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Abstract

Most face recognition approaches either assume con-
stant lighting condition or standard facial expressions, thus
cannot deal with both kinds of variations simultaneously.
This problem becomes more serious in applications when
only one sample images per class is available. In this paper,
we present a linear pattern classification algorithm, Adap-
tive Principal Component Analysis (APCA), which first ap-
plies PCA to construct a subspace for image representation;
then warps the subspace according to the within-class co-
variance and between-class covariance of samples to im-
prove class separability. This technique performed well un-
der variations in lighting conditions. To produce insensitiv-
ity to expressions, we rotate the subspace before warping in
order to enhance the representativeness of features. This
method is evaluated on the Asian Face Image Database.
Experiments show that APCA outperforms PCA and other
methods in terms of accuracy, robustness and generaliza-
tion ability.

1. Introduction

Within the last several years, research on face recogni-
tion has been focused on diminishing the impact of changes
in lighting conditions, facial expression and poses. Two
main approaches have been proposed for illumination in-
variant face recognition. One is to represent images with
features that are less sensitive to illumination change such
as the edge maps of an image. But edge features generated
from shadows are related to illumination changes and may
have a significant impact on recognition. The other main
approach supposes that the surface of human faces is Lam-
bertian reflected and convex and tries to construct a low di-
mensional linear subspace for face images taken under dif-
ferent lighting conditions [3]. But it is hard for these sys-
tems to deal with cast shadows. Furthermore, these systems
need several images of the same face taken under specific

lighting source directions to construct a model of a given
face. In many cases, it is hard to meet this requirement,
such as recognizing face images from historic photographs.

As for expression invariant face recognition, one ap-
proach is to morph images to be the same shape as the one
used for training. But it is not guaranteed that all images
can be morphed correctly — for example an image with
closed eyes cannot be morphed to a neutral image because
of the lack of texture inside the eyes. Another approach is
to use optical flow. However, it is difficult to learn the local
motions within feature space to determine the expression
changes of each face, since different persons express a cer-
tain expression with different ways. Martinez [6] proposed
a weighting method that weights independently those local
areas which are less sensitive to expressional changes. But
features that are insensitive to expression changes may be
sensitive to illumination changes as noted in [5].

Previous methods dealing with illumination or facial ex-
pression variations cannot compensate for both variations
simultaneously. We present a new method, Adaptive Prin-
cipal Component Analysis (APCA) to warp the face space
by whitening and filtering eigen features according to the
second order statistics of the samples. We further improve
APCA by space rotation to enhance the representativeness
of features. Experiments show that our method outperforms
PCA [1] and Fisher Linear Discriminant (FLD) [2] on face
recognition with both illumination and expression changes.

2. Adaptive Principal Component Analysis

We first apply Principal Component Analysis (PCA) [1]
for feature abstraction because of its good generalization ca-
pacity. We choose to use raw data as samples for PCA since
preprocessing such as edge maps might introduce features
that are highly sensitive to certain facial variations. Conse-
quently, every face image can be projected into a subspace
with reduced dimensionality to form an m-dimensional fea-
ture vector sj,k with k = 1, 2, ···Kj denoting the kth sample
of the class Sj .
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2.1 Bayes Decision Rule

After constructing the face subspace for image represen-
tation, we need to warp this face space to enhance the class
separability. The Bayes classifier is the best classifier with
minimum error rate for pattern recognition if prior proba-
bilities are known. Because it is difficult to obtain condi-
tional density function of certain classes, we generally as-
sume normal distribution for simplification. Consequently,
the conditional density function would be:

p(s|Sj) =
exp[− 1

2 (s − µj)T cov−1
j (s − µj)]

(2π)
m
2 |covj | 12

(1)

where µj is the mean of class Sj and covj is the covariance
matrix of Sj . A more strict assumption might be needed
due to the fact that samples are often too few for estimation.
PCA [1] treats all features equally so it is assumed that the
within-class covariance is the unit matrix [4], that is

cov = I. (2)

But PCA does not take into account the classification of
samples. In the case of image variations due to illumina-
tion, these lighting changes (within-class covariance) be-
come dominant over the characteristic differences between
faces (between-class covariance). That is the reason why
PCA does not work well in this case.

Chengjun Liu and Harry Wechsler [4] proposed a
method PRM which assumes all the within-class covariance
matrices are identical and diagonal, that is:

cov = diag{δ2
1 , δ2

2 , ..., δ2
m} (3)

where the δ2
i , i ∈ m are estimated by sample variance in

the corresponding eigen direction. However, performance
of this method depends on how features capture the within
class covariance.

2.2 Whitening and Eigenface Filtering

The above methods for whitening are not sufficient to
compensate for face image variations because the estima-
tion of the conditional density function is not accurate. This
is due to the fact that eigen features extracted by PCA repre-
sent overall covariance and the estimation of the pdfs is af-
fected not only by within-class covariance but also between-
class covariance. In order to compensate for the influence
of between-class covariance on the estimation of pdf, we in-
troduce a whitening power p to control the distribution, that
is

cov = diag{λ−2p
1 , λ−2p

2 , ...λ−2p
m }, (4)

where λi(i = [1...m]) are the eigenvalues extracted by
PCA. Consequently, the whitening matrix Z is:

Z = diag{λp
1, λ

p
2, ...λ

p
m}, (5)

where the exponent p is determined empirically.
The aim of filtering is to enhance features that cap-

ture the main differences between classes (faces) while di-
minishing the contribution of those that are largely due
to lighting variation (within class differences). We thus
define a filtering parameter Υ which is related to identity-
to-variation (ITV) ratio. The ITV is a ratio measuring the
correlation of a change in person versus a change in vari-
ation for each of the eigenfaces. For an M class problem,
assume that for each of the M classes (persons) we have ex-
amples under K standardized different lighting conditions
— in our case the lighting source is positioned in front,
above, below, left and right. Let us denote the ith element of
the face vector of the kth lighting sample for class (person)
Sj by si,j,k. Then

ITVi = BetweenClassCovariance
WithinClassCovariance

=
1

M

∑ M
j=1

1
K

∑ K
k=1 |si,j,k−�i,k|

1
M

∑ M
j=1

1
K

∑ K
k=1 |si,j,k−µi,j | ,

�i,k = 1
M

∑M
j=1 si,j,k,

µi,j = 1
K

∑K
k=1 si,j,k, i = [1, · · ·m].

(6)

Here �i,k represents the ith element of the mean face vector
for lighting condition k for all persons and µi,j represents
the ith element of the mean face vector for person j under
all lighting conditions. We then define the filtering matrix
Υ by:

Υ = diag{ITV q
1 , ITV q

2 , ...ITV q
m}, (7)

where q is an exponential scaling factor determined empir-
ically as well. After the affine transformation, the condi-
tional pdf would be:

p(s|Sj) =
exp[− 1

2

∑m
i=1

(si−µi,j)
2

λ−2p
i ITV −2q

i

]

(2π)
m
2

∏m
i=1 λ−p

i ITV −q
i

(8)

and the distance d between two face vectors sj,k and sj′,k′

is define by the Euclidean distance of their transformed vec-
tors:

djj′,kk′ = ‖ZΥ(sj,k − sj′,k′)‖2, (9)

Therefore, our final transformation matrix is:

U ′ = ZΥV, (10)

where V is the set of eigenvectors extracted by PCA.

2.3 Cost Function and Experimental Results

The whitening matrix Z controls the overall scatter of
all samples and tends to isotropize the subspace while the
filtering parameter Υ is designed to enhance the separability
of classes and may stretch the space. There should be a
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trade off between these two effects. Therefore, we need
to search in a two-dimension space to determine the two
exponents p and q for Z and Υ. We introduce the following
cost function which is a combination of error rate and the
ratio of within-class distance to between-class distance and
optimize it empirically. It is defined by:

OPT =
∑M

j=1

∑K
k=1

∑
m( djj,k0

djm,k0
),

∀m ∈ djm,k0 < djj,k0,m ∈ [1 · · · m].
(11)

where djj,k0 is the distance between the sample sj,k and
sj,0 which is the standard image reference for class Sj

(typically the normally illuminated image). Note that the
condition djm,k0 < djj,k0 is only true when there is a
misclassification error. By minimizing OPT , we can deter-
mine the best choices for p and q to maximally separate dif-
ferent classes. We find the minimum OPT by search in the
region with p and q in the interval [−100, 100]. Although
this is an extremely large range, it illustrates that there is a
unique minimum. Figure 1 shows the relationship between
OPT and p, q for one of the training databases in interval
[-100, 100] and [-4, 4]. The minimum OPT at 7.80 is ob-
tained at p = −0.3, q = 1.4. In all of our trainings, the OPT
is always obtained in interval [-2 2]. The method is tested on
an Asian Face Image Database PF01 [7], consisting of 535
facial images under 5 different standardized illuminations
corresponding to 107 subjects. The size of each image is
171× 171 pixels with 256 grey levels per pixel. We choose
one-third of the 107 subjects to construct our APCA model.
Then we just register the normally lit faces ( images taken
with light source positioned in the front ) of the remaining
two-thirds of the data into our recognition database. We use
other unseen images of the above 71 people under different
lighting conditions for testing (a total of 284 images). This
process is repeated three-fold using different partitions and
the performance is averaged. Table I is the experimental
results achieved with 20 eigen features.

It is clear from the results that APCA performs much
better than both PCA and FLD in face recognition under
variable lighting conditions. Although FLD is fine for the
training data with 91.11% recognition rate, the performance
decreases significantly for the testing data, which demon-
strates the lack of generalisation ability. The recognition

Figure 1. Relationship between OPT , whiten-
ing power p and scaling power q.

Table 1. Performance of PCA, FLD and APCA
for illumination variations with 20 features

Methods PCA Fisher APCA
Training Data 68.33 % 91.11 % 96.11 %
Testing Data 48.73 % 69.01 % 83.66 %

rate for training data is not 100% because we use the normal
lighting image for matching instead of the class mean. The
proposed APCA outperforms PCA and FLD remarkably in
recognition rate with 96.11% for training data and 83.66%
for testing data with little reduction in performance.

3 Rotated APCA

We applied similar techniques to face images with vari-
ations in expression, but could not attain levels of perfor-
mance comparable to those obtained on illumination vari-
ant faces. That is because Eigenfeatures extracted by PCA
on face images with illumination variation naturally clus-
ter into two groups: features strongly related to within-class
covariance, and features strongly related to between-class
covariance. Usually the first three eigenfaces are strongly
related to illumination (within-class) variation. Therefore, it
is easy to find the eigenfeatures that represent within-class
variations and suppress these with eigenfiltering. How-
ever, for expression change, since different people display
the same expression in different ways, PCA does not suc-
cessfully separate between-class and within-class features.
This means that the estimation of conditional pdfs may be
significantly affected by between-class covariance, which
may result in low recognition rates. This is corroborated by
the fact that the identity-to-variation ratio ITV is roughly
the same value for all eigenfeatures as shown in Figure 2.
When we compress the space in one direction, the within-
class covariance and between class-covariance are both af-
fected leading to poor separability.

3.1 Space Rotation

We therefore rotate the feature space according to
within-class covariance to enhance representativeness of
the features and to improve estimation of the conditional
pdfs. After rotation, some features represent predomi-
nantly within-class variation and by selecting these via
eigenfiltering the influence of between-class variation on
estimation is diminished. Moreover, after rotation, fea-
tures are highly distinguished by their ITV and compression
in within-class features will affect within-class covariance
more than between-class covariance and hence improves
separability. The rotation matrix R is a set of eigen vec-
tors obtained by apply singular value decomposition to the
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Figure 3. Test performance for different tech-
niques applied on face recognition

within-class covariance matrix. Every face vector s is trans-
formed into the new space by R as follows,

r = RT s. (12)

We can see from Figure 2 that after rotation, features are
highly distinguished by their ITV thus representativeness of
features is improved. After rotation, we need to recalculate
the overall covariance λ and ITV, than apply our previous
recognition procedure in the new feature space.

3.2 Experimental Results

We tested our methods on the Asian Face Image
Database PF01 [7]. We used 284 images with different fa-
cial expressions from 71 people to construct the face sub-
space, the other 36 people with 144 images were reserved
for testing. All the experiments are done with three fold
cross validation and the performance is averaged. We also
apply the same technique on face images with both lighting
changes and expression changes by combining all images
from the above experiments.

Figure 3 shows the test performance for the following
techniques PCA, FLD, PRM, APCA, RPRM and RAPCA
applied on two different kinds of facial variations respec-
tively. We can see again that RAPCA achieves the best per-
formance among all techniques. The performance of FLD

drops significantly for combined variations and recognition
rate changes apparently with the number of eigen features.
All the tests have shown that rotation can improve the per-
formance since recognition rates for APCA and PRM in-
crease 10 percent and 5 percent respectively after rotation.
Among all the techniques, RAPCA is the most robust one
since the performance is insensitive to the number of fea-
tures used for representation and it is also immune to both
variations.

4 CONCLUSION

In this paper we proposed an Adaptive Principle Com-
ponents Analysis (APCA) method for illumination and ex-
pression invariant face recognition. The APCA features are
extracted from standard PCA features using two steps: first
a whitening transformation to normalize the scatter matrix,
then a filtering of the eigenfaces to enhance the separa-
bility of classes. Three-fold cross-validated studies show
that APCA performs significantly better than both PCA and
FLD in terms of accuracy, robustness and generalization
ability. We also find out that feature space rotation can en-
hance the representativeness of features hence improving
the performance for recognition. If a rotation transforma-
tion is introduced, RAPCA can further enhance the gener-
alization ability and robustness.

However, our rotation is only concentrated on within-
class covariance which is likely to be suboptimal. Future
work will focus on suitable rotation transformations that
achieve better class separability.
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