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UNDERSTANDING METACOGNITIVE FAILURE 

 

This paper reports on a study that investigated patterns of collaborative 
metacognitive activity in senior secondary school classrooms. Although peers 
working together on mathematical tasks may enjoy the metacognitive benefits of 
being able to monitor and regulate each other’s thinking, collaboration does not 
guarantee that they will achieve a mathematically productive outcome. The notion of 
metacognitive “red flags”, or warning signals that problem solving has gone astray, 
is developed in order to identify three possible scenarios for metacognitive failure. 
These scenarios, described by the metaphors of blindness, vandalism, and mirage, 
are illustrated via analysis of videotaped lesson transcripts obtained from a 
secondary school mathematics classroom. The results provide insights into the 
interactive constitution of metacognitive activity during small group work, and 
suggest implications for teachers concerning the fostering of communication and 
problem solving within a classroom culture of inquiry. 
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UNDERSTANDING METACOGNITIVE FAILURE 

Research on the role of metacognition in mathematical thinking flourished during the 1980s 

and into the 1990s, in concert with the emergence of new mathematics curriculum and policy 

documents that placed increased emphasis on problem solving and mathematical reasoning 

(e.g. Australian Education Council, 1991; National Council of Teachers of Mathematics, 

1989). At the same time, teachers have been urged to engage students in small group or whole 

class discussion as a means of developing mathematical understanding (National Council of 

Teachers of Mathematics, 1991). Problem solving and communication remain central to 

current visions of effective mathematics teaching (National Council of Teachers of 

Mathematics, 2000). However, our theoretical understanding of problem solving processes, 

and how students’ mathematical thinking is shaped by their interaction with peers, is far from 

complete (e.g. Lester, 1994; Schoenfeld, 1992), suggesting that new frameworks are needed 

to bring together fundamentally cognitive and fundamentally social perspectives on human 

thought and action (Schoenfeld, 1999). 

It is widely acknowledged that metacognitive processes, that is, how students monitor 

and regulate their thinking, are crucial to successful performance on mathematical tasks, and 

many studies have investigated the metacognitive strategies which secondary school students 

use in problem solving. Many of these studies have focused on students working individually, 

in experimental settings, on tasks prescribed by the researcher (Fitzpatrick, 1994; Randhawa, 

1994). The few classroom based studies that have investigated the metacognitive potential of 

small group problem solving have typically used researcher controlled interventions that 

impose group structures (e.g. based on ability) on students who are unfamiliar with this way 

of working (Artzt & Armour-Thomas, 1992, 1997; Curcio & Artzt, 1998; Stacey, 1992). 

Despite increasing interest in the situated nature of mathematics learning (see Lerman, 2000), 
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there has been little research on the characteristics of collaborative metacognitive activity 

occurring when students work together in natural classroom settings. 

The research discussed in this paper is part of a larger study, carried out in upper 

secondary school classrooms, that investigated patterns of teacher and student social 

interactions associated with metacognitive activity, and assumptions about teaching and 

learning mathematics underlying teachers’ and students’ actions (Goos, 2000a). A major aim 

of the study as a whole was to explore links between peer interaction and metacognitive 

activity in authentic classroom settings. Of particular interest was the potential for peers to act 

as a sounding board for refining and elaborating students’ own ideas (Teasley, 1997). 

Results from this study reported previously have indicated that jointly transacted 

monitoring and regulation can indeed help students to overcome obstacles in their progress 

towards successful solution of mathematical problems (Goos, 1997; Goos & Geiger, 1995). In 

the classroom, collaborative metacognitive activity was characterised by students offering 

their thoughts to peers for inspection, while acting as a critic of their partners’ thinking. In 

addition, the interaction was reciprocal in that students monitored and regulated both their 

own and each other’s thinking when working together on problems. Nevertheless, it would be 

misleading to claim that peer collaboration always achieves a mathematically productive 

outcome. Hence the purpose of this paper is to identify circumstances in which collaboration 

may be metacognitively fruitless, and to suggest reasons for this lack of success. The 

following section develops a model of metacognitive activity to account for both successful 

and unsuccessful problem solving outcomes. In the remainder of the paper, findings from the 

empirical study referred to above are presented in order to illustrate three possible scenarios 

for metacognitive failure. 
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Metacognitive Success and Failure 

Frameworks for analysing task-oriented mathematical thinking typically identify phases or 

episodes representing distinctive kinds of problem solving behavior, and describe the ideal 

characteristics of each episode. Such frameworks can be used to analyse verbal protocols 

obtained by video or audio taping students as they work on mathematical problems. Perhaps 

the best known is Schoenfeld’s (1985) episode parsing procedure, later adapted by Artzt and 

Armour-Thomas (1992) to study interactions between students as they worked on problems in 

small groups. Figure 1 describes characteristic features of small group problem solving 

episodes identified by Artzt and Armour-Thomas as Reading, Understanding, Analysis, 

Exploration, Planning, Implementation, and Verification. (Their Watching and Listening 

episode type was not included in the theoretical and methodological framework of the present 

study since interest centred on students’ verbalisation of problem solving strategies.) 
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           UNDERSTANDING
• identify task-specific 
  knowledge
• paraphrase problem statement
• recall similar problems
• identify important (& missing) 
  information
• represent information 
  (e.g. diagram, table)
• note givens & goal

                  ANALYSIS
• select appropriate perspective
   & reformulate problem in those 
   terms
• introduce appropriate principles
  and mechanisms
• seek relationships between
   givens and goal

                   PLANNING
• identify solution steps & 
  strategies for combining them

       IMPLEMENTATION
• coherent, well- structured
• follows from plan

              EXPLORATION
• search for relevant information
• use of heuristics

        VERIFICATION
• check calculations
• check solution satisfies 
   problem conditions
• check sense of solution
• evaluate solution process

             READING
• read problem statement

Assess result for 
accuracy & sense

Assess progress 
   towards goal

Assess execution 
      of strategy

        Assess
appropriateness of 
       strategy

Assess knowledge
 (information from 
    problem; task-
 related knowledge)

     Assess
understanding 
   of problem

A nomalous       
   result

Lack of 
progress

   Correct 
calculation 
    errors

   Change  
   strategy

Identify new 
information, 
 reinterpret 
   problem

EPISODE

  Error 
detection

Monitoring Regulation

 

Figure 1. Episode-based model of metacognitive activity during problem solving 

 

While such frameworks acknowledge the central role of metacognitive processes in keeping 

the solution on track, they nevertheless suffer from a number of limitations that were 

specifically addressed in the study reported in this paper. To begin with, existing models – 
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such as that of Artzt and Armour-Thomas – do not consider in detail the types of monitoring 

and regulatory activities that would be appropriate and expected at each stage of the solution. 

Hence one worthwhile modification to existing frameworks involves outlining the possible 

scope of such activities. How this was done in the course of the study reported here is shown 

in Figure 1, in the columns headed Monitoring and Regulation. For example, during an 

Understanding episode, monitoring activities would include assessing the adequacy of one’s 

knowledge about this particular problem and similar tasks, and regulatory activities such as 

identifying additional information may become necessary in the light of this assessment. 

Second, previous research in this area has not distinguished between the routine 

monitoring that merely serves to confirm that all is well, and the more controlled monitoring 

and regulatory processes triggered when students become aware of specific difficulties. It is 

helpful to think of these triggers as metacognitive “red flags” that signal the need for a pause 

or some backtracking while remedial action is taken. Hence in Figure 1 a distinction is made 

between routine assessment of activity during each problem solving episode (for example, 

assessing execution of a strategy), and the conscious actions that may need to be taken in 

response to three types of “red flags” (shown in shaded boxes). 

Recognising the first type of “red flag”, lack of progress, should lead students back to 

analysis of the problem in order to reassess the appropriateness of the chosen strategy and to 

decide whether to persist, salvage whatever information is useful, or abandon the strategy 

altogether. In the latter case it is likely that students will need to reassess their understanding 

of the problem, and search for new information or a new strategy. The second “red flag”, 

error detection, should prompt checking and correction of calculations carried out so far. If 

attempts to verify the solution reveal that the answer does not satisfy the problem conditions, 

or does not make sense, then this third “red flag”, an anomalous result, should trigger a 
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calculation check (assess execution of strategy), followed, if necessary, by a reassessment of 

the strategy. 

Of course, metacognitive “red flags” could occur at points other than those indicated in 

Figure 1. For example, anomalous intermediate results may be discovered during the 

implementation phase, lack of progress could be recognised at the analysis stage if no suitable 

strategy can be identified, and errors could be detected during an exploration episode. 

However, similar regulatory actions would be triggered by “red flags” no matter when they 

occur. 

A third limitation of existing analytical frameworks, and with research on metacognitive 

processes in mathematics generally, is the lack of explicit attention given to characterising 

different forms of metacognitive failure, other than to note that students did not exploit useful 

information, or that checking behavior was absent (Stacey, 1992). Thus the study described in 

this paper further extended the notion of “red flags” to identify a range of different 

metacognitive scenarios that could arise when students work on mathematics tasks. These are 

represented in Figure 2. While metacognitive success will occur if students recognise a “red 

flag” and take appropriate action to deal with the difficulty (or recognise that nothing is 

wrong and continue on the same solution path), less successful outcomes are likely in at least 

three other circumstances. 
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Is a “Red Flag”
  recognised?

No Yes

No

Yes

Is anything   
    wrong?

No response 
      needed

Metacognitive
       mirage

Metacognitive
    blindness

Response 
   needed

Is the response
  conceptually
   appropriate?

No Yes

Metacognitive
    vandalism

Metacognitive
       success  

Figure 2. Metacognitive success and failure scenarios 

 

First, students can be guilty of metacognitive blindness if they fail to notice that 

something is amiss, for example, by persisting with the wrong strategy or overlooking a 

calculation error. Second, students might commit metacognitive vandalism by taking 

destructive action to deal with an impasse. That is, students could change the problem by 

imposing an inappropriate conceptual structure to enable them to apply knowledge already 

available to them. Third, the “red flag” itself may be spurious and represent a metacognitive 

mirage if students “see” difficulties which do not exist, and mistakenly abandon a useful 

strategy, amend calculations which are not in error, or reject correct answers. 

The remainder of the paper draws on observational data from the secondary school 

mathematics classroom that was the primary research site in the study referred to earlier, in 

order to illustrate the three scenarios described above and identify implications for small 

group work on mathematical tasks. 
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The Classroom Study 

Background 

The aims of the study were to investigate characteristics of secondary school students’ 

metacognitive activity as they worked together on mathematical tasks in authentic classroom 

settings, and to examine the teacher’s role in creating a classroom culture of inquiry that 

promotes such mathematical habits of mind. The study was carried out over a three year 

period from 1994-1996 and involved five secondary school teachers and their Year 11 or Year 

12 mathematics classes, all in different schools located in or near a large Australian city. 

Since the study was concerned with classroom interaction processes implicated in 

students’ learning, its methods were consistent with naturalistic inquiry (Lincoln & Guba, 

1985) and included long term participant observation of classrooms (supplemented by audio 

and video recording), interviews with students and teachers, and survey questionnaires. 

Complementary perspectives provided by questionnaire and observational data revealed that 

in one classroom, more so than others, students seemed to be developing positive 

metacognitive dispositions and a preference for learning through interaction with peers. 

Consequently, this classroom was chosen for closer analysis to investigate the research aims 

outlined above. Although this paper is concerned with students’ metacognitive activity rather 

than the teacher’s role in establishing a culture of inquiry, it will be helpful to describe briefly 

significant features of the classroom in question to provide a backdrop against which the 

students’ actions may be examined. (For a detailed analysis of this classroom see Goos, 

Galbraith & Renshaw, 1999). 

Observations of the teacher and the classes taught by him over a two year period (Year 

12 in 1995 and Year 11 in 1996) suggested that he was successful in creating a culture of 

mathematical inquiry (Borasi, 1992; Schoenfeld, 1989; Schoenfeld, 1994; Weissglass, 1992). 
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Explanation and justification of ideas featured strongly in classroom social interactions and 

there was a high incidence of student-student mathematical discussion, defined by Pirie and 

Schwarzenberger (1988) as purposeful talk on a mathematical subject, with genuine student 

contributions and interaction. Instead of assigning students to groups structured according to 

achievement levels, gender, or other student characteristics, the teacher invited them to work 

together in social groupings of their own choosing. In fact, it was observed that students 

frequently initiated discussion between themselves without the teacher’s prompting. These 

spontaneous interactions seemed to indicate that they had appropriated the social norms and 

the modes of reasoning valued by the teacher, which stemmed from his central pedagogical 

belief in challenging students to make personal sense of the mathematics they were learning. 

Data gathering and analysis methods 

Target students within this classroom were chosen for videotaping and interview on the basis 

of their metacognitive sophistication and preference for working collaboratively with peers, as 

judged from preliminary observation and responses to questionnaires (see Goos, 1995; Goos, 

1999 for details of questionnaires). One lesson was observed each week, and target students 

were videotaped and audiotaped as they worked together on tasks set by the teacher as part of 

their regular mathematics program. 

Selected portions of the audio and videotapes were transcribed and the resulting verbal 

protocols parsed into episodes consistent with the framework developed in Figure 1. A finer 

grained analysis of conversational turns (referred to as Moves in the protocol) was then 

carried out to identify the metacognitive function of the students’ dialogue, using a coding 

scheme developed in an earlier study (Goos & Galbraith, 1996). The first type of 

metacognitive event, New Idea, occurred when potentially useful information came to light or 

an alternative approach was mentioned. The second type involved making an Assessment of 

the accuracy or sense of a result, the execution of appropriateness of a strategy, general 
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progress towards a successful solution, or of one’s knowledge or understanding. The coding 

scheme was therefore suitable for identifying monitoring and regulatory activities outlined in 

the episode-based problem solving model presented in Figure 1. 

Three problem solving transcripts, all obtained from the Year 11 class of 1996, have 

been selected to illustrate each of the metacognitive failure scenarios described earlier. The 

excerpts presented here are annotated to indicate New Ideas and Assessments made by the 

students. Although the focus here is on unsuccessful problem solving, it is important to point 

out that most of the evidence gathered from this class (and others taught by this teacher) is of 

successful metacognitive interactions when students worked together (e.g. see Goos & Geiger, 

1995). 

Metacognitive Blindness – Area of a Koch Snowflake 

The first example of metacognitive failure illustrates how students can be oblivious to a “red 

flag”. In this case, metacognitive blindness prevented students from recognising a simple error 

in calculating the area of a Koch Snowflake. The lesson comes from a unit of work which 

introduced Year 11 students to some of the important ideas of chaos theory, via a teacher-

produced booklet containing explanatory text, worked examples, and problems. 
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Area and Length of a Koch Snowflake or an Island of Infinitely Long Coastline. 

The Koch Snowflake has a number of interesting numeric properties related to its geometry. Let’s firstly 
investigate its area. 

 
  

Level 0 Level 1 Level 2 
 

(*) Let’s start with a Level 0 triangle of side 1 unit in length. The area of this triangle will therefore be 
3

4
 

square units. The Level 1 triangle has an area of 
3

4
+

3

12
 square units. The Level 2 triangle has an area of 

3
4

+
3

12
+

3
54

 square units (*)  

and Level 3 an area of 
3

4
+

3
12

+
3

54
+

3
243

. You should notice that this becomes a geometric progression 

after the first term with 
  
a =

3

12
 and 

  
r =

2

9
. 

This is a converging series so it is possible to find its sum to infinity. 

S∞ =
3

4
+

a

1 − r
=

3

4
+

3

12

1 −
2

9

= 5 3
14

 

Thus the area of a Koch Snowflake with side length 1 is 
5 3

14
. It is possible to argue from this example that the 

area of a Koch Snowflake is finite no matter what the length of the original triangle. 
 

Figure 3. Finding the area of a Koch Snowflake 
 
 

The teacher began the lesson by asking the class to read the material reproduced in 

Figure 3, insisting that they should check the calculations in the text to ensure that there were 

no errors. (The possibility of an error was brought to the teacher’s attention as a result of my 
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own calculation of the area of the Level 2 snowflake as  square units, and of 

the Level 3 area as , results which differ from those given in the text.) The 

transcript documents the attempts of two students, Rhys and Sean, to make sense of the 

passage enclosed by two asterisks (*) in Figure 3. Although there was not an explicit 

“problem” to be solved, the students problematised the text by treating the reported results as 

tentative and requiring validation. Thus, the implicit problem on which they worked could be 

stated as: Find the areas of a Level 0, Level 1 and Level 2 Koch snowflake. A model solution 

for finding the area of the Level 1 snowflake is provided in Figure 4. 

 

 

The Level 0 snowflake is an equilateral triangle with sides 1 unit 

long and hence area 3
4

. The Level 1 snowflake is constructed by 

adding three equilateral triangles, each of which has sides 1
3  units 

long. Hence the base of these triangles is 1
3  and the height 

1
3 cos30° . The area of each of these added triangles is: 

Area ∆ = 1
2 bh

= 1
2 × 1

3 × 1
3 × cos30°( )

= 1
2 × 1

3 × 1
3 × 3

2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

= 3
36

 

Since there are three added triangles, the additional area is 
3

12
. Therefore the total area of a Level 1 snowflake 

is 
3

4
+

3

12
. 

Figure 4. Area of Level 1 Koch snowflake 
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The boys quickly calculated the area of the Level 0 snowflake (an equilateral triangle 

with sides of 1) as , the same result as stated in the text. However, the added 

complexity of the Level 1 snowflake caused problems for both students, particularly in 

handling the many fractions in the calculations. Their use of slightly different versions of the 

formula for area of a triangle also made it difficult for them to compare their working (shown 

in Figure 5) and identify any errors the other may have made. Sean’s error was to use 

 instead of  for the base of the added triangle, and, despite 

having many opportunities to make the correction, Rhys did not do so until Move 66, some 

eleven minutes after the students started work. 

Sean’s working Rhys’s working 

    

A of ∆ = B × H
2

⎛ 
⎝ 

⎞ 
⎠ 

=
1
6 × 1

3 cos 30( )
2

(*)
 

  

Area  ∆ = 1
2 B × h

= 1
2 × 1

3 × 1
3 cos 30( )

= 1
2 × 1

3 × cos 30
3

⎛ 
⎝ 

⎞ 
⎠ 

= 1
6 × cos 30

3
⎛ 
⎝ 

⎞ 
⎠ (*)

 

Figure 5. The students’ working for the Level 1 snowflake 

 

The first evidence of Sean’s error came to light when he queried Rhys’s working: 

25. S: (Leaning over and pointing to Rhys’s working, disputing what he sees) No no no no no. 
(Assessment—strategy execution) 

26. R: (disagreeing with Sean) Mm. 
27. S: It’s a half times everything. Look. It’s base times height on two. (Assessment—strategy execution) 
28. R: Yeah, or a half times it, multiplication’s ... (waves hand, lost for the right word) commutative, it 

doesn’t matter which order you do it in. (Assessment—strategy execution) 
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29. S: Yeah but— 
30. R: It’s root three on four, it’s the same as that— 
31. S: Yeah I know but look (pointing to diagram) that, all that, so it’s one third of a third cos thirty, over 

two. (Assessment—strategy execution) 
32. R: Or a third cos thirty over six. It doesn’t really matter. (Assessment—strategy execution) Besides I 

know, I’m pretty sure it’s right because I’m getting what Mr G (teacher) got. 
33. S: (looks at his own working, shakes his head) But look, I got like this—(Holds up the page of his 

book to show Rhys. Distracted by teacher’s voice, talking to another student. Rhys does not look.) 

Sean’s intervention was probably prompted by the difference he observed in their respective 

calculations (marked with an asterisk in Figure 5) – a discrepancy caused by his incorrect use 

of  for the triangle’s base, not by incorrect manipulation of area formulae as he 

seems to be arguing. This would explain Sean’s argument that “it’s a half times everything”, 

if he believed that Rhys had not carried out the step of dividing (base times height) by two. 

At this point Rhys appealed to the authority of the text and the teacher to verify his 

result for the area of the Level 1 snowflake as  (Moves 34 and 38). However, 

Sean, who had remained unconvinced by Rhys’s argument earlier, was still trying to track 

down the source of the difference between his own and his partner’s calculations (Move 35): 

34. R: (raising hands in triumph, his answer matches the result in the workbook) Ayy! 
35. S: (Showing Rhys his work) Look. It’s base times height over two. Is that a sixth or a third? 

(Referring to base) (Assessment—strategy execution) 
36. R: (Looking on) It’ll be a sixth. 
37. S: A sixth times a third cos thirty. 
38. R: (Teacher has walked over. Rhys takes this opportunity to check his work. Sean is left “hanging”. 

He listens to this conversation.) Mr G, I got it. 
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Unfortunately, Rhys did not spot the error (Move 36), perhaps because he merely 

compared Sean’s working with his own and mistakenly assumed that  had the 

same meaning in both cases. In fact, Sean’s  was meant to represent B, the 

length of the triangle’s base, while Rhys’s  was calculated from the 

 part of the area formula, . 

While Rhys moved on to Level 2, Sean persisted with the Level 1 calculation in the 

hope that his error might be revealed. Consequently the next few minutes were filled with 

confusion as neither realised that they were now working on different Levels of the 

snowflake. Only when Sean verbalised the key line in his working was Rhys able to identify 

the simple error that had hindered Sean’s progress: 

65. S: Yeah, then look—I got (Rhys not looking) Oi! Oi oi oi! (Rhys looks) All that, over two, right. 
66. R: (Finally picking up Sean’s error) No, it’s already over two. (Assessment—strategy execution) 
67. S: Is it? 
68. R: (Matter-of-factly) You’ve done a half times a third to get the one sixth, haven’t you. 
69. S: Yeah. 
70. R: So the half is instead of having it over two. Otherwise you’d have a third times that over two. And 

a third over two just cancels to become one sixth. (Shows Sean the equivalent point in his own 
working) 

Rhys then guided Sean through his own calculation of the Level 1 area, until the teacher 

reconvened the class to discuss the section of the text they had been investigating. 
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Grounds for Metacognitive Failure 

Analysis of the full transcript revealed that the predominant metacognitive function of 

the students’ dialogue was to assess strategy execution, with nine assessments of this type 

being made by Rhys and five by Sean (out of a total of 19 metacognitive acts in a transcript 

comprised of 87 conversational Moves). And yet this metacognitive monitoring did not 

immediately help the students to raise the Error detection “red flag” and take corrective 

action. Instead, both students displayed metacognitive blindness in overlooking the error. This 

mistake was mentioned on five separate occasions (Moves 35 and 37 above; also Moves 43, 

49 and 60, not shown here), and yet it was not recognised as such until Move 66, when Rhys 

casually pointed out that it’s already over two. Interestingly, the teacher-produced text 

provided access to a result (i.e. the areas of each successive Level of the snowflake) that acted 

as a reference point for the students’ own area calculations, and thus alerted them to the 

possible existence of errors in their working. However, this knowledge did not necessarily 

help the students to locate their own or a partner’s error. 

An analysis of metacognitive failure should also attempt to identify opportunities that 

may have arisen for errors to be corrected. Let us return to the point when Sean’s mistake first 

appeared, when he disagreed with Rhys’s calculation for the Level 1 area (Move 27). Rhys’s 

response was to brush off Sean’s criticism; indeed, he appeared more interested in ensuring 

his own working was correct than in engaging with Sean’s concerns. Later, instead of 

challenging Rhys directly, Sean sought feedback on his own calculation of the added 

triangle’s area (Move 35). Rather than taking the time to examine his partner’s working and 

give a reasoned critique, Rhys simply acquiesced to Sean’s mistaken interpretation. If either 

of these moments had been exploited by challenging, rather than accepting, each other’s 

thinking, the boys’ metacognitive blindness may have been cured. 
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Metacognitive Vandalism – Forces 

Another kind of metacognitive failure occurs when students do not respond appropriately to a 

“red flag”. The label metacognitive vandalism can be applied to situations where students deal 

with an impasse, such as lack of progress, by changing the problem conditions to suit the 

knowledge they think they can apply. An example of such a situation is analysed below. The 

transcript comes from a lesson close to the end of Year 11, which was part of a unit on 

dynamics. The students already had some experience with problems applying Newton’s 

Second Law of motion  when all forces are acting in the same straight line, and 

with resolving forces into components and finding the resultant of forces acting at a point. 

To introduce Newton’s Second Law in vector form, the teacher posed a problem 

involving a body on an inclined plane. Without any preamble, he drew a diagram of a 5 kg 

body on a plane of inclination 45˚ to the horizontal. The body was attached to a rope that 

applied a force acting at an angle of 20˚ to the plane (see Figure 6 for the diagram and a 

worked solution). The teacher simply asked students to “describe the motion of that body”. 

This had the effect of establishing a problem-oriented context for the new work, so that 

students were expected to draw on their existing knowledge and construct a solution method 

by themselves instead of passively imitating a standard procedure demonstrated by the 

teacher. Because the students had never dealt with a problem of this type before, they needed 

to work together to identify relevant knowledge and monitor their efforts to apply their 

knowledge to the problem. This need was clearly expressed by one student (Sean), whose 

immediate response to the teacher’s task instructions was to ask “Can we collaborate?”, to 

which the teacher replied “Of course – just not with me!” 
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10

200

450

50 

N

 
The forces acting on the body of mass 5 kg are the tension in the rope 10 N, the weight 50 N (taking g as 10 
m/s2), and (assuming the body stays on the plane) the normal reaction N, acting in the directions shown in the 
diagram above. 

Resolving normal to the incline, we have 

  

N + 10 sin 20° −50 cos45° = 0

N + 3. 4 − 35. 4 = 0

∴ N = 32

 

Resolving up the incline, and representing the resultant force as R, we have 

R

 

= 10 cos20°−50 sin 45°

= 9. 4 − 35.4

= −26

 

Let the acceleration be a m/s2. From R = ma, we have 

    

−26 = 5a

∴ a = −5.2
 

Hence the body moves down the plane with acceleration 5.2 m/s2. 
Figure 6. Solution to the Forces problem 

 

While most of the class relied only on their peers for help, some students did 

“collaborate” with the teacher by asking for clarification of the problem conditions, or for 

confirmation of their strategy. In these discussions with individual students, the teacher 

provided only enough information to satisfy the student’s immediate need, so that assistance 

was contingent upon progress already made. As a result of these private consultations, the 

teacher judged it necessary to intervene at two points to supply hints to the whole class. The 
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transcript analysed here records the conversations of three students – Rhys (who featured in 

the Koch Snowflake example), Alex, and Dylan – before these teacher interventions occurred, 

and focuses on the first sixteen minutes in which the students worked on the problem. 

They faced two difficulties in this time – identifying the forces acting on the body, and 

choosing appropriate axes for resolving the forces into components. The first difficulty was 

associated with metacognitive vandalism, in that the students attempted to impose their 

knowledge of frictional forces on a problem in which friction was to be disregarded. 

Fortunately, this instance of vandalism did not irretrievably damage the solution process, and 

the relevant forces were eventually identified. The second difficulty, arising from the 

students’ choice of horizontal and vertical axes when the problem conditions called for axes 

to be taken parallel and perpendicular to the incline, was not overcome within the time frame 

for the analysis. While not classed as vandalism, this procedural error clearly interfered with 

students’ attempts to solve the problem. 

Signs of the students’ first difficulty appeared almost immediately, when Alex mused “I 

wonder if this is the same thing we do in Physics?”, and Rhys asked the teacher “Mr G, is 

there friction?” The boys had already tackled similar problems in Physics lessons, with the 

added complication of rough surfaces and frictional forces. Consequently, despite the 

teacher’s repeated instructions to ignore friction, the students found it difficult to separate 

their Mathematics knowledge from their Physics knowledge, and “pretend” they knew 

nothing about how this force works. In addition, it seems likely that they knew less about 

friction than they thought they did, since there is evidence later in the transcript which 

suggests that they believed the normal reaction need only be considered when friction is 

called into play. 

The boys worked separately on their initial calculations and then checked their results 

with each other before proceeding further. When they arrived at different answers, it became 
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clear that Alex had chosen horizontal and vertical axes and found components of 10 cos 65˚ 

(4.23) and 10 sin 65˚ (9.06) respectively, while Rhys had resolved the 10 N force into 

components parallel and perpendicular to the incline. 

19. R: So what did you guys get for the two components? 
20. A: Four and nine. (i.e. 10 cos 65˚ and 10 sin 65˚) Although that’s just the direction of (inaudible). 
21. R: What? Are you sure? (Assessment—strategy execution) 
22. A: Four and nine. Ten cos sixty— 
23. R: Oh I used cos twenty! Bit stupid! (Assessment—strategy execution) 
24. A: So you can work out the velocity. (Correcting slip of the tongue) Oh, you can work out the 

acceleration. (New Idea) 
25. R: (Changing his working) Sixty-five. 

Although Rhys’s approach was the more appropriate, he unquestioningly amended his 

working to match Alex’s calculations, and an opportunity to establish a more productive 

solution path was lost. 

The boys then retreated to a lengthy Analysis episode in which they tried to reconcile 

their knowledge of frictional forces with the teacher’s instruction to ignore friction in this 

problem. So intent were they on identifying forces not originally marked on the teacher’s 

diagram that they overlooked the effect of the 10 N force in all their subsequent calculations. 

Adding to their concern over which forces to include in their representation of the problem 

was their inappropriate choice of axes, which made it more difficult for them to make 

decisions about the direction of the body’s motion. The students proposed many New Ideas in 

this episode, but since few were clarified, elaborated, or assessed, no meaningful progress was 

made on the problem. Amidst the plethora of suggestions was one that could have improved 

the students’ chances of solving the problem (Move 40) if it had been considered more 

carefully: 

38. R: [...] What I reckon—If we want to know displacement— 
39. A: Hey! We know that because— 
40. R: —we take the direction of the force in the same direction as the displacement. (New Idea) So we 

know the force ... that’s um cos, cos ... 
41. D: Four point two three. 
42. R: Ten cos sixty-five— 
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Rhys’s New Idea proposed a useful strategy – that of finding components parallel to the 

incline – yet neither he nor his partners explored the idea further, and he returned to his 

earlier, unhelpful, calculation based on horizontal and vertical axes (Move 42). 

At this point, Rhys took the solution process even further off track by reintroducing the 

possibility of a frictional force (Move 44). Here the boys may have been referring to Physics 

problem situations represented in diagrams that showed the weight of the body, a frictional 

force opposing its motion, and the normal reaction (and, possibly, the tension in a rope 

attached to the body) (Move 45): 

44. R: (drawing on Alex’s diagram) Has it got any force going that way? (Motioning parallel to, and 
down, the plane) (New Idea) 

45. A: That’s the thing, I don’t think it does. Like in Physics, it’s got one going that way, and one going 
that way, and one going that way. But I don’t know if we have to take into account – 
(Assessment—understanding) 

46. R: —friction. 
47. A: He said not to worry about friction. But, do we do that one? (New Idea) (Pause) Because we got to 

work out whether it’s going up or down. 
48. R: Besides that, we know that the work done by this –  
49. A: I reckon (inaudible). We got to take into account that one. (Motions perpendicular to plane) 
50. R: But how big is it? 
51. A: Well we can work that out. It’s just like, fifty ... oh yeah. It’s just like fifty sine ... um ... fifty cos ... 

(New Idea) 

Alex refused to be distracted by Rhys’s fixation with friction (Move 47), but in doing so 

he faced another apparent difficulty – should he take into account the normal reaction of the 

plane on the body? His hesitancy in including this force suggests that the students believed it 

only acts when a body is moving, or tending to move, on a rough surface; that is, when the 

reaction of the surface on the body has two components, a frictional force opposing the 

motion and a normal force at right angles to the surface. By this reasoning, if friction is to be 

ignored, then so is the normal reaction. Eventually, Alex decided that the normal reaction had 

to be considered (Moves 49 and 55), and Dylan seemed to be in agreement (Move 56): 

55. A: I think, you must need that force, surely. 
56. D: The thing we don’t know, that one’s a factor as well (points to Alex’s diagram). There’s a force 

from that, and we have to compare the two ... (New Idea) 
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After persisting with the problem for a further five minutes, Rhys’s growing frustration 

at their lack of progress led him to bid, unsuccessfully, for assistance from the teacher: 

83. R: Mr G, can you help us with this? (Teacher urges students to think more about it.) We’ve thought 
about it! 

Six fruitless minutes later, Rhys again decided to approach the teacher for help, and he 

quizzed him relentlessly on the missing frictional force. On several occasions the teacher 

repeated that there was no friction, and he also confirmed that the normal reaction must be 

taken into account. The teacher also hinted that horizontal and vertical axes were not 

appropriate, and decided at this point to reconvene the class in order to clarify the choice of 

axes. 

Grounds for Metacognitive Failure 

In analysing the metacognitive function of the students’ dialogue, it emerged that Alex 

took the lead in proposing New Ideas (nine, compared with four from Dylan and three by 

Rhys, in a transcript of 121 conversational Moves) and in keeping track of progress (14 

assessments, six of which were concerned with strategy appropriateness; compared with three 

and five assessments offered respectively by Dylan and Rhys). While this level of 

metacognitive activity was comparable with that observed in other, successful, problem 

solving sessions, a purely quantitative approach does not necessarily reveal the reasons for 

success and failure. In the Forces problem, the students’ failure to resolve their difficulties can 

be attributed to poor metacognitive decisions, which distorted the problem to such an extent 

that the solution could not be obtained. 

Some of these poor decisions were classed as metacognitive vandalism, manifested in 

the students’ tendency to “identify” a frictional force that played no part in the motion of the 

body. Debate over the presence or absence of friction also included questions as to whether 

the normal reaction should be considered, and if so, how its magnitude should be calculated. 

Many metacognitive decisions involved passively accepting, rather than challenging, those 
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New Ideas and Assessments that hindered progress (e.g. Move 21, when the choice of axes 

could have been changed), and ignoring, rather than endorsing, others that were potentially 

useful (e.g. Moves 49, 51, 56, when approaches for finding the normal reaction could have 

been discussed). 

Metacognitive Mirage – Combinations 

In an earlier section of this paper, spurious “red flags” were likened to metacognitive 

mirages that mislead students into seeing errors that did not exist. A less obvious form of 

mirage materialises when students are unsure what they “see” and are unable to make any 

judgment about the correctness of their work. Such a case is illustrated in a further example of 

metacognitive failure, where students suspected they had obtained an anomalous result. 

This example comes from another Year 11 lesson in the early stages of a unit of work 

on combinatorics. Knowing that he would be unavoidably absent for this lesson, the teacher 

had set a series of problems which would give the students their first opportunity to apply 

their newly gained knowledge of combinations. These problems were contained in a teacher-

prepared handout that also included explanations and worked examples, and served as the 

students’ sole text for the topic. The target students are Alex, Sean, Rhys and Dylan (all of 

whom have appeared in classroom vignettes presented previously). Figure 7 shows the first 

problem on which they worked (Question 19 in the problem set), together with model 

solutions. 



  26 

 

19 How many selections of five cards can be made from a pack of 52 playing cards so that there are: 
 a at least three aces? b three hearts? c at least one heart? 
Solutions 
a Possible hands could contain either three  

or four aces. 
b The hand must contain three hearts and 

two non-hearts. 
∴ number of selections 

 

= 4C3×48C2( )+ 4C4×48C1( )
= 4 × 1128( )+ 1 × 48( )
= 4512 + 48
= 4560

 
∴ number of selections 

  

= 13C3×
39C2( )

= 286 × 741
= 211926

 

 
c The hand may contain either one, two, three, four, or five hearts. (A simpler method is to find the number of 

hands with no hearts and subtract this from the total number of five card hands.) 

∴ number of selections 

  

= 13C1×39C4( )+ 13C2×39C3( )+ 13C3×39C2( )+ 13C4 ×39C1( )+13C5

= 13 × 82 251( )+ 78 × 9139( )+ 286 × 741( )+ 715 × 39( )+ 1287
= 2 023203

 

Figure 7. Combinations problems 

 

After reading the stem to Question 19 and making the observation that there were 52C5 

hands in total, Dylan immediately recognised that this would give too large a number for part 

(a) of the question, which imposed the constraint of having at least three aces in the hand. 

Nevertheless, all three boys used the nCr buttons on their calculators to gain a feel for the 

problem and discovered that 52C5 does indeed represent a very large number of hands 

(2,598,960). 

Although they had identified the relevant information in the problem, the students 

struggled to formulate a strategy for taking account of the specified selection of at least three 

aces. 

13. A: How do you do it with three aces? (No response) Maybe we have to work out the probability of 
aces or something. (New Idea) 

14. S: Well that’s ... four out of fifty-two. That’s one out of thirteen chances you’ve got an ace. 
15. A: (doubtfully) Yeah, but how do you work out these three aces? 
16. D: No, you’ve got five cards, so it’s only fifty-two, ah ... fifty-two C— (New Idea) 
17. A: Ohh! Do C two, that’s how many won’t have— (New Idea) 
18. D: Yeah, and you got to have— 
19. A: (simultaneously) —a certain three cards. 
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20. D: That certain three cards, will be your aces. 

Alex and Dylan proposed that 52C2 might represent the number of five card hands 

without three aces (Moves 17-20), foreshadowing an approach based on mutually exclusive 

operations and the addition principle. (Note that they still had not come to grips with the “at 

least” condition.) Despite their initial enthusiasm for this strategy, it soon became apparent 

that the boys had no way of knowing whether or not they were on the right track: 

24. D: Aarrh I don’t know if I’m doing it right or I’m doing it wrong! (Assessment—strategy 
appropriateness) 

Before long, the boys abandoned part (a) of the problem and acknowledged that they 

were stuck on Question 19 as a whole. However, they were not yet willing to give up 

completely. 

40. D: So how do you do it? 
41. S: If we had an answer – an answer sheet— (New Idea) 
42. D: Yeah, we could figure it out. (New Idea) 
43. A: You could always think about it without the C rule. And go like, OK, for hearts you’ve got, 

however many choices, and, the next choice you’ve got however many choices, the next choice 
you’ve got ... (New Idea) 

44. D: You got a quar—ter ... (hesitation, draws out this word) A quarter of fifty. (New Idea) 
45. A: (Not listening to Dylan) Think about it the long way. Hey, is there an example somewhere? (New 

Idea) (Checks quickly through handout, overlooks Example 12.) 

 Here the boys considered two potentially useful strategies for dealing with impasses 

such as the one they faced – working backwards from the answer (Moves 41 and 42), and 

looking at a similar problem (Move 45). Unfortunately, they were unable to take advantage of 

either strategy, since the teacher-prepared handout did not provide answers to the problems, 

and they overlooked a worked example in the text that might have provided some clues. 

While Alex continued to hunt for a helpful example in the text, Dylan moved on to Question 

19 (b), and began hesitantly to reason out a strategy which would lead him to the correct 

answer (Move 44). 
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There is evidence here that Dylan was beginning to develop a general understanding of 

how the choices of cards can be constrained. In the case of Question 19 (b), if a five card hand 

is to contain three hearts, then the hearts are selected from only one suit (a quarter of fifty-two 

cards), not the full pack. 

54. D: (writes) This is thirteen out of fifty-two ... is ... hearts. So what would you go? Would you go, 
thirteen ... C ... (inaudible). (New Idea) 

55. S: So are you still trying to work out something for—? 
56. A: No, I’m just going to leave that for now. And wait until he comes up with— 
57. S: Leave Question 19 altogether? 
58. A: Yeah, I don’t know how to do it. (Assessment—understanding) 

Dylan now became absorbed with completing Question 19 (b), and he worked in silence 

while his friends considered their next move. Eventually his persistence was rewarded: 

63. D: (to himself) So should we go ...? I know, I’ve figured it out! I’ve figured it out! (Assessment—
Understanding) (Pause) Multiply that by ... what’s the (inaudible)? It’s thirteen take fifty-two. 
(New Idea) 

64. R: Thirteen take fifty-two? (Assessment—strategy execution) 
65. D: Sorry! Fifty-two take thirteen. Thirty-nine, yeah. (Quietly, to himself) Thirty-nine C two. 
66. A: (Reading Question 20) How many committees of five ...? 
67. D: (to himself, using calculator) Two hundred and eighty-six times ... seven hundred and forty-one! 

(Sounds surprised) 
68. R: Is that for (a) or (b)? 
69. D: That’s for (b)! I think (a)’s wrong actually, but anyway ... (Assessment—accuracy of result) (Long 

pause, writing. Goes on to Question 19c.) C ... one ... C four ... is thirteen times ... eight thousand 
two hundred, no, eighty-two thousand two hundred ... (Long pause, writing. Responds to inaudible 
question, from student off camera.) Well we don’t have any answers, so we don’t even know if 
we’re right. (Assessment—accuracy of result) (Continues working) Thirteen C two ... (now doing 
Question 19c) 

Although Dylan did not verbalise all his working, it is clear that he was pursuing the 

correct approach to solving parts (b) and (c) (see Moves 67 and 69, and Figure 7). 

Nevertheless, the lesson ended with all students still at a loss to know whether they had found 

the correct way to approach these problems. 

Grounds for Metacognitive Failure 

Analysis of the metacognitive function of the students’ dialogue points to their inability 

to make valid judgments about their strategies and answers. Three of the four assessments 

made of their understanding revealed that they did not understand how to approach Question 
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19 (Move 58, also Moves 26 and 27 not shown here). Similarly, Dylan was unsure of the 

appropriateness of the strategy he implemented for Question 19 (a) (Move 24), and he later 

expressed his doubts as to the accuracy of his answers for Questions 19 (a) (which was indeed 

incorrect) and 19 (c) (Move 69). 

As with the transcripts examined previously, opportunities existed for the boys to dispel 

this metacognitive mirage. For example, Sean, Alex and Rhys all overlooked the significance 

of Dylan’s proposal in Move 44 (“A quarter of fifty”), and of his related query in Move 46, 

both of which indicated that he now realised the hearts must be selected from one suit, not the 

whole pack of cards. Instead of asking Dylan to explain why he wanted to find the number of 

cards in a quarter of the pack, his friends merely responded to the superficial aspects of his 

question. 

Similarly, Dylan was left to answer his own tentative question “Would you go, thirteen 

C ...?” (Move 54). Surprisingly, even Dylan’s delight in having worked out how to do the 

problem attracted no interest (Move 63). No one asked him to explain what he had done, but 

neither did Dylan ask anyone what they thought of his strategy. Even Dylan’s negative 

Assessments (Move 69) regarding the accuracy of his answers could have provided an 

opportunity to rehearse his strategy to an audience, if his friends had bothered to ask “Why? – 

what did you get?”, or if Dylan had asked them to check his working. In contrast to the two 

previous examples, where a lack of challenges to justify unhelpful New Ideas and 

Assessments contributed to metacognitive failure, analysis of the Combinations transcript 

demonstrates the need to clarify and endorse New Ideas which are potentially helpful so that 

their usefulness becomes apparent to all participants in the interaction. 

Discussion 

This paper has been concerned with metacognitive failure, and the circumstances under 

which peer collaboration – often considered to provide a natural context for making thinking 
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visible, and open to critique and refinement (Teasley, 1997) – does not lead to a 

mathematically successful outcome. Previous research on metacognitive aspects of individual 

students’ mathematical thinking has suggested that failure is virtually guaranteed by poor 

metacognitive decisions (e,g. Schoenfeld, 1985), and there is some evidence that these 

decisions can be adversely affected by peer interactions in small group problem solving (e.g. 

Stacey, 1992). The results presented here extend and qualify these findings by identifying 

different forms of metacognitive failure, and also by highlighting ways in which students’ 

verbal interactions may influence each other’s thinking. The present study took a naturalistic, 

long term approach to studying metacognitive activity in authentic classroom contexts, and in 

this respect it differs from much of the previous research on the role of metacognition in 

mathematical thinking. 

It was argued that existing frameworks for analysing problem solving behavior suffer 

from a number of limitations, three of which were addressed by the research reported here. 

First, a theoretical model of metacognitive processes in problem solving was synthesised from 

the episode-based frameworks of Schoenfeld (1985) and Artzt and Armour-Thomas (1992), to 

identify specific monitoring and regulatory actions that would be appropriate at different 

stages of the solution process. Second, the notion of metacognitive “red flags” was developed 

to highlight the difference between routine monitoring of progress and the more deliberate 

action needed when specific difficulties, such as an error, lack of progress, or an anomalous 

result, are recognised. Finally, the “red flag” model was further elaborated to identify 

different circumstances associated with metacognitive failure, described by the metaphors of 

blindness, vandalism, and mirage. These scenarios were illustrated by problem solving 

sessions where students overlooked a “red flag” indicating a calculation error (blindness), 

responded to a lack of progress “red flag” by imposing an irrelevant conceptual structure on 



  31 

the problem (vandalism), and imagined an anomalous result “red flag” in mistakenly rejecting 

a correct answer (mirage). 

While analysis of failure scenarios revealed quantitatively similar levels of 

metacognitive activity – in the form of New Ideas and Assessments of the state of the solution 

– to that observed in successful problem solving (see Goos, 2000b; Goos & Geiger, 1995), the 

descriptive metaphors directed attention to the quality of students’ metacognitive judgments. 

In particular, failure was likely if students passively accepted unhelpful suggestions, or 

ignored potentially useful strategies proposed by peers. That is, students’ responses to their 

partners’ New Ideas and Assessments played a critical role in shaping problem solving 

outcomes. Thus the analysis highlights the interactively constituted nature of metacognitive 

activity in small group problem solving, and allows metacognition to be conceptualised in 

terms of social practices as well as individual mental processes. This dual focus on the 

(meta)cognitive and social aspects of students’ mathematical activity may go some way 

towards building a theory of acting-in-context that focuses on “human decision making in 

complex, dynamic social settings” (Schoenfeld, 1999, p. 6). At the level of practice, it may 

inform teachers’ attempts to foster problem solving and communication, both of which are 

considered essential to mathematics learning (National Council of Teachers of Mathematics, 

2000). 

Conclusion and Implications 

This study did not initially set out to investigate metacognitive failure. In fact, it was 

most common to find that students were successful, rather than unsuccessful, in their 

collaborative problem solving efforts. Also, unlike much previous research on metacognition 

in mathematical problem solving, the study was not designed to manipulate problem solving 

outcomes by assigning students to experimental and control groups, or to specific groupings 

within the classroom, on the basis of ability or task difficulty. Neither were students’ 
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interactions constrained by teacher-imposed rules governing how they should act or speak. 

Instead, the teacher communicated his expectations regarding discussion and interaction in 

more subtle ways, for example, by encouraging students to consult a neighbour if they were 

“stuck” on a task. 

In addition, the teacher actively modelled metacognitive habits of mind during whole 

class instruction by asking students to evaluate strategies for tackling tasks, locate and correct 

any inadvertent calculation errors, and decide whether the answers made sense. This culture 

of collaborative inquiry also seemed to facilitate in students a positive attitude towards group 

work and a willingness to share ideas, both of which are necessary for effective group 

functioning (see Artzt & Armour-Thomas, 1997). Indeed, the teacher insisted that students 

exhaust all avenues of assistance before turning to him as a last resort. (The Combinations 

lesson represents an extreme case as the teacher was absent altogether.) However, this raises 

questions as to the timing of teacher interventions that may help students avoid metacognitive 

failure. 

For example, when students worked on the Forces problem, the teacher sometimes 

withheld assistance, judging that students who asked him for help had not fully exploited their 

own, and their peers’, resources. At other times, students deliberately refrained from asking 

the teacher for help, preferring instead to persevere with their own endeavours. Whether this 

is interpreted as inappropriate persistence or endorsement of the teacher’s personal values of 

sense-making, students themselves are clearly active agents in selecting and structuring the 

assistance they obtain. Perhaps the most significant implication for teachers is the need to 

establish participation structures that facilitate students’ active engagement with each other’s 

thinking. In particular, holding students accountable for explaining and justifying their 

thinking may afford similar forms of discourse and reasoning when students work 

collaboratively with peers. 
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