // CASE 3
System.out.println("Following case 3: " + s);

try { s.insert(s.length()+1,°Z’); } // CASE 4
catch (Exception x) { System.out.println("Exception: case 4" ); }

(a) Driver source code

Starting value: abc
Exception: case 1
Following case 2: Xabc
Following case 3: XabcY
Exception: case 4

(b) Driver output

Figure 1: StringBufferTest source code and output



4 throw an exception: which exception is not indicated. We could augment the driver to
include code to perform additional checking, but this would make it bulky and unsuitable
for documentation purposes.

We next introduce the Roast test driver generator and show how Roast test case tem-
plates can be used to compactly define the test cases shown in Figure 1.

2.1 Test case templates

Roast test case templates are embedded in Java test drivers and are identified by keywords
preceded by the # character'. There are two types of Roast test cases: value-checking and
exception-monitoring. The form of a value-checking test case is:

#valueCheck actualValue # expectedValue #end

where actualValue and ezxpected Value are expressions of the same type. For such a test case
template, Roast generates code to compare actualValue and ezpected Value, while moni-
toring the exception behavior. The generated code prints an error message if actualValue
and ezpected Value are different or if an exception is thrown during the comparison, and is
silent otherwise.

The general form of an exception-monitoring test case is:

#excMonitor action # expectedFEzception #end

where action is any fragment of Java code and ezpectedFException is a Java exception.
Roast generates code to execute action, while monitoring the exception behavior. The
generated code prints an error message if ezpectedEzception is not thrown or if another
exception is thrown. In an exception-monitoring test case template expected Exception can
be omitted, in which case an error message is printed if any exception is thrown.

The above templates are a generalized form of assertion, as found in languages such as
C++ and Eiffel. The templates are designed for use in test drivers rather than for use in
implementations, which is how assertions are typically used. The templates are more gen-
eral in that they perform exception checking, and they allow comparison of two arbitrary
values rather than simply checking for boolean conditions. As a result, meaningful error
messages are generated containing the values of actualValue and expected Value.

Roast test cases corresponding to the test cases shown in Figure 1 are shown in Figure 2.
The test cases are more readable than in Figure 1 and the exception-checking test cases
are more compact. No output file is needed because the inputs and expected outputs are
contained side-by-side in the driver code and compared by Roast at test execution time.

2.2 Documentation generation

The flowchart in Figure 3 shows how code and documentation are generated for class C.
The file C.script contains the source code, prose documentation, and Roast test cases.
Roast generates Driver . java by expanding each #valueCheck and #excMonitor template;
typically 10-15 lines of Java code are generated for each case. The file C.java contains

! Although it is possible to specify test cases as syntactically valid Java code, without using embedded
test cases, this is clumsy and leads to test drivers that are hard to read and maintain.



StringBuffer s = new StringBuffer("abc");

// CASE 1
#excMonitor s.insert(-1,’W’); # new StringIndex0Out0OfBoundsException() #end

// CASE 2
#excMonitor s.insert(0,’X’); #end #valueCheck s # "Xabc" #end

// CASE 3
#excMonitor s.insert(s.length(),’Y’); #end #valueCheck s # "XabcY" #end

// CASE 4
#excMonitor s.insert(s.length()+1,’Z’); # new StringIndexOutOfBoundsException() #end

Figure 2: Roast Stringbuffer test script

the source code and prose documentation, and HTML links to the test cases. Javadoc is
used to generate HTML suitable for browsing, including both the prose and the test cases.
C.java and Driver. java are compiled and run, to ensure that C behaves as indicated in
the test cases.

In FAQ documentation, a series of questions are posed and then linked to test cases, like
those in Figure 2, that answer the questions. We have found that posing good questions
takes experience; writing the corresponding test cases is easy. This approach is illustrated
in detail in the following two sections.

3 StringBuffer case study

To illustrate the FAQ approach, we document the replace method from the Java StringBuffer
class. We compare the API documentation for replace with the same documentation aug-
mented with test cases, and with a Z specification (Spivey 1992).

3.1 API documentation

Figure 4 shows the API documentation for replace. The call s.replace(start,end,r)
modifies the source string s by removing the substring s[start .. end — 1] and inserting the
replacement string r at position start. Although replace seems straightforward, there
are a few subtle points. The substring is identified by the half-open range [start, end),
familiar to users of the C++ Standard Template Library (Musser and Saini 1996), but
often confusing to others. In the special case where start = end, the substring is empty,
but it is not entirely clear at what position the replacement string will be inserted. Finally,
the situations where start and end are out of range are handled asymmetrically. The API
documentation can easily be clarified with a few concrete examples.

3.2 FAQs in test case form

Typical questions that users might have about the behavior of replace are:
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public StringBuffer replace(int start,int end,String str)

Replaces the characters in a substring of this StringBuffer with characters in the specified String.
The substring begins at the specified start and extends to the character at index end — 1 or to
the end of the StringBuffer if no such character exists. First the characters in the substring are
removed and then the specified String is inserted at start. (The StringBuffer will be lengthened
to accommodate the specified String if necessary.)

Parameters:
start - The beginning index, inclusive.
end - The ending index, exclusive.
str - String that will replace previous contents.
Returns:
This string buffer.
Throws:
StringIndexOutOfBoundsException - if start is negative, greater than length(), or
greater than end.

Figure 4: StringBuffer API documentation for the replace method

1. What start values are legal?

2. What end values are legal?

3. Can the source string be empty?

4. Can the replacement string be empty?

Figure 5 shows test cases that answer these questions. The first question is answered
with four test cases. The first and fourth show the exception that is thrown when start
is outside the range [0 .. s.length()]. The second and third cases show the effect at the
boundaries of this range. The second question is answered by four test cases, showing that
end may have any value greater than or equal to start and that a value of end larger than
the length of s is treated the same as one equal to the length of s. The third and fourth
questions are answered in the positive, each with a simple case showing the effect.

Using the approach shown in Figure 5, we documented 13 out of the 34 StringBuffer
methods. Each of the 21 methods that we did not document was a simple variation of one
of the methods that we did document. For example, there are 10 versions of insert that
vary only in the type of element that is inserted (char, int, etc.), and we only documented
one of these. For each of the methods we documented, we added 3-10 test cases to the API
documentation. In doing so, we discovered a surprising number of problems. For example,
the API documentation for insert states that StringIndexOutOfBoundsException is
thrown if the offset is invalid, but in fact ArrayIndexOut0fBoundsException is thrown.
As a result, the test driver shown in Figures 2 generates a failure message for each of the
#excMonitor test cases. In the 13 methods tested, we found 10 such inconsistencies in
the documentation of the exception behavior. In addition, the API documentation for one
of the methods (substring) is clearly incomplete, as one of the sentences ends half-way
through.



StringBuffer s = null;
Exception BoundsException = new StringIndexOutOfBoundsException();

// What start values are legal?
s = new StringBuffer("abcde");
#excMonitor s.replace(-1,1,"XYZ"); # BoundsException #end
s = new StringBuffer("abcde"); s.replace(0,2,"XYZ");
#valueCheck s # "XYZcde" #end
s = new StringBuffer("abcde"); s.replace(s.length(),s.length()+2,"XYZ");
#valueCheck s # "abcdeXYZ" #end
s = new StringBuffer("abcde");
#excMonitor s.replace(s.length()+1,s.length()+3,"XYZ"); # BoundsException #end

// What end values are legal?

s = new StringBuffer("abcde"); s.replace(3,s.length(),"XYZ");
#valueCheck s # "abcXYZ" #end

s = new StringBuffer("abcde"); s.replace(3,3,"XYZ");
#valueCheck s # "abcXYZde" #end

s = new StringBuffer("abcde"); s.replace(3,s.length()+100,"XYZ");
#valueCheck s # "abcXYZ" #end

s = new StringBuffer("abcde");
#excMonitor s.replace(2,1,"XYZ"); # BoundsException #end

// Can the source string be empty?
s = new StringBuffer(); s.replace(0,0,"XYZ");
#valueCheck s # "XYZ" #end

// Can the replacement string be empty?

s = new StringBuffer("abcde"); s.replace(1,3,"");
#valueCheck s # "ade" #end

Figure 5: replace FAQ test cases



3.3 Z specification

To compare the prose description and test cases with a formal specification, we now present
a 7 specification of replace. We assume the reader is familiar with the basics of the Z
notation (Spivey 1992).

Since Z sequences are indexed starting from 1, we first define the type seq, to represent
sequences starting at index 0 (in Z, we define this as a finite, partial function whose domain
is a segment 0 .. n for some natural number n).

seqg X =={f : N+ X [domf=0..#f -1}
We model the state of the StringBuffer class using a Z schema as a sequence of characters.

State
’75151“ : seqq Char

To define replace, we will also use versions of the Z mathematical toolkit (Spivey 1992)
operations © (concatenation) and squash, except that we need to define them for sequences
starting at index 0 instead of index 1. The function squash takes a finite function defined
on the natural numbers and compacts it into a sequence. The definitions are:

=[X]
_7 seqoX X seqp X — seqp X
squash : (N + X) — segp X

Vs,t:seqy X e
s t=sU{n:domt en+ #s+— t(n)}
Vi N+ Xe
squashf =fo(up:0..#f —1—domf | posuccop™ C (. <))

With these definitions, we can specify the replace operation.

__replace
State
State’
start?, end? : 7
newStr? : seq, Char

(start? < 0) V (start? > #str) V (start? > end?)
— StringIndexOutOfBoundsEzception

str' = ((0.. start? — 1) < str) ~ newStr? 7 squash((end? — 1 .. (# dom str) — 1) < str)

For brevity, we have abused the Z notation. To specify exceptions, we have added an
“exception part” between the declaration and the predicate part of the schema. Each
statement in the exception part consists of a condition and an exception that is to be
thrown when that condition is true. When none of the exception conditions are true,



the predicate part of the schema is applicable. This approach to specifying exceptions has
been taken from (McDonald and Strooper 1998) and can be translated in a straightforward
manner to standard Z.

Although the Z specification is concise, it is non-trivial, especially the use of squash
to ensure that the indices of the third sequence appended to the result are correct. In
addition, we note that the above specification does not fully specify the behavior of the
Java implementation, which is partly because we have not defined the mapping from our
formal specification language (Z) to our implementation language (Java). In particular:

e there is no support in Z for defining exceptions,

e we have not modeled the return value of the function, which is a reference to the
string buffer object itself (there is no convenient way to model this in Z), and

e we have not modeled the fact that the string buffer size will be changed.

4 Command line case study

This section presents a case study based on a Java module for processing Unix command-
line arguments. Although modern GUIs have made command-line interfaces old-fashioned,
they are still in widespread use, especially by system and network administrators.

This section is based on one solution to the command-line problem. The value of this
solution is its concreteness: it has been thoroughly documented, implemented and tested.
In so doing, we made many decisions about module behavior. We expect that most readers
would have made some of those decisions differently. Our focus here, however, is on how
to document decisions about module behavior, not on the decisions themselves.

4.1 Command Line module overview

In Unix, arguments are entered on the command line, processed by the shell, and passed
to a Java main method as an array of strings. For example, a user might enter

lpr -P rp -p foo

to request that file foo be sent to the printer queue rp. The -p flag specifies that a
standardized header be placed on each page of output. The array passed to main will have
the following value:

{II_PII, Ilrpll, Il_pll, Ilfooll}

The Command Line module offers a generic service for parsing command-line argu-
ments, for use by programmers developing Java applications. The argument array contains
zero or more flags followed by zero or more suffiz arguments. A flag can be any string
beginning with ‘-’. Some flags are optional and others are required. Some flags take a flag
argument; others do not. Often there are restrictions on the flag argument type, e.g., from
1 to 3 decimal digits. The suffix arguments (typically filenames) are always optional and
have no type restrictions.

10



In the example above, "-P" is a flag with flag argument "rp", "-p" is a flag with no
flag arguments, and "foo" is a suffix argument.
The Command Line user will specify, for each legal flag:

e flag name, e.g., -f,

e flag required or optional,

flag argument: required or prohibited, and

e flag argument type:

INTEGER, and maximum length,
— FIXEDPOINT, and maximum lengths to the left and right of the decimal point,

ALPHA, and maximum length, or

ANY, and maximum length.

The command-line arguments will be passed to the Command Line module as a String
array. If the arguments satisfy the user specification, then access is provided to the flags
and arguments present. Otherwise, an error message is made available.

The function prototypes for four classes in the Command Line module are shown in
Figure 6. In the CommandLine class, the constructor takes an array of flag specifications and
an array of argument strings. The method isValid returns true if the argument strings
satisfy the flag specifications. Otherwise, getErrorMessage returns a suitable message.
The call isArgPresent (f) returns true if flag f was present; getArgFlag(f) returns the
flag argument following f. Finally, getSuffixArgs returns all the suffix arguments.

In the FlagSpec class, the constructor takes the four values needed to specify a flag.
The fourth field is of type ArgType, an abstract class. An ArgType subclass must imple-
ment isValid, which takes a string that represents an argument and returns true (false)
indicating that the string is (is not) a valid argument of that type. In the IntegerArgType
class, the constructor takes a single integer n and isValid(s) returns true if s consists of
from 1 to n decimal digits.

The other classes in the Command Line module—the exception classes, FixedPointArgType,
AlphabeticArgType, and AnyArgType—have been omitted for brevity.

4.2 FAQs in test case form

Given the method prototypes and prose description just presented, many questions remain
about the Command Line module behavior:

1. How do you find out what was on the command line?

(a) Which flags were present?
(b) What were the arguments to the flags?

(¢) What were the suffix arguments?

2. Is the flag order significant?

11



public class CommandLine {
public CommandLine(FlagSpec[] flagSpec, String[] args)
throws ParameterException;
public boolean isValid();
public String getErrorMessage() throws ValidArgsException;
public boolean isArgPresent(String flagName) throws ParseException;
public String getFlagArg(String flagName)
throws ParseException, FlagNotPresentException, NoArgException;
public String[] getSuffixArgs() throws ParseException;

public class FlagSpec {
public FlagSpec(String flagName, boolean isRequired,
boolean argRequired, ArgType argType) ;
public String flagName;
public boolean isRequired, argRequired;
public ArgType argType;

abstract class ArgType {
abstract boolean isValid(String s);

}

class IntegerArgType extends ArgType {
public IntegerArgType(int maxLength);
public boolean isValid(String s);

Figure 6: Command Line module: function prototypes
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3. Are there any constraints on the number of suffix arguments?
4. Are there any constraints on the value of a suffix argument?
5. What if the arguments have errors?

(a) How is the error status communicated?

(b) What other information is available about the arguments?
6. What if a required flag is omitted?
7. What if a flag is repeated?

The answers to these questions are not obvious because each question has multiple de-
fensible answers. We saw many such answers in the implementations of particular Unix
commands and in other generic command-line modules we found on the web. Figure 7
contains portions of a driver that provides answers to these questions.

The driver begins by creating specifications for three flags:

1. -a: optional, with no flag argument
2. =b: required, with no flag argument
3. -c: optional, with an INTEGER argument, of maximum length 3

Then, there are blocks of test cases for questions 1, 4, and 5 in the list presented earlier.
The first block covers the typical uses by showing how to determine which flags were
present, the value of the flag arguments, and the values of the suffix arguments.

The second block of test cases handles questions about suffix arguments. There is
significant ambiguity here regarding the rules for distinguishing flag and suffix arguments.
The first case shows that, even though -y has a leading “-”, it is interpreted as a suffix
argument. This follows the common policy in Unix commands that all arguments following
the first suffix argument (x in this case) are interpreted as suffix arguments. The second
case shows that this policy is followed even though -b is a declared flag. The third case
shows that the value of a suffix argument need not resemble a typical file name.

The third block of test cases shows what happens when the command line is in error:
isValid is false, getErrorMessage is non-null, and attempts to provide information about
why the arguments are refused. The detailed error message returned by getErrorMessage
is not tested, since the message itself is not important and likely to change.

Note that Figure 7 contains tests cases for only the CommandLine class; separate cases
(very simple ones) are needed for the Argtype classes.

While the driver illustrated in Figure 7 focuses on communicating module behavior to
the user, it has value in defect detection as well. The full driver contains 86 lines of code
and executes 34 test cases, achieving 86.1% statement coverage of the CommandLine class.
For comparison purposes, we wrote another driver, taking full advantage of all the Roast
features. This driver is aimed solely at finding defects. It generates argument arrays of
varying lengths and places legal, illegal, required, and optional flags, with and without ar-
guments, at boundary positions in each argument array. This driver is complex, especially
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FlagSpec[] flagSpecs = {

new FlagSpec("-a",false,false,null), //flag,isReq,argReq,argType
new FlagSpec("-b",true,false,null),

new FlagSpec("-c",false,true,new IntegerArgType(3))

};

CommandLine cut = null;

// *x**xx How do you find out what was on the command line?
#excMonitor cut = new CommandLine(flagSpecs,

new String[] { "-b","-c","5","suffixArg" }); #end
#valueCheck cut.isArgPresent("-a") # false #end
#valueCheck cut.isArgPresent("-b") # true #end
#valueCheck cut.isArgPresent("-c") # true #end
#valueCheck cut.getFlagArg("-c") # "5" #end
#valueCheck (cut.getSuffixArgs())[0] # "suffixArg" #end

// **x**x Are there any contraints on the value of a suffix argument?
#excMonitor cut = new CommandLine(flagSpecs,

new String[] { "-b","x","-y" }); #end
#valueCheck cut.isValid() # true #end

#excMonitor cut = new CommandLine(flagSpecs,
new String[] { "-b","x","-b" }); #end
#valueCheck cut.isValid() # true #end

#excMonitor cut = new CommandLine(flagSpecs,
new String[] { "-b","x","!$ %" }); #end
#valueCheck cut.isValid() # true #end

// *x*xx What if the arguments have errors?
#excMonitor cut = new CommandLine(flagSpecs,
new String[] { "-a","-c","5" }); #end
#valueCheck cut.isValid() # false #end
#valueCheck (cut.getErrorMessage() != null) # true #end
#excMonitor cut.isArgPresent("-a"); # new ParseException() #end

Figure 7: Command Line Driver: answers to selected FAQs

14



the test oracle. It contains 261 lines of code and executes 307 test cases, achieving 91.1%
statement coverage. While statement coverage is a crude measure of test effectiveness, the
coverage numbers suggest that FAQ drivers can be useful in defect detection.

4.3 A specification in Z

To compare the prose description (see Section 4.1) and test cases with a formal specifica-
tion, we again present a 7Z specification of the Command Line module.
We define String as a sequence of characters.

String == seq Char
We model the FlagSpec and ArgType classes (see Figure 6) as Z schemas.
FlagSpec
name : String

isReq, hasArg : B
arg : ArgType

ArgType
’72'5 Valid : String — B

Next we define the specification state of the CommandLine class.

__ State
errorMsg : String
flags : F String
argFlags : String - String
suffiz : seq String

dom argFlags C flags

The state contains four components: errorMsg stores the error message generated, or
the empty string (()) to indicate that there was no error; flags stores the set of all flags;
argFlags stores the set of flag arguments as a partial function from flags to their arguments
(for a flag f with argument a, f is in the domain of argFlags and argFlags(f) = a); and
suffiz stores the suffix arguments as a sequence of strings.

We can then model the CommandLine constructor.

15



— CommandLine
fs? : seq FlagSpec
args? : seq String
State’

fs? = null V args? = null — ParameterEzception
34 : dom args? e args?(i) = () — ParameterException
4,5 : dom fs? @ i #£ j A fs?(i).name = fs?(j).name — ParameterException

let

(f =={i : dom fs? e fs?(i).name};

rF == {i:domfs? | fs?(i).isReq = true o fs?(i).name};

aF == {i :dom fs? | fs?(i).hasArg = true o fs?(i).name — fs?(i).arg}
e OState’ = parseFlag(f,rF,aF, args?, &, &))

We have abused the Z notation in that we have used the value null to model a null pointer;
note that this is not the same as the empty sequence (()). To model this properly in Z,
we would have to use a free type.

The exception part of the specification states that ParameterFEzception is thrown if
either input parameter is a null pointer, if there is a command-line argument that is the
empty string, or if there are two flag arguments in the flag specification that have the
same name. In the predicate part, we first construct three sets: f, the set of all flags in
the flag specification, rF', the set of required flags, and aF', the set consisting of mappings
from flags with arguments to their argument type. The predicate part of the specification
is defined using the recursive function parseFlag, which is defined in Figure 8. It takes
the three sets, the command-line arguments, and partially constructed sets of flags and
argument flags as inputs, and returns the class state as its output. Note that the auxiliary
arguments (the fifth and sixth arguments to parseFlag) are used to construct the state
incrementally.

Initially, the sets of flags and argument flags are empty. Each recursive call removes one
or two arguments from the list of arguments, depending on whether or not the next flag
has an argument, augmenting the partially constructed sets of flags and flag arguments.
The recursion terminates when an error is discovered or when the first non-flag argument
is encountered. In the latter case, all the remaining arguments are returned as suffix
arguments.

With the above specifications for the state schema and the CommandLine constructor,
the specification for the other class methods is straightforward and shown in Figure 9.

4.4 Discussion

The comparison clearly shows that the Z specification is complex and would be hard
to understand by people with little training in formal methods. People with training
in formal methods might prefer it over the prose documentation, because it provides a
complete specification of the behavior of the Command Line module. However, people
that reviewed the formal specification and the test cases commented that the test cases
helped them with understanding the specification because they provided concrete examples
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parseFlag : F String x F String x (String + ArgType) x seq String x F String
x (String + String) — State

Vf,rf,f1:F String; af : (String - ArgType); args : seq String;
af1: (String + String); out : State o
((f,rf,af,args,f1,af1), out) € parseFlag <
if (args # () A args(1)(1) =*-’) then
if args(1) ¢ f then
out.errorMsg = INVALIDFLAG ™ args(1)
else if args(1) € f1 then
out.errorMsg = DUPLICATEFLAG ™ args(1)
else if (args(1) € dom af) then
if #args =1 then
out.errorMsg = MISSINGFLAGARG ™ args(1)
else if af (args(1)).isValid(args(2)) = false then
out.errorMsg = INVALIDFLAGARG ™ args(2)
else
out = parseFlag(f,rf, af , tail (tail(args)),
f1U{args(1)}, af1 U {args(1) — args(2)})
else
out = parseFlag(f,rf, af , tail(args), f1 U {args(1)}, af 1)
else
if rf C f1 then
out.errorMsg = () A out.flags = f1 A out.argFlags = af1 A out.suffix = args
else
(3s: Stringes e rf\f1A
out.errorMsg = REQUIREDFLAGMISSING ™ s)

Figure 8: Definition of parseFlag
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___isValid

valid! : B
State

valid! = true < errorMsg = ()

__getErrorMessage

m! : String
State

errorMsg = () — ValidArgsException

m! = errorMsg

__isArgPresent

flagname? : String
present! : B
State

errorMsg # () — ParseEzception

present! = true < flagname? € dom argFlags

___getFlagArg

flagname? : String
arg! : String
State

errorMsg # () — ParseEzception
flagname? & flags — FlagNotPresentException
flagname? € flags \ dom argFlags — NoArgException

arg! = argFlags(flagname?)

__getSuffixArgs

arg! : seq String
State

errorMsg # () — ParseEzception

arg! = suffiz

Figure 9: Z specification of CommandLine methods
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of the use of the module before trying to understand the module in its full generality. This
suggests that test cases can not only be useful in augmenting prose documentation, but
also to augment and clarify formal specifications.

5 Related work

The use of examples in documentation is an old idea. Today, use cases (Jacobsen 1992)
are probably the best known technique for software documentation based on examples.
While use cases are usually informal and not executable, they can be made executable, as
research on SCR requirements documents has shown (Miller 1998). Our test cases can be
thought of as executable APT use cases.

Hsia et al. present a systematic, formal method for scenario analysis that supports
requirements analysis and change, and acceptance testing (Hsia, Gao, Samuel, Kung,
Toyoshima, and Chen 1994b). The method is extended to serve as a starting point for a
formal model for scenario-based acceptance testing (Hsia, Gao, Samuel, Kung, Toyoshima,
and Chen 1994a; Hsia, Kung, and Sell 1997). The systematic approach allows a set of com-
plete and consistent scenarios to be derived for acceptance testing. Similarly, Chang et
al. describe a method for generating test scenarios for integration and system testing from
formal, Object-Z specifications and usage profiles (Chang, Liao, Seidman, and Chapman
1998; Chen, Chang, and Chapman 1999).

Using test cases in documentation involves test case selection, a central topic in testing
research (White and Cohen 1980; Weyuker and Ostrand 1980; Richardson and Clarke
1985). Our approach is also consistent with proposals for extreme programming (Beck
1999b; Beck 1999a), where API test cases play a central role (Jeffries 1999). Like Roast,
the JUnit testing framework (Fowler 1999) supports the testing of Java classes and and has
been applied in a number of application domains, including Enterprise JavaBeans (Nygard
and Karsjens 2000).

In an approach similar to ours, Deveaux et al. (Deveaux, Frison, and Jézéquel 2001)
combine embedded textual documentation and semi-formal specification to support self-
testable classes in Java (the same approach has also been applied to Eiffel). The main
difference between the two approeaches is that the tests in our approach are included
mainly for documentation purposes (which means that readability is a prime concern),
whereas in their approach the tests are used primarily for verification and validation.
Another difference is that their approach is based around semi-formal specifications using
design by contract (Jézéquel and Meyer 1997; Meyer 1997).

Techniques for programming by example have long been studied in the artificial intel-
ligence research community. For example, Winston (Winston 1975) examines the impor-
tance of “hit” and “near miss” examples in machine learning. In this Al work, however,
a machine generalizes from examples, while our goal is to get humans to generalize from
examples.

Engelmann and Carnine (Engelmann and Carnine 1991), provide an extensive treat-
ment of how to select examples and counter-examples to produce a chosen generalization
in the mind of the reader. They emphasize efficiency—using as few examples as possible—
and accuracy—choosing examples to minimize the probability of misunderstanding. Their
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work is directly relevant to ours because the goals are the same: precise communication
with humans of a general rule through a small number of specific examples.

There is considerable argument as to whether formal methods require mathematical
sophistication. Some argue that the mathematics for specification is easy (Hall 1990),
while others argue that this is not quite the case (Finney 1996). The only substantial
experimental study that we are aware of is (Finney, Rennolls, and Fedorec 1998), which
evaluated the effects of natural language comments, variable naming, and structuring on
the comprehensibility of Z specifications. Kneuper correctly points out that it is not only
the ability of the developers to use formal methods that needs to be considered, but also
their willingness to do so (Kneuper 1997). We concur and note that while it is unlikely that
formal specifications will be used for API documentation in the next 5-10 years, the test
cases that we have presented are formal, partial specifications that are easily understood
by developers.

Finally, we note that our mixing of prose, test cases, and code, and the processing
of these, contains some similarity with literate programming (Knuth 1984; Knuth 1992),
although the details and motivation are quite different. With literate programming, the
purpose of the mixing of documentation and code is to allow humans to better understand
how the program is implemented. With our approach, the purpose is to allow humans to
better understand what the program is supposed to do.

6 Summary

6.1 Discussion

Despite occasional claims to the contrary, a set of examples is rarely a complete specifica-
tion, for the same reason that testing cannot prove a program correct. There are significant
advantages to a formal specification: precision, completeness, and machine processability
to name a few. In particular, preconditions and nondeterminism are difficult to express
with test cases. Nonetheless, it is important to recognize the role that examples can play
and, in fact, have played for centuries in mathematics.

The most important difference between formal methods and our approach involves the
goals.

e With formal methods, the goal is a complete description of the required behavior in
all circumstances.

e With our approach, we envision a family of plausible behaviors determined by the
method prototypes, the prose documentation, and the domain knowledge of the
reader. The purpose of the test cases is to indicate which behavior in the family is
the one actually provided.

These are radically different goals. If the domain knowledge of the reader is considerable,
prose and test cases can be very effective. If it is not, formal methods may be superior.
From the FAQ perspective, the formal specification attempts to answer every possible
question while our approach attempts to answer every likely question.
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The two approaches can be used together. Formal preconditions are often short and
readable while postconditions are often long and complex. Thus, an effective hybrid might
express preconditions formally and use prose plus test cases for postconditions. For ex-
ample, the Eiffel libraries are documented using a mix of prose and formal notation (in
the form of assertions) (Meyer 1994). The preconditions are often formal and complete,
whereas the formal parts of the postconditions are typically partial, if present at all. Fur-
ther, even if a formal specification is developed, the FAQ test cases can be helpful in
explaining and testing the specification.

6.2 Conclusions

The rise of component-based software development has created an urgent need for effective
API documentation. Prose documentation can provide a good overview but lacks precision.
Formal methods offer precision but the resulting documentation is expensive to develop.
Worse, few developers have the skill or inclination to read formal documentation. We
present a pragmatic solution: augment the prose documentation with executable test cases
and use the prose plus the test cases as the documentation. This approach provides an
attractive bridge between formal and informal documentation.
Our “FAQ approach” to using test cases for documentation has four main benefits:

1. Precise (though partial) documentation.
2. Guaranteed consistency of code and documentation by running the test cases.
3. Good fault detection.

4. Helpful examples of API use.

This approach depends critically on the test cases being compact and readable. We have
shown that, with a testing tool such as Roast, the test cases themselves can satisfy these
properties.

Most important, our approach is ready for use today. While the FAQ approach to
documentation is new, we have had considerable practical experience with writing auto-
mated test cases with Roast. We have written such cases in multiple languages, including
C, C++, Ada, and Java, and in a variety of industrial domains, including container class
libraries, safety-critical systems, and concurrent systems (Hoffman 1989; Hoffman and
Strooper 1997; Hoffman, Nair, and Strooper 1998; Murphy, Townsend, and Wong 1994;
McDonald, Hoffman, and Strooper 1998; Harvey and Strooper 2001; Long and Strooper
2001). We know the Roast tool is teachable because we have used it extensively in un-
dergraduate teaching at the Universities of Queensland and Victoria. Students write test
cases, and read cases we write in documentation and in exam questions. We have found
that students learn to use Roast with minimal effort: after a few lectures or just simply
using the manual and on-line examples.

Finally, we note that many recent text and reference books have adapted an FAQ style,
to the extent that prose explanations are mixed with fully worked and runnable code. Some
notable examples include the Standard Template Library Tutorial and Reference Guide
(Musser and Saini 1996) and the Java Language Specification (Gosling, Joy, and Steele
1996).
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