
SOFTWARE VERIFICATION RESEARCH CENTRETHE UNIVERSITY OF QUEENSLANDQueensland 4072Australia

TECHNICAL REPORTNo. 01-12API Doumentation with ExeutableExamplesDaniel Ho�man Paul StrooperOtober 2001

Phone: +61 7 3365 1003Fax: +61 7 3365 1533http://svr.it.uq.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Note: Most SVRC tehnial reports are available viaanonymous ftp, from svr.it.uq.edu.au in the diretory/pub/tehreports. Abstrats and ompressed postsript�les are available via http://svr.it.uq.edu.au

API Doumentation with Exeutable ExamplesDaniel Ho�man� Paul StrooperyAbstratThe rise of omponent-based software development has reated an urgent need fore�etive API doumentation. Experiene has shown that it is hard to reate preiseand readable doumentation. Prose doumentation an provide a good overview butlaks preision. Formal methods o�er preision but the resulting doumentation isexpensive to develop. Worse, few developers have the skill or inlination to readformal doumentation.We present a pragmati solution to the problem of API doumentation. We aug-ment the prose doumentation with exeutable test ases, inluding expeted outputs,and use the prose plus the test ases as the doumentation. With appropriate toolsupport, the test ases are easy to develop and read. Suh test ases onstitute aompletely formal, albeit partial, spei�ation of input/output behavior. Equally im-portant, onsisteny between ode and doumentation is demonstrated by running thetest ases. This approah provides an attrative bridge between formal and informaldoumentation. We also present a tool that supports ompat and readable test ases,and generation of test drivers and doumentation, and illustrate the approah withdetailed ase studies.1 IntrodutionWith the growth of omponent-based software development approahes, the importaneof Appliation Program Interfae (API) doumentation has grown as well. Class librariesand frameworks provide large and omplex APIs, making e�etive doumentation essentialfor suessful use. While the method names and prototypes are expressed in the imple-mentation language, the method behavior must be doumented as well. Typially, this isdone with brief prose desriptions, fousing on the situations that ommonly arise in APIuse. Suh doumentation is inevitably impreise and inomplete, leading to ostly misun-derstandings between API implementors and API users. The formal methods ommunityreommends preise spei�ations, beause suh spei�ations an be omplete and unam-biguous. In some ases, the spei�ations an also be used to generate implementationsor test orales. Unfortunately suh spei�ations are expensive to write and maintain.Worse, few developers are willing or able to read formal spei�ations.�Dept. of Computer Siene, University of Vitoria, PO Box 3055 STN CSC, Vitoria, B.C. V8W 3P6,Canada, dho�man�sr.uvi.ayShool of Inf. Teh. and Ele. Eng., Software Veri�ation Researh Centre, The University of Queens-land, Brisbane, Qld. 4072, Australia, pstroop�itee.uq.edu.au1

We present a pragmati sheme for overoming the problems of prose and formal spe-i�ations. The underlying idea is simple: augment traditional prose doumentation withtest ases designed spei�ally for use in doumentation. Typially, there are a few asesfor eah likely question about API behavior. In pratie, the test ases serve roughly thesame role that FAQs (\frequently asked questions") do on many web sites.Our \FAQ approah" to using test ases for doumentation has four main bene�ts:1. Preise (though partial) doumentation. The test ases ontain both inputs andexpeted outputs in exeutable form. Therefore, they are formal spei�ations ofrequired behavior for seleted inputs.2. Guaranteed onsisteny of ode and doumentation. A single ommand an runall the test ases, automatially revealing inonsistenies between atual and dou-mented behavior.3. Good fault detetion. While the primary purpose of the FAQ test ases is ommu-niation, they are also useful for quality assurane. For example, the test ases anprovide the kind of unit tests advoated in Extreme Programming (Bek 1999a).4. Helpful examples of use. When �rst using an API, programmers often spend a lotof time getting the �rst simple example to run. Our test ases provide omplete,runnable examples suitable for opying and editing.With our approah to test ases as doumentation, readability of the test ases is ofparamount importane. The next setion shows how we develop ompat, readable testases with the Roast tool (Daley, Ho�man, and Strooper 2000; Ho�man and Strooper2000). Setions 3 and 4 present detailed ase studies of the FAQ approah, inludingdoumentation using test ases and, for omparison, in Z. Setion 5 presents related work.2 Tool supportTo illustrate the bene�ts of tool support for FAQ test ases, we present a onventionaltest driver and a Roast driver (Daley, Ho�man, and Strooper 2000; Ho�man and Strooper2000). Consider the test ases and output shown in Figure 1 for the Java StringBufferlass, whih is part of Sun's JDK (Sun Mirosystems 2001) and implements a mutablesequene of haraters. In Figure 1(a), the �rst two lines of method main initialize theStringBuffer s and display the initial value. Test ases 1{4 show what happens whenharaters are inserted at the boundary positions: f�1; 0; s.length(); s.length()+ 1g.As the output shows, the �rst and last of these positions are illegal. Some users aresurprised to see that ase 3 is legal, i.e., s.insert(s.length(),) is equivalent tos.append(). When StringBufferTest is ompiled and exeuted, it produes the outputshown in Figure 1(b).The driver in Figure 1 is reasonably ompat, but is lumsy as a ommuniation meh-anism. The reader must jump bak and forth between the method alls in the driver odeand the driver output to determine the behavior for eah ase. Also, the only exeptionheking that is performed during test exeution is that the alls to insert in ases 1 and2

StringBuffer s = new StringBuffer("ab");System.out.println("Starting value: " + s);try { s.insert(-1,'W'); } // CASE 1ath (Exeption x) { System.out.println("Exeption: ase 1"); }s.insert(0,'X'); // CASE 2System.out.println("Following ase 2: " + s);s.insert(s.length(),'Y'); // CASE 3System.out.println("Following ase 3: " + s);try { s.insert(s.length()+1,'Z'); } // CASE 4ath (Exeption x) { System.out.println("Exeption: ase 4"); }(a) Driver soure odeStarting value: abExeption: ase 1Following ase 2: XabFollowing ase 3: XabYExeption: ase 4 (b) Driver outputFigure 1: StringBufferTest soure ode and output

3

4 throw an exeption: whih exeption is not indiated. We ould augment the driver toinlude ode to perform additional heking, but this would make it bulky and unsuitablefor doumentation purposes.We next introdue the Roast test driver generator and show how Roast test ase tem-plates an be used to ompatly de�ne the test ases shown in Figure 1.2.1 Test ase templatesRoast test ase templates are embedded in Java test drivers and are identi�ed by keywordspreeded by the # harater1. There are two types of Roast test ases: value-heking andexeption-monitoring. The form of a value-heking test ase is:#valueChek atualValue # expetedValue #endwhere atualValue and expetedValue are expressions of the same type. For suh a test asetemplate, Roast generates ode to ompare atualValue and expetedValue, while moni-toring the exeption behavior. The generated ode prints an error message if atualValueand expetedValue are di�erent or if an exeption is thrown during the omparison, and issilent otherwise.The general form of an exeption-monitoring test ase is:#exMonitor ation # expetedExeption #endwhere ation is any fragment of Java ode and expetedExeption is a Java exeption.Roast generates ode to exeute ation, while monitoring the exeption behavior. Thegenerated ode prints an error message if expetedExeption is not thrown or if anotherexeption is thrown. In an exeption-monitoring test ase template expetedExeption anbe omitted, in whih ase an error message is printed if any exeption is thrown.The above templates are a generalized form of assertion, as found in languages suh asC++ and Ei�el. The templates are designed for use in test drivers rather than for use inimplementations, whih is how assertions are typially used. The templates are more gen-eral in that they perform exeption heking, and they allow omparison of two arbitraryvalues rather than simply heking for boolean onditions. As a result, meaningful errormessages are generated ontaining the values of atualValue and expetedValue.Roast test ases orresponding to the test ases shown in Figure 1 are shown in Figure 2.The test ases are more readable than in Figure 1 and the exeption-heking test asesare more ompat. No output �le is needed beause the inputs and expeted outputs areontained side-by-side in the driver ode and ompared by Roast at test exeution time.2.2 Doumentation generationThe owhart in Figure 3 shows how ode and doumentation are generated for lass C.The �le C.sript ontains the soure ode, prose doumentation, and Roast test ases.Roast generates Driver.java by expanding eah #valueChek and #exMonitor template;typially 10{15 lines of Java ode are generated for eah ase. The �le C.java ontains1Although it is possible to speify test ases as syntatially valid Java ode, without using embeddedtest ases, this is lumsy and leads to test drivers that are hard to read and maintain.4

StringBuffer s = new StringBuffer("ab");// CASE 1#exMonitor s.insert(-1,'W'); # new StringIndexOutOfBoundsExeption() #end// CASE 2#exMonitor s.insert(0,'X'); #end #valueChek s # "Xab" #end// CASE 3#exMonitor s.insert(s.length(),'Y'); #end #valueChek s # "XabY" #end// CASE 4#exMonitor s.insert(s.length()+1,'Z'); # new StringIndexOutOfBoundsExeption() #endFigure 2: Roast Stringbuffer test sriptthe soure ode and prose doumentation, and HTML links to the test ases. Javado isused to generate HTML suitable for browsing, inluding both the prose and the test ases.C.java and Driver.java are ompiled and run, to ensure that C behaves as indiated inthe test ases.In FAQ doumentation, a series of questions are posed and then linked to test ases, likethose in Figure 2, that answer the questions. We have found that posing good questionstakes experiene; writing the orresponding test ases is easy. This approah is illustratedin detail in the following two setions.3 StringBu�er ase studyTo illustrate the FAQ approah, we doument the replaemethod from the Java StringBufferlass. We ompare the API doumentation for replae with the same doumentation aug-mented with test ases, and with a Z spei�ation (Spivey 1992).3.1 API doumentationFigure 4 shows the API doumentation for replae. The all s.replae(start,end,r)modi�es the soure string s by removing the substring s[start : : end � 1℄ and inserting thereplaement string r at position start . Although replae seems straightforward, thereare a few subtle points. The substring is identi�ed by the half-open range [start ; end),familiar to users of the C++ Standard Template Library (Musser and Saini 1996), butoften onfusing to others. In the speial ase where start = end , the substring is empty,but it is not entirely lear at what position the replaement string will be inserted. Finally,the situations where start and end are out of range are handled asymmetrially. The APIdoumentation an easily be lari�ed with a few onrete examples.3.2 FAQs in test ase formTypial questions that users might have about the behavior of replae are:5

javabrowser

C.classC.HTML

roast

javadoc javac javac

Driver.java

Driver.class

C.java

C.script

Figure 3: Roast system owhart
6

publi StringBuffer replae(int start,int end,String str)Replaes the haraters in a substring of this StringBufferwith haraters in the spei�ed String.The substring begins at the spei�ed start and extends to the harater at index end � 1 or tothe end of the StringBuffer if no suh harater exists. First the haraters in the substring areremoved and then the spei�ed String is inserted at start. (The StringBufferwill be lengthenedto aommodate the spei�ed String if neessary.)Parameters:start - The beginning index, inlusive.end - The ending index, exlusive.str - String that will replae previous ontents.Returns:This string bu�er.Throws:StringIndexOutOfBoundsExeption - if start is negative, greater than length(), orgreater than end.Figure 4: StringBuffer API doumentation for the replae method1. What start values are legal?2. What end values are legal?3. Can the soure string be empty?4. Can the replaement string be empty?Figure 5 shows test ases that answer these questions. The �rst question is answeredwith four test ases. The �rst and fourth show the exeption that is thrown when startis outside the range [0 : : s:length()℄. The seond and third ases show the e�et at theboundaries of this range. The seond question is answered by four test ases, showing thatend may have any value greater than or equal to start and that a value of end larger thanthe length of s is treated the same as one equal to the length of s. The third and fourthquestions are answered in the positive, eah with a simple ase showing the e�et.Using the approah shown in Figure 5, we doumented 13 out of the 34 StringBuffermethods. Eah of the 21 methods that we did not doument was a simple variation of oneof the methods that we did doument. For example, there are 10 versions of insert thatvary only in the type of element that is inserted (har, int, et.), and we only doumentedone of these. For eah of the methods we doumented, we added 3{10 test ases to the APIdoumentation. In doing so, we disovered a surprising number of problems. For example,the API doumentation for insert states that StringIndexOutOfBoundsExeption isthrown if the o�set is invalid, but in fat ArrayIndexOutOfBoundsExeption is thrown.As a result, the test driver shown in Figures 2 generates a failure message for eah of the#exMonitor test ases. In the 13 methods tested, we found 10 suh inonsistenies inthe doumentation of the exeption behavior. In addition, the API doumentation for oneof the methods (substring) is learly inomplete, as one of the sentenes ends half-waythrough. 7

StringBuffer s = null;Exeption BoundsExeption = new StringIndexOutOfBoundsExeption();// What start values are legal?s = new StringBuffer("abde");#exMonitor s.replae(-1,1,"XYZ"); # BoundsExeption #ends = new StringBuffer("abde"); s.replae(0,2,"XYZ");#valueChek s # "XYZde" #ends = new StringBuffer("abde"); s.replae(s.length(),s.length()+2,"XYZ");#valueChek s # "abdeXYZ" #ends = new StringBuffer("abde");#exMonitor s.replae(s.length()+1,s.length()+3,"XYZ"); # BoundsExeption #end// What end values are legal?s = new StringBuffer("abde"); s.replae(3,s.length(),"XYZ");#valueChek s # "abXYZ" #ends = new StringBuffer("abde"); s.replae(3,3,"XYZ");#valueChek s # "abXYZde" #ends = new StringBuffer("abde"); s.replae(3,s.length()+100,"XYZ");#valueChek s # "abXYZ" #ends = new StringBuffer("abde");#exMonitor s.replae(2,1,"XYZ"); # BoundsExeption #end// Can the soure string be empty?s = new StringBuffer(); s.replae(0,0,"XYZ");#valueChek s # "XYZ" #end// Can the replaement string be empty?s = new StringBuffer("abde"); s.replae(1,3,"");#valueChek s # "ade" #endFigure 5: replae FAQ test ases
8

3.3 Z spei�ationTo ompare the prose desription and test ases with a formal spei�ation, we now presenta Z spei�ation of replae. We assume the reader is familiar with the basis of the Znotation (Spivey 1992).Sine Z sequenes are indexed starting from 1, we �rst de�ne the type seq0 to representsequenes starting at index 0 (in Z, we de�ne this as a �nite, partial funtion whose domainis a segment 0 : : n for some natural number n).seq0X == ff : N 7 7! X j dom f = 0 : :#f � 1gWe model the state of the StringBuffer lass using a Z shema as a sequene of haraters.Statestr : seq0CharTo de�ne replae, we will also use versions of the Z mathematial toolkit (Spivey 1992)operations a (onatenation) and squash , exept that we need to de�ne them for sequenesstarting at index 0 instead of index 1. The funtion squash takes a �nite funtion de�nedon the natural numbers and ompats it into a sequene. The de�nitions are:[X ℄a : seq0X � seq0X ! seq0Xsquash : (N 7 7! X)! seq0X8 s; t : seq0X �s a t = s [fn : dom t � n +#s 7! t(n)g8 f : N 7 7! X �squash f = f Æ (� p : 0 : :#f � 1�! dom f j p Æ su Æp� � (�))With these de�nitions, we an speify the replae operation.replaeStateState 0start?; end? : ZnewStr? : seq0Char(start? < 0) _ (start? > #str) _ (start? > end?)�! StringIndexOutOfBoundsExeptionstr 0 = ((0 : : start?� 1)C str)a newStr?a squash((end? � 1 : : (#dom str)� 1)C str)For brevity, we have abused the Z notation. To speify exeptions, we have added an\exeption part" between the delaration and the prediate part of the shema. Eahstatement in the exeption part onsists of a ondition and an exeption that is to bethrown when that ondition is true. When none of the exeption onditions are true,9

the prediate part of the shema is appliable. This approah to speifying exeptions hasbeen taken from (MDonald and Strooper 1998) and an be translated in a straightforwardmanner to standard Z.Although the Z spei�ation is onise, it is non-trivial, espeially the use of squashto ensure that the indies of the third sequene appended to the result are orret. Inaddition, we note that the above spei�ation does not fully speify the behavior of theJava implementation, whih is partly beause we have not de�ned the mapping from ourformal spei�ation language (Z) to our implementation language (Java). In partiular:� there is no support in Z for de�ning exeptions,� we have not modeled the return value of the funtion, whih is a referene to thestring bu�er objet itself (there is no onvenient way to model this in Z), and� we have not modeled the fat that the string bu�er size will be hanged.4 Command line ase studyThis setion presents a ase study based on a Java module for proessing Unix ommand-line arguments. Although modern GUIs have made ommand-line interfaes old-fashioned,they are still in widespread use, espeially by system and network administrators.This setion is based on one solution to the ommand-line problem. The value of thissolution is its onreteness: it has been thoroughly doumented, implemented and tested.In so doing, we made many deisions about module behavior. We expet that most readerswould have made some of those deisions di�erently. Our fous here, however, is on howto doument deisions about module behavior, not on the deisions themselves.4.1 Command Line module overviewIn Unix, arguments are entered on the ommand line, proessed by the shell, and passedto a Java main method as an array of strings. For example, a user might enterlpr -P rp -p footo request that �le foo be sent to the printer queue rp. The -p ag spei�es that astandardized header be plaed on eah page of output. The array passed to main will havethe following value:{"-P", "rp", "-p", "foo"}The Command Line module o�ers a generi servie for parsing ommand-line argu-ments, for use by programmers developing Java appliations. The argument array ontainszero or more ags followed by zero or more suÆx arguments. A ag an be any stringbeginning with `-'. Some ags are optional and others are required. Some ags take a agargument ; others do not. Often there are restritions on the ag argument type, e.g., from1 to 3 deimal digits. The suÆx arguments (typially �lenames) are always optional andhave no type restritions. 10

In the example above, "-P" is a ag with ag argument "rp", "-p" is a ag with noag arguments, and "foo" is a suÆx argument.The Command Line user will speify, for eah legal ag:� ag name, e.g., -f,� ag required or optional,� ag argument: required or prohibited, and� ag argument type:{ INTEGER, and maximum length,{ FIXEDPOINT, and maximum lengths to the left and right of the deimal point,{ ALPHA, and maximum length, or{ ANY, and maximum length.The ommand-line arguments will be passed to the Command Line module as a Stringarray. If the arguments satisfy the user spei�ation, then aess is provided to the agsand arguments present. Otherwise, an error message is made available.The funtion prototypes for four lasses in the Command Line module are shown inFigure 6. In the CommandLine lass, the onstrutor takes an array of ag spei�ations andan array of argument strings. The method isValid returns true if the argument stringssatisfy the ag spei�ations. Otherwise, getErrorMessage returns a suitable message.The all isArgPresent(f) returns true if ag f was present; getArgFlag(f) returns theag argument following f . Finally, getSuffixArgs returns all the suÆx arguments.In the FlagSpe lass, the onstrutor takes the four values needed to speify a ag.The fourth �eld is of type ArgType, an abstrat lass. An ArgType sublass must imple-ment isValid, whih takes a string that represents an argument and returns true (false)indiating that the string is (is not) a valid argument of that type. In the IntegerArgTypelass, the onstrutor takes a single integer n and isValid(s) returns true if s onsists offrom 1 to n deimal digits.The other lasses in the Command Line module|the exeption lasses, FixedPointArgType,AlphabetiArgType, and AnyArgType|have been omitted for brevity.4.2 FAQs in test ase formGiven the method prototypes and prose desription just presented, many questions remainabout the Command Line module behavior:1. How do you �nd out what was on the ommand line?(a) Whih ags were present?(b) What were the arguments to the ags?() What were the suÆx arguments?2. Is the ag order signi�ant? 11

publi lass CommandLine {publi CommandLine(FlagSpe[℄ flagSpe, String[℄ args)throws ParameterExeption;publi boolean isValid();publi String getErrorMessage() throws ValidArgsExeption;publi boolean isArgPresent(String flagName) throws ParseExeption;publi String getFlagArg(String flagName)throws ParseExeption, FlagNotPresentExeption, NoArgExeption;publi String[℄ getSuffixArgs() throws ParseExeption;}publi lass FlagSpe {publi FlagSpe(String flagName, boolean isRequired,boolean argRequired, ArgType argType);publi String flagName;publi boolean isRequired, argRequired;publi ArgType argType;}abstrat lass ArgType {abstrat boolean isValid(String s);}lass IntegerArgType extends ArgType {publi IntegerArgType(int maxLength);publi boolean isValid(String s);} Figure 6: Command Line module: funtion prototypes

12

3. Are there any onstraints on the number of suÆx arguments?4. Are there any onstraints on the value of a suÆx argument?5. What if the arguments have errors?(a) How is the error status ommuniated?(b) What other information is available about the arguments?6. What if a required ag is omitted?7. What if a ag is repeated?The answers to these questions are not obvious beause eah question has multiple de-fensible answers. We saw many suh answers in the implementations of partiular Unixommands and in other generi ommand-line modules we found on the web. Figure 7ontains portions of a driver that provides answers to these questions.The driver begins by reating spei�ations for three ags:1. -a: optional, with no ag argument2. -b: required, with no ag argument3. -: optional, with an INTEGER argument, of maximum length 3Then, there are bloks of test ases for questions 1, 4, and 5 in the list presented earlier.The �rst blok overs the typial uses by showing how to determine whih ags werepresent, the value of the ag arguments, and the values of the suÆx arguments.The seond blok of test ases handles questions about suÆx arguments. There issigni�ant ambiguity here regarding the rules for distinguishing ag and suÆx arguments.The �rst ase shows that, even though -y has a leading \-", it is interpreted as a suÆxargument. This follows the ommon poliy in Unix ommands that all arguments followingthe �rst suÆx argument (x in this ase) are interpreted as suÆx arguments. The seondase shows that this poliy is followed even though -b is a delared ag. The third aseshows that the value of a suÆx argument need not resemble a typial �le name.The third blok of test ases shows what happens when the ommand line is in error:isValid is false, getErrorMessage is non-null, and attempts to provide information aboutwhy the arguments are refused. The detailed error message returned by getErrorMessageis not tested, sine the message itself is not important and likely to hange.Note that Figure 7 ontains tests ases for only the CommandLine lass; separate ases(very simple ones) are needed for the Argtype lasses.While the driver illustrated in Figure 7 fouses on ommuniating module behavior tothe user, it has value in defet detetion as well. The full driver ontains 86 lines of odeand exeutes 34 test ases, ahieving 86.1% statement overage of the CommandLine lass.For omparison purposes, we wrote another driver, taking full advantage of all the Roastfeatures. This driver is aimed solely at �nding defets. It generates argument arrays ofvarying lengths and plaes legal, illegal, required, and optional ags, with and without ar-guments, at boundary positions in eah argument array. This driver is omplex, espeially13

FlagSpe[℄ flagSpes = {new FlagSpe("-a",false,false,null), //flag,isReq,argReq,argTypenew FlagSpe("-b",true,false,null),new FlagSpe("-",false,true,new IntegerArgType(3))};CommandLine ut = null;// ***** How do you find out what was on the ommand line?#exMonitor ut = new CommandLine(flagSpes,new String[℄ { "-b","-","5","suffixArg" }); #end#valueChek ut.isArgPresent("-a") # false #end#valueChek ut.isArgPresent("-b") # true #end#valueChek ut.isArgPresent("-") # true #end#valueChek ut.getFlagArg("-") # "5" #end#valueChek (ut.getSuffixArgs())[0℄ # "suffixArg" #end// ***** Are there any ontraints on the value of a suffix argument?#exMonitor ut = new CommandLine(flagSpes,new String[℄ { "-b","x","-y" }); #end#valueChek ut.isValid() # true #end#exMonitor ut = new CommandLine(flagSpes,new String[℄ { "-b","x","-b" }); #end#valueChek ut.isValid() # true #end#exMonitor ut = new CommandLine(flagSpes,new String[℄ { "-b","x","!$ %" }); #end#valueChek ut.isValid() # true #end// ***** What if the arguments have errors?#exMonitor ut = new CommandLine(flagSpes,new String[℄ { "-a","-","5" }); #end#valueChek ut.isValid() # false #end#valueChek (ut.getErrorMessage() != null) # true #end#exMonitor ut.isArgPresent("-a"); # new ParseExeption() #endFigure 7: Command Line Driver: answers to seleted FAQs
14

the test orale. It ontains 261 lines of ode and exeutes 307 test ases, ahieving 91.1%statement overage. While statement overage is a rude measure of test e�etiveness, theoverage numbers suggest that FAQ drivers an be useful in defet detetion.4.3 A spei�ation in ZTo ompare the prose desription (see Setion 4.1) and test ases with a formal spei�a-tion, we again present a Z spei�ation of the Command Line module.We de�ne String as a sequene of haraters.String == seqCharWe model the FlagSpe and ArgType lasses (see Figure 6) as Z shemas.FlagSpename : StringisReq ; hasArg : Barg : ArgTypeArgTypeisValid : String ! BNext we de�ne the spei�ation state of the CommandLine lass.StateerrorMsg : Stringags : F StringargFlags : String 7! StringsuÆx : seq Stringdom argFlags � agsThe state ontains four omponents: errorMsg stores the error message generated, orthe empty string (h i) to indiate that there was no error; ags stores the set of all ags;argFlags stores the set of ag arguments as a partial funtion from ags to their arguments(for a ag f with argument a, f is in the domain of argFlags and argFlags(f) = a); andsuÆx stores the suÆx arguments as a sequene of strings.We an then model the CommandLine onstrutor.
15

CommandLinefs? : seqFlagSpeargs? : seq StringState 0fs? = null _ args? = null �! ParameterExeption9 i : dom args? � args?(i) = h i �! ParameterExeption9 i ; j : dom fs? � i 6= j ^ fs?(i):name = fs?(j):name �! ParameterExeptionlet (f == fi : dom fs? � fs?(i):nameg;rF == fi : dom fs? j fs?(i):isReq = true � fs?(i):nameg;aF == fi : dom fs? j fs?(i):hasArg = true � fs?(i):name 7! fs?(i):argg� �State 0 = parseFlag(f ; rF ; aF ; args?;?;?))We have abused the Z notation in that we have used the value null to model a null pointer;note that this is not the same as the empty sequene (h i). To model this properly in Z,we would have to use a free type.The exeption part of the spei�ation states that ParameterExeption is thrown ifeither input parameter is a null pointer, if there is a ommand-line argument that is theempty string, or if there are two ag arguments in the ag spei�ation that have thesame name. In the prediate part, we �rst onstrut three sets: f , the set of all ags inthe ag spei�ation, rF , the set of required ags, and aF , the set onsisting of mappingsfrom ags with arguments to their argument type. The prediate part of the spei�ationis de�ned using the reursive funtion parseFlag , whih is de�ned in Figure 8. It takesthe three sets, the ommand-line arguments, and partially onstruted sets of ags andargument ags as inputs, and returns the lass state as its output. Note that the auxiliaryarguments (the �fth and sixth arguments to parseFlag) are used to onstrut the stateinrementally.Initially, the sets of ags and argument ags are empty. Eah reursive all removes oneor two arguments from the list of arguments, depending on whether or not the next aghas an argument, augmenting the partially onstruted sets of ags and ag arguments.The reursion terminates when an error is disovered or when the �rst non-ag argumentis enountered. In the latter ase, all the remaining arguments are returned as suÆxarguments.With the above spei�ations for the state shema and the CommandLine onstrutor,the spei�ation for the other lass methods is straightforward and shown in Figure 9.4.4 DisussionThe omparison learly shows that the Z spei�ation is omplex and would be hardto understand by people with little training in formal methods. People with trainingin formal methods might prefer it over the prose doumentation, beause it provides aomplete spei�ation of the behavior of the Command Line module. However, peoplethat reviewed the formal spei�ation and the test ases ommented that the test aseshelped them with understanding the spei�ation beause they provided onrete examples16

parseFlag : F String � F String � (String 7! ArgType)� seqString � F String�(String 7! String)! State8 f ; rf ; f 1 : F String ; af : (String 7! ArgType); args : seqString ;af 1 : (String 7! String); out : State �((f ; rf ; af ; args ; f 1; af 1); out) 2 parseFlag ,if (args 6= h i ^ args(1)(1) = `-') thenif args(1) 62 f thenout :errorMsg = INVALIDFLAG a args(1)else if args(1) 2 f 1 thenout :errorMsg = DUPLICATEFLAG a args(1)else if (args(1) 2 dom af) thenif #args = 1 thenout :errorMsg = MISSINGFLAGARG a args(1)else if af (args(1)):isValid(args(2)) = false thenout :errorMsg = INVALIDFLAGARG a args(2)else out = parseFlag(f ; rf ; af ; tail (tail(args));f 1 [fargs(1)g; af 1 [fargs(1) 7! args(2)g)else out = parseFlag(f ; rf ; af ; tail(args); f 1 [fargs(1)g; af 1)else if rf � f 1 thenout :errorMsg = h i ^ out :ags = f 1 ^ out :argFlags = af 1 ^ out :suÆx = argselse (9 s : String � s 2 rf n f 1 ^out :errorMsg = REQUIREDFLAGMISSING a s)Figure 8: De�nition of parseFlag
17

isValidvalid ! : BStatevalid ! = true , errorMsg = h igetErrorMessagem! : StringStateerrorMsg = h i �! ValidArgsExeptionm! = errorMsgisArgPresentagname? : Stringpresent ! : BStateerrorMsg 6= h i �! ParseExeptionpresent ! = true , agname? 2 dom argFlagsgetFlagArgagname? : Stringarg ! : StringStateerrorMsg 6= h i �! ParseExeptionagname? 62 ags �! FlagNotPresentExeptionagname? 2 ags n dom argFlags �! NoArgExeptionarg ! = argFlags(agname?)getSuÆxArgsarg ! : seqStringStateerrorMsg 6= h i �! ParseExeptionarg ! = suÆxFigure 9: Z spei�ation of CommandLine methods18

of the use of the module before trying to understand the module in its full generality. Thissuggests that test ases an not only be useful in augmenting prose doumentation, butalso to augment and larify formal spei�ations.5 Related workThe use of examples in doumentation is an old idea. Today, use ases (Jaobsen 1992)are probably the best known tehnique for software doumentation based on examples.While use ases are usually informal and not exeutable, they an be made exeutable, asresearh on SCR requirements douments has shown (Miller 1998). Our test ases an bethought of as exeutable API use ases.Hsia et al. present a systemati, formal method for senario analysis that supportsrequirements analysis and hange, and aeptane testing (Hsia, Gao, Samuel, Kung,Toyoshima, and Chen 1994b). The method is extended to serve as a starting point for aformal model for senario-based aeptane testing (Hsia, Gao, Samuel, Kung, Toyoshima,and Chen 1994a; Hsia, Kung, and Sell 1997). The systemati approah allows a set of om-plete and onsistent senarios to be derived for aeptane testing. Similarly, Chang etal. desribe a method for generating test senarios for integration and system testing fromformal, Objet-Z spei�ations and usage pro�les (Chang, Liao, Seidman, and Chapman1998; Chen, Chang, and Chapman 1999).Using test ases in doumentation involves test ase seletion, a entral topi in testingresearh (White and Cohen 1980; Weyuker and Ostrand 1980; Rihardson and Clarke1985). Our approah is also onsistent with proposals for extreme programming (Bek1999b; Bek 1999a), where API test ases play a entral role (Je�ries 1999). Like Roast ,the JUnit testing framework (Fowler 1999) supports the testing of Java lasses and and hasbeen applied in a number of appliation domains, inluding Enterprise JavaBeans (Nygardand Karsjens 2000).In an approah similar to ours, Deveaux et al. (Deveaux, Frison, and J�ez�equel 2001)ombine embedded textual doumentation and semi-formal spei�ation to support self-testable lasses in Java (the same approah has also been applied to Ei�el). The maindi�erene between the two approeahes is that the tests in our approah are inludedmainly for doumentation purposes (whih means that readability is a prime onern),whereas in their approah the tests are used primarily for veri�ation and validation.Another di�erene is that their approah is based around semi-formal spei�ations usingdesign by ontrat (J�ez�equel and Meyer 1997; Meyer 1997).Tehniques for programming by example have long been studied in the arti�ial intel-ligene researh ommunity. For example, Winston (Winston 1975) examines the impor-tane of \hit" and \near miss" examples in mahine learning. In this AI work, however,a mahine generalizes from examples, while our goal is to get humans to generalize fromexamples.Engelmann and Carnine (Engelmann and Carnine 1991), provide an extensive treat-ment of how to selet examples and ounter-examples to produe a hosen generalizationin the mind of the reader. They emphasize eÆieny|using as few examples as possible|and auray|hoosing examples to minimize the probability of misunderstanding. Their19

work is diretly relevant to ours beause the goals are the same: preise ommuniationwith humans of a general rule through a small number of spei� examples.There is onsiderable argument as to whether formal methods require mathematialsophistiation. Some argue that the mathematis for spei�ation is easy (Hall 1990),while others argue that this is not quite the ase (Finney 1996). The only substantialexperimental study that we are aware of is (Finney, Rennolls, and Fedore 1998), whihevaluated the e�ets of natural language omments, variable naming, and struturing onthe omprehensibility of Z spei�ations. Kneuper orretly points out that it is not onlythe ability of the developers to use formal methods that needs to be onsidered, but alsotheir willingness to do so (Kneuper 1997). We onur and note that while it is unlikely thatformal spei�ations will be used for API doumentation in the next 5{10 years, the testases that we have presented are formal, partial spei�ations that are easily understoodby developers.Finally, we note that our mixing of prose, test ases, and ode, and the proessingof these, ontains some similarity with literate programming (Knuth 1984; Knuth 1992),although the details and motivation are quite di�erent. With literate programming, thepurpose of the mixing of doumentation and ode is to allow humans to better understandhow the program is implemented. With our approah, the purpose is to allow humans tobetter understand what the program is supposed to do.6 Summary6.1 DisussionDespite oasional laims to the ontrary, a set of examples is rarely a omplete spei�a-tion, for the same reason that testing annot prove a program orret. There are signi�antadvantages to a formal spei�ation: preision, ompleteness, and mahine proessabilityto name a few. In partiular, preonditions and nondeterminism are diÆult to expresswith test ases. Nonetheless, it is important to reognize the role that examples an playand, in fat, have played for enturies in mathematis.The most important di�erene between formal methods and our approah involves thegoals.� With formal methods, the goal is a omplete desription of the required behavior inall irumstanes.� With our approah, we envision a family of plausible behaviors determined by themethod prototypes, the prose doumentation, and the domain knowledge of thereader. The purpose of the test ases is to indiate whih behavior in the family isthe one atually provided.These are radially di�erent goals. If the domain knowledge of the reader is onsiderable,prose and test ases an be very e�etive. If it is not, formal methods may be superior.From the FAQ perspetive, the formal spei�ation attempts to answer every possiblequestion while our approah attempts to answer every likely question.20

The two approahes an be used together. Formal preonditions are often short andreadable while postonditions are often long and omplex. Thus, an e�etive hybrid mightexpress preonditions formally and use prose plus test ases for postonditions. For ex-ample, the Ei�el libraries are doumented using a mix of prose and formal notation (inthe form of assertions) (Meyer 1994). The preonditions are often formal and omplete,whereas the formal parts of the postonditions are typially partial, if present at all. Fur-ther, even if a formal spei�ation is developed, the FAQ test ases an be helpful inexplaining and testing the spei�ation.6.2 ConlusionsThe rise of omponent-based software development has reated an urgent need for e�etiveAPI doumentation. Prose doumentation an provide a good overview but laks preision.Formal methods o�er preision but the resulting doumentation is expensive to develop.Worse, few developers have the skill or inlination to read formal doumentation. Wepresent a pragmati solution: augment the prose doumentation with exeutable test asesand use the prose plus the test ases as the doumentation. This approah provides anattrative bridge between formal and informal doumentation.Our \FAQ approah" to using test ases for doumentation has four main bene�ts:1. Preise (though partial) doumentation.2. Guaranteed onsisteny of ode and doumentation by running the test ases.3. Good fault detetion.4. Helpful examples of API use.This approah depends ritially on the test ases being ompat and readable. We haveshown that, with a testing tool suh as Roast , the test ases themselves an satisfy theseproperties.Most important, our approah is ready for use today. While the FAQ approah todoumentation is new, we have had onsiderable pratial experiene with writing auto-mated test ases with Roast. We have written suh ases in multiple languages, inludingC, C++, Ada, and Java, and in a variety of industrial domains, inluding ontainer lasslibraries, safety-ritial systems, and onurrent systems (Ho�man 1989; Ho�man andStrooper 1997; Ho�man, Nair, and Strooper 1998; Murphy, Townsend, and Wong 1994;MDonald, Ho�man, and Strooper 1998; Harvey and Strooper 2001; Long and Strooper2001). We know the Roast tool is teahable beause we have used it extensively in un-dergraduate teahing at the Universities of Queensland and Vitoria. Students write testases, and read ases we write in doumentation and in exam questions. We have foundthat students learn to use Roast with minimal e�ort: after a few letures or just simplyusing the manual and on-line examples.Finally, we note that many reent text and referene books have adapted an FAQ style,to the extent that prose explanations are mixed with fully worked and runnable ode. Somenotable examples inlude the Standard Template Library Tutorial and Referene Guide(Musser and Saini 1996) and the Java Language Spei�ation (Gosling, Joy, and Steele1996). 21

AknowledgementsThanks to Nigel Daley for development of the Command Line ode, Andrew Harourt forhis extensions to Roast to support FAQ spei�ations, Ian Hayes and Alena GriÆths fortheir suggestions on previous versions of the Z spei�ation for Command Line, and DavidHemer, Tim Miller, and Hagen V�olzer for their onstrutive omments on earlier versionsof this paper.ReferenesBek, K. (1999a, Otober). Embraing hange with extreme programming. Computer ,70{77.Bek, K. (1999b). Extreme Programming Explained. Addison-Wesley.Chang, K., S.-S. Liao, S. Seidman, and R. Chapman (1998). Testing objet-oriented pro-grams: from formal spei�ation to test senario generation. The Journal of Systemsand Software 42 (2), 141{151.Chen, C.-Y., K. Chang, and R. Chapman (1999). Test senario and test ase generationbased on Objet-Z formal spei�ation. In Proeedings of SEKE'99, pp. 207{211.Daley, N., D. Ho�man, and P. Strooper (2000). Unit operations for automated lasstesting. Tehnial Report 00{04, Software Veri�ation Researh Centre, The Univ.of Queensland.Deveaux, D., P. Frison, and J.-M. J�ez�equel (2001). Inrease software trustability withself-testable lasses in java. In Proeedings 2001 Australian Software EngineeringConferene, pp. 3{11. IEEE Computer Soiety.Engelmann, S. and D. Carnine (1991). Theory of Instrution: Priniples and Applia-tions (seond ed.). Eugene, Oregon: ADI Press.Finney, K. (1996). Mathematial notation in formal spei�ation: Too diÆult for themasses? IEEE Transations on Software Engineering 22 (2), 158{159.Finney, K., K. Rennolls, and A. Fedore (1998). Measuring the omprehensibility of Zspei�ations. The Journal of Systems and Software 42 (1), 3{15.Fowler, M. (1999). Refatoring { Improving the Design of Existing Code, Chapter 4:Building Tests. Addison-Wesley.Gosling, J., B. Joy, and G. Steele (1996). The Java Language Spei�ation. Addison-Wesley.Hall, J. (1990). Seven myths of formal methods. IEEE Software 7 (9), 11{19.Harvey, C. and P. Strooper (2001). Testing java monitors through deterministi exeu-tion. In Proeedings 2001 Australian Software Engineering Conferene, pp. 61{67.IEEE Computer Soiety.Ho�man, D. (1989, Otober). A CASE study in module testing. In Pro. Conf. SoftwareMaintenane, pp. 100{105. IEEE Computer Soiety.22

Ho�man, D., J. Nair, and P. Strooper (1998). Testing generi ada pakages with APE.In Proeedings ACM SIGAda Annual International Conferene (SIGAda'98), pp.255{262. ACM Press.Ho�man, D. and P. Strooper (1997). ClassBenh: A methodology and framework forautomated lass testing. Software: Pratie and Experiene 27 (5), 573{597.Ho�man, D. and P. Strooper (2000). Tools and tehniques for Java API testing. InProeedings 2000 Australian Software Engineering Conferene, pp. 235{245. IEEEComputer Soiety.Hsia, P., J. Gao, J. Samuel, D. Kung, Y. Toyoshima, and C. Chen (1994a). Behavior-based aeptane testing of software systems: A formal senario approah. In Pro-eedings of COMPSAC'94, pp. 293{298. IEEE Computer Soiety Press.Hsia, P., J. Gao, J. Samuel, D. Kung, Y. Toyoshima, and C. Chen (1994b). A formalapproah to senario analysis. IEEE Software 11 (2), 33{41.Hsia, P., D. Kung, and C. Sell (1997). Software requirements and aeptane testing.Annals of Software Engineering 3, 291{317.Jaobsen, I. (1992). Objet-Oriented Software Engineering. New York: Addison-Wesley.Je�ries, R. (1999, Marh/April). Extreme testing. Software Testing & Quality Engineer-ing , 23{26.J�ez�equel, J.-M. and B. Meyer (1997). Design by ontrat: the lessons Ariane. IEEEComputer 30 (2), 129{130.Kneuper, R. (1997). Limits of formal methods. Formal Aspets of Computing 9, 379{394.Knuth, D. (1984). Literate programming. The Computer Journal 27 (2), 97{110.Knuth, D. (1992). Literate Programming. Center for the Study of Language and Infor-mation.Long, B. and P. Strooper (2001). A ase study in testing distributed systems. InProeedings 3rd International Symposium on Distributed Objets and Appliations(DOA'01), pp. 20{30. IEEE Computer Soiety.MDonald, J., D. Ho�man, and P. Strooper (1998, November). Programmati testing ofthe Standard Template Library ontainer lasses. In Proeedings of IEEE Intl. Conf.Automated Software Engineering, pp. 147{156.MDonald, J. and P. Strooper (1998). Translating Objet-Z spei�ations to passive testorales. In International Conferene on Formal Engineering Methods (ICFEM98),pp. 165{174. IEEE.Meyer, B. (1994). Reusable Software The Base Objet-Oriented Component Libraries.Prentie Hall.Meyer, B. (1997). Objet-Oriented Software Constrution (Seond ed.). Prentie Hall.Miller, S. (1998). Speifying the mode logi of a ight guidane system in CoRE andSCR. In 2nd ACM Workshop on Formal Methods in Softwre Pratie.Murphy, G., P. Townsend, and P. Wong (1994). Experienes with luster and lasstesting. Commun. ACM 37 (9), 39{47.23

Musser, D. and A. Saini (1996). STL Tutorial and Referene Guide. Addison-Wesley.Nygard, M. and T. Karsjens (2000, May). Test infet your Enterprise JavaBeans. JavaWorld .Rihardson, D. and L. Clarke (1985). Partition analysis: a method ombining testingand veri�ation. IEEE Trans. Soft. Eng. SE-11 (12), 1477{1490.Spivey, J. (1992). The Z Notation: a Referene Manual (seond ed.). New York:Prentie-Hall.Sun Mirosystems (2001). Java Development Kit. http://java.sun.om.produts/jdk:Sun Mirosystems.Weyuker, E. and T. Ostrand (1980). Theories of program testing and the appliation ofrevealing subdomains. IEEE Trans. Soft. Eng. SE-6 (3), 236{246.White, L. and E. Cohen (1980). A domain strategy for omputer program testing. IEEETrans. Soft. Eng. SE-6 (3), 247{257.Winston, P. (1975). The Psyhology of Computer Vision. MGraw-Hill.

24

