
Embedded Linux as a platform for
dynamically self-reconfiguring

systems-on-chip

John Williams and Neil Bergmann
School of ITEE, University of Queensland

Brisbane, Australia

Abstract - We have previously argued the benefits of
embedded Linux as an operating system platform for
reconfigurable system-on-chip design. In this paper we
describe our approach building tools for the
implementation of dynamically and self-reconfigurable
systems, and show that embedded Linux is a natural and
powerful platform on which to build these tools. We
present examples and demonstrations that show how
complex operations such as obtaining partial bit streams
from remote servers and initiating reconfiguration are
achieved with a single line of Linux shell script.

Keywords: dynamic self reconfiguration Microblaze
embedded Linux

I. Introduction
The capability of modern SRAM-based FPGAs to
be dynamically and partially reconfigured at
runtime (a dynamically reconfigurable system, or
DRS), without interrupting the operation of other
logic within the FPGA, presents intriguing
possibilities for novel system architectures and
applications. This capability has been recognised
and discussed at least since the advent of modern
FPGAs if not before, however it is only recently
that the technologies and tools have developed to
the point whereby this may be considered a viable
approach for practical digital systems.

The implementation of DRSs is exceptionally
challenging. Previous practical successes have
generally demonstrated one specific aspect or
capability, at the cost of significant engineering
effort. This disproportionate effort distracts from
the real objective, to design and implement
meaningful systems employing dynamic self
reconfiguration.

Our approach to DRS design and implementation is
to develop a platform of tools with which complex
reconfigurable systems may be easily constructed.
In this paper we propose embedded Linux as a
natural host for such a platform.

As part of our reconfigurable system-on-chip
(RSoC) research project called Egret [2], we have
previously ported an embedded Linux kernel called
uClinux, to the Xilinx Microblaze soft-core
processor [3]. The capability to support research
and experimentation into dynamic and self
reconfiguring systems is one of Egret’s design
requirements.

To support this goal, we have integrated support for
Xilinx FPGA self-reconfiguration into the
Microblaze uClinux kernel, using the standard
Linux device driver model. By leveraging the
power and flexibility of the Linux platform, we are
able to rapidly develop tools to perform complex
dynamic self reconfiguration tasks.

The following section presents some brief
background material on the Egret platform and the
use of embedded Linux in RSoC (Reconfigurable
System-on-Chip), and on existing approaches to
DRS design and implementation. We then detail
our approach to providing support for these systems
within the context of the Linux device abstraction
model. This is followed by examples that
demonstrate the benefits of our approach, and
finally we conclude and discuss some of the further
challenges that remain for DRS research and
design.

II. Background
A. Egret and uClinux

Egret is a modular platform for RSoC research,
developed by our group. The first version of Egret
targets Xilinx FPGAs, utilising the Microblaze
softcore processor, however the Egret concept is
not tied to one particular vendor.

Central to the Egret philosophy is that complex
systems should be designed by assembling the
required hardware modules, and specifying the
module combination to a software tool that
constructs the appropriate FPGA configuration, as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

well as software infrastructure such as device
drivers etc. The Egret physical configuration is
illustrated in Figure 1.

In line with this platform-based approach, it was
determined that the software infrastructure needs of
Egret would be best served by an embedded
operating system, rather than a classical
microkernel.

We chose the open source Linux derivative called
uClinux (“you-see-linux”). uClinux is a port of the
Linux kernel to support embedded processors
lacking a memory management unit (MMU) [4].
From an application programming perspective,
uClinux offers an interface almost identical to
standard Linux, including command shells, C
library support and Unix system calls. The uClinux
kernel port to Microblaze was completed in 2003.

B. Dynamic and Self Reconfigured Systems

A three-axis classification scheme is useful to
characterise the diversity of reconfigurable systems.
The scheme classifies systems according to

• who controls reconfiguration,

• when the configuration is generated, and

• what is the level of reconfiguration
granularity?

We discuss each of these below. These multiple
axes represent continuous spectra of characteristics,
rather than discrete points. The cases discussed
below represent sample points along these axes.

1) Who Controls Reconfiguration?

We distinguish between systems whose
reconfiguration is managed and controlled by some
external device or host, and systems that initiate
and control their own reconfiguration. Specifically

Exo-reconfigurable – from the Latin exo- meaning
external. These are systems whose reconfiguration
is initiated and controlled by an external source.
The reconfiguration process is initiated externally.

An FPGA coprocessor on a PCI bus is an example
of this category.

Endo-reconfigurable – from the Latin endo-
meaning inside, or internal. The decision to
reconfigure, and the reconfiguration process itself
are controlled autonomously by the system. A
signal processing system that performs self-
readback and small bit modifications to adjust
filtering coefficients is one such system.

Hybrid – some combination of the above. A
reconfigurable system that requests modules from a
remote bitstream server falls into this category.

Until recently, most dynamically reconfigurable
systems belonged in the first category, such as
Xilinx’s run-time reconfigurable crossbar switch
[5], and the Cam-E-Leon project [6]1.

Xilinx recently reported connecting a Microblaze
soft processor to the Internal Configuration Access
Port (ICAP) of a Virtex2 FPGA [1], via the OPB
microprocessor bus. This approach gives a
Microblaze program access to the FPGA
configuration system, to write configuration data
and perform device readback etc.

2) When is the configuration data generated?

A dynamically reconfigurable system must load its
new configuration data at runtime, but the question
remains as to when that configuration data is
generated. This is a spectrum ranging from fully
static to fully dynamic configuration creation:

Static, Design-time – the loadable configuration
data is determined fully at design time, including
the relative placement of the reconfigurable
modules within the device, and the connections of
the modules to the rest of the system. All possible
placements and variations of modules must be
predicted in and synthesized in advance. This is the
model supported by most vendor tools at the
present time.

Run-time placement – pre-synthesised and routed
hardware modules are dynamically modified to
allow their placement at arbitrary locations on the
reconfigurable device (e.g. [7]).

Fully dynamic module generation –
configurations are generated dynamically according
to run-time requirements. Modules might be
synthesised from dynamically created VHDL or
other hardware descriptions, or as instances created
from a parametric module library.

1 The Cam-E-Leon project also uses uClinux, but as the
operating system running on a conventional embedded
microprocessor device that manages FPGA
configuration.

Figure 1. Egret module stack

3) What level of reconfiguration (granularity)?

Systems can be characterized by the degree to
which they manipulate the logic surface:

Small bit manipulations – the contents or
configurations of individual FPGA logic elements
such as LUTs are modified, but no overall logic or
module-level changes are performed [7]. An
example of this mode might be the dynamic
modification of filter coefficients stored in FPGA
LUTs.

Dynamically loaded modules – pre-implemented
partial bitstreams are used to configure a portion of
the FPGA’s logic resources, to implement either a
new functional module, or replace an existing
module [7]. One can imagine a network
encryption/acceleration co-processor, in which new
hardware encryption modules might be swapped in
at run time.

Many systems will fall somewhere between these
two extremes. A reconfigurable system using
internally pre-placed and routed modules that are
dynamically modified to place at an arbitrary
location is one example.

C. Summary

Several groups are developing systems and
methodologies to manage the FPGA logic space, in
terms of logic area assignment and partitioning (e.g.
[8, 9]), and dynamic mapping of computations onto
reconfigurable modules. This work will continue to
have influence across the axes described above.

It is important to note that our research
complements these existing approaches to DRS,
and in fact enhances them by providing a high-level
interface to the reconfiguration mechanism. It also
permits direct translation of most exo-
reconfigurable system concepts into endo-
reconfigurable systems, by removing the
requirement for the external controlling device.

III. Self reconfiguration in Linux
In this section we detail our approach to providing
an abstraction layer for the Xilinx Internal
Configuration Access Port (ICAP), and show some
ways in which it can be used to implement dynamic
self-reconfiguring systems. We first present a very
brief introduction to the Microblaze system
architecture and uClinux port, to provide context
for the ensuing discussion.

A. Microblaze Architecture and uClinux
Introduction

1) Microblaze

Microblaze is a classic 32 bit RISC processor, with
32 general purpose registers, and an orthogonal
instruction set. It uses a 3 stage instruction

pipeline, with delayed branch capability for
improved instruction throughput.

The Microblaze design is specifically targeted to
hardware features present in the various Xilinx
FPGA devices, such as hardware multipliers and on
chip block RAM (BRAM).

Microblaze utilizes Harvard-style separate
instruction and data buses, which conform to IBM’s
CoreConnect OPB (On-Chip Peripheral Bus)
standard. Bus arbiters can be automatically
instantiated, permitting the instruction and data
buses to be tied together, to create conventional von
Neumann-style system architectures.

2) Microblaze uClinux

In most respects, the Microblaze port of uClinux is
very similar to other ports to more conventional
processors such as the Motorola Coldfire and ARM
cores.

To minimize changes in the kernel memory
architecture, the Microblaze systems used for
uClinux are designed in the von Neumann style
described above, with the instruction and data buses
tied together. Peripherals such as timers, interrupt
controllers, memory controllers, GPIOs and an
Ethernet MAC are used to build up a complete
system. Linux device drivers have been wrapped
around these cores for interfacing with the kernel
and user space applications.

B. The ICAP device driver

Xilinx developed an OPB interface to the ICAP
module for self-reconfiguration experiments [1],
which permits frame-by-frame readback and partial
configuration in ICAP-supported devices. The
OPB interface permits connection of this peripheral
to the Microblaze soft-core processor. The
architecture of OPB/ICAP interface is illustrated in
Figure 2.

To integrate this device within the Linux kernel, we
use the standard device driver architecture used by

Figure 2. Architecture of the OPB-ICAP
interface module (after [1])

all Linux devices. The Linux philosophy is that
device drivers should implement mechanism, not
policy, and this was adopted for the ICAP
peripheral.

We developed a simple character-based device
driver, which implements the read(), write() and
ioctl() system calls:

read – initiates a read from the ICAP into a user
memory buffer, of the specified number of bytes.

write – specified number of bytes are written to the
ICAP from a user memory buffer

ioctl – interface to device specific control
operations, such as querying the status, or changing
operating modes

Upon system boot, this device is registered in the
Linux device subsystem, appearing as /dev/icap.
Like any Linux device, the ICAP may be accessed
using standard Linux system calls, such as open,
read, and write. Thus, the kernel mediates between
user programs (implementing policy), and the
device driver (implementing mechanism).

C. Using the ICAP device in a user program

Accessing the ICAP device from within a user
program is simple:

1. open() the /dev/icap device
2. Construct a command sequence in a local

buffer
3. write() the command sequence buffer
4. read() the result data (if applicable)

The format of the various command and data
sequences is documented in the Xilinx Virtex2 User
Guide [10]. For example, to perform a readback, a
command sequence is constructed to

1. Issue dummy and synchronisation packets
2. Set the device ID code
3. Set the Frame Address Register (FAR)
4. Issue the ReadFrame command

After this command sequence is written to the
device, the frame configuration data is read back as
used as required.

IV. Linux shell programming for
dynamic reconfiguration

One of the underlying principles of Un*x-like
operating systems is to provide a collection of small
tools, each focussed on performing a single job.
The shell provides mechanism for chaining these
tools together (e.g. pipes and output redirection).
This approach makes the combination of uClinux
and the ICAP device driver very powerful and easy
to use.

The following sections present some examples of
this approach. The intention is to demonstrate that
the abstraction provided by embedded Linux and
the ICAP driver allows one to focus on the
interesting parts of the problem, rather than the
detailed mechanics of the reconfiguration process.

A. Simple examples

A partial bitstream generated by the conventional
logic synthesis and implementation tools is merely
a sequence of configuration commands and data
packets. Thus, given some partial bitstream present
in a file system mounted on a Microblaze uClinux
system, the reconfiguration process is performed
simply by executing the command

$ cat partial.bit > /dev/icap

This elevates dynamic reconfiguration from being a
low-level, complex procedure, to one which may be
easily expressed and automated in much more
accessible ways such as shell scripts.

It is worth noting that in this example (and those
that follow), from an operating system perspective
it makes absolutely no difference whether the file
partial.bit exists in a local memory-based file
system, an external disk file system, or even a
remote network file system. Indeed, the first
experiments in this work served the bitstreams over
a Linux NFS (Network File System) mount from
the development host machine.

From here, it is easy to see how complex dynamic
systems can be constructed. We may develop a
simple C program (or another shell script) that
manipulates partial bitstreams, for example inserts
or modifies coefficients in an FIR filtering module.
A simple chaining together of commands performs
the necessary operations:

$ cat filter_module.bit | set_coeffs
 0.1 0.4 0.4 0.1 > /dev/icap

B. Bitstream compression

The previous example demonstrates a form of
bitstream compression. Partial bitstreams are
highly structured, making it much more space
efficient to store a generic ‘template’, along with
information on how to specialise it (as per
coefficient example above), than to create and store
a large number of variations.

Standard Linux tools can also be used for bitstream
compression:

$ gunzip –c bitstream.gzip > /dev/icap

Extending the filter coefficient example from
before:

$ gunzip –c bitstream.gzip |
 set_coeffs 0.1 0.4 0.4 0.1 > /dev/icap

These examples show how complex operations may
be performed by chaining multiple tools and
utilities.

C. Networking and remote bitstream servers

We may easily leverage the other benefits of using
a proper operating system – for example seamless
integration of networking services. The “wget”
command issues HTTP and FTP requests to remote
servers. The following one-liner requests a
bitstream (“partial.bit”) from a remote server
(www.bitstreams.com for this example) and
performs reconfiguration:

$ wget –O /dev/icap
 ftp://ftp.bitstreams.com/partial.bit

If our bitstream server is more intelligent, and can
dynamically generate bitstreams according to some
specified parameters, we can picture something like
the following, to fetch an encryption module,
dynamically specialised according to some
parameters (the URL has been wrapped due to the
short line length):

$ wget –O /dev/icap
 http://www.bitstreams.com/bitfile?
 mod_type=encrypt¶m=…

Yet another possibility is that the bitstream server is
implemented locally, such as would be the case for
a purely endo-reconfigurable system. By utilising
standard networking services, no change would be
required to the client software:

$ wget –O /dev/icap
 http://localhost/bitfile?
 mod_type=encrypt¶m=…

Simply substituting localhost as the server
name is all that is required – the operating system
takes care of the rest.

D. Self configuring FPGA arrays

We have so far considered the concept of a single
FPGA and Microblaze system, managing its own
reconfiguration. However, the concepts scale
elegantly to the notion of FPGA arrays, with either
a hierarchical configuration management strategy,
or even a distributed/cooperative approach.

As previously mentioned, the ICAP is simply an
internal interface to the FPGA configuration
subsystem. The device driver approach presented
here could just as easily be layered over an external
configuration bus, used to configure arrays of
FPGAs.

By exploiting the Linux device driver concept of
major and minor device numbers, specific FPGAs
in such a system could be assigned a particular
minor number. The minor number would be used
to control a chip-select signal on the configuration
bus, and the configuration data streamed as
appropriate. The shell script in Figure 3 would
initiate the reconfiguration of an array of five
FPGAs, connected to this “master” FPGA. In this
example the bit streams are served remotely.

Note that the logic resources used by the master to
configure other FPGAs are not required all of the
time, so one might consider the approach of first
swapping in the configuration bus driver hardware,
followed by dynamically loading the device driver,
as in Figure 4.

This shows how our approach permits thinking
about the problem at a much more abstract level.

E. Readback and configuration verification

A small C program based on the readback
algorithm presented in Section III.C was written.
This is a very simple tool, taking as parameters the
block, major and minor frame numbers (a

#!/bin/sh
for i in “1 2 3 4 5”;
do
 wget –O /dev/fpga${i}
 http://www.bitstreams.com/
 bitfile${i}.bit
done;

Figure 3. Shell script to automatically
retrieve remote bitstreams and configure
FPGAs

#!/bin/sh
configure the driver hardware
cat conf_bus_driver.bit > /dev/icap

load the kernel driver
insmod conf_bus_driver.o

configure the slave FPGAs
for i in “1 2 3 4 5”;
do
 wget –O /dev/fpga${i}
 http://www.bitstreams.com/
 bitfile${i}.bit
done;

Figure 4. Shell script to dynamically load
FPGA logic for configuring external FPGAs,
and kernel module for device driver support

configuration frame address), and producing as
output an ASCII representation of the configuration
memory.

Such a tool makes it very easy to write programs
and scripts to read back and verify the contents of
the FPGA. The Xilinx implementation tool bitgen
can produce as output a mask file that indicates
which bits in a bitstream should be verified in a
readback. Thus, by converting this mask file into
the appropriate ASCII format, a readback and
verification can be achieved with a simple readback
followed by a comparison.

Action taken as a result of a successful or
unsuccessful readback is application specific, but
would likely involve reconfiguration using
mechanisms like those described above.

Building on the idea of the previous section, using
the same logic interface to the configuration of
external FPGAs, a master device can very easily
perform readback and verification of other FPGAs
in a system.

V. Discussion
In the following we present discussion on some
relevant aspects of the proposed approach that have
not been previously addressed.

A. Performance

A performance price is always paid for the
useability gained by higher level abstractions.
Indeed, by choosing uClinux as the platform for our
RSoC research, we accept the performance cost in
exchange for the tremendous leverage offered by
such a comprehensive platform.

In terms of the ICAP device and driver, the
performance overhead is modest. Bitstream data is
generated by an application (either dynamically,
read from a file, or from a network connection). It
is then sent to the kernel via the write() system call,
which requires it to be copied once from user space
to kernel space.

After being received by the kernel, the data is then
copied into the OPB ICAP device’s local memory.
Finally, when the reconfiguration process is
initiated, this hardware interface transmits the data
to the actual ICAP core.

B. Application to other devices and systems

Clearly the ICAP resource in certain Xilinx FPGAs
facilitates this research, however the concepts
presented here can be applied to other devices and
systems that do not have such built-in support for
self-reconfiguration.

At the board level, general unconstrained user I/O
pins cannot be routed around to the configuration
pins of the device, and appropriate interfacing logic

developed to provide the same capabilities as the
Xilinx ICAP device and OPB bus wrapper interface
mentioned in this work.

At that point, the software abstraction takes over,
and a consistent, platform independent interface
may be offered. Of course, the bitstreams
themselves will be different from device to device,
and that remains a challenge for all researchers in
the reconfigurable systems domain.

C. Security and Bitstream Integrity

Working at the hardware level, ensuring the
integrity of partial bitstreams is very important.
Traditional design tools perform design rule checks
(DRC) to prevent physical damage to devices from
bad configurations, however they can do little to
ensure that a bitstream will perform the intended
function.

When a system is reconfiguring itself with
bitstreams perhaps downloaded over a network
connection, authentication and encryption become
important. We argue that the Linux platform
presents a natural solution. There already exist
open source libraries that implement these
functionalities, and it is a relatively simple matter to
include them in the configuration sequence.

The more difficult problem is bitstream verification
– how to determine (perhaps at runtime) that a
given bitstream will not corrupt the current system
operation. At a gross level, partial bitstreams can
be inspected to determine their spatial range of
influence. This information combined with a logic
allocation map for the main system can be used to
reject bitstreams that desire to make changes where
they shouldn’t. This checking could be added
either at the user level or device driver/kernel level.

VI. Challenges and future work
So far we have deliberately avoided discussion on
the mechanics of actually generating partial
bitstreams, design modularisation, dynamic
bitstream parameterisation and so on.

The practical difficulties facing researchers and
practitioners in this regard are substantial. At the
present time, synthesis and implementation tool
support for these efforts is limited.

To implement and test our examples above, we
used partial bit streams laboriously hand-created
using the Xilinx FPGA Editor tool. This is partly
because the modular and partial reconfiguration
implementation flows are not supported for
Microblaze and EDK (Embedded Development
Kit) projects.

We have recently successfully “modularised” the
Microblaze flow, and are in the process of
automating this, so that reconfigurable modules

may be easily specified, and interfaced to
Microblaze processor systems. This will greatly
simplify the process of creating pre-defined
modular bitstreams.

The issues mentioned previously in the discussion
remain as important and fruitful avenues for further
investigation.

VII. Conclusions
We have implemented and described a
methodology and set of tools for implementing
dynamically and self-reconfigurable systems, using
embedded Linux as a powerful and flexible
platform.

As the logic density and speed of FPGAs continues
to increase, the relative cost of placing soft (or
hard) processor logic in these devices diminishes.
Similarly, the relative cost of using a complete
embedded operating system such as uClinux also
decreases. By adopting a platform based approach,
designers and researchers can gain tremendous
leverage.

By adopting the standard Linux device driver
approach and philosophy, the ICAP reconfiguration
mechanism becomes available to user programs, as
well as higher level shell scripts. Examples were
presented to show how complex behaviours such as

remote network-based bitstream acquisition and
reconfiguration could be implemented in as little as
a single line of shell script code. Readback and
configuration verification was shown to easily
integrate within this framework.

The idea of using the same driver interface and
architecture to control the configuration of arrays of
FPGAs was proposed as a natural and simple
extension of the approach.

One of the major challenges in the design and
implementation of dynamic and self reconfiguring
systems is to coerce the logic implementation tools
to produce the appropriate partial bit streams, and
also the dynamic modification of those bit streams
to allow dynamic logic placement and other
capabilities. There are a number of research and
commercial groups working on these problems, and
success in these areas could be readily translated
into our platform and tool approach.

Acknowledgements
The authors would like to thank the members of the
Xilinx EDK team and Xilinx Labs. This research is
partly supported by the Australian Government via
the Australian Research Council.

References
[1] B. Blodget, S. McMillan, and P. Lysaght, "A lightweight approach for embedded reconfiguration of

FPGAs," in Proc. IEEE Design Automation and Test in Europe, pp. 339-340, Munich, Germany,
2003.

[2] N. W. Bergmann, J. A. Williams, and P. J. Waldeck, "A Flexible Platform for Real-Time
Reconfigurable Systems on Chip," in Proc. International Conference on Engineering of
Reconfigurable Systems and Algorithms, pp. 300-303, Las Vegas, USA, 2003.

[3] Xilinx, "Microblaze Processor Reference Guide," Xilinx, Inc, 2003, pp. 136.

[4] A. Rubini and J. Corbet, Linux Device Drivers, 2nd ed: O'Reilly and Associates, 2001.

[5] G. Brebner and D. Levi, "Networking on Chip with Platform FPGAs," in Proc. IEEE International
Conference on Field-Programmable Technology (FPT 03), pp. 13-20, Tokyo, Japan, 2003.

[6] S. Guccione, E. Verkest, and I. Bolsens, "Design technology for networked reconfigurable FPGA
platforms," in Proc. Design, Automation and Test in Europe Conference and Exhibition, pp. 994-
997, 2002.

[7] C. Patterson, "A Dynamic Module Server for Embedded Platform FPGAs," in Proc. ERSA, pp. 31-
40, Las Vegas, USA, 2003.

[8] Y. Nakane, K. Nagami, T. Shiozawa, and A. Nagoya, "Concept and Implementation of Run-time
Resource Management System Operating on Autonomously Reconfigurable Architecture," in Proc.
IEEE International Conference on Field Programmable Technologies (FPT 03), pp. 136-143, Tokyo,
Japan, 2003.

[9] G. Wigley and D. Kearney, "The Development of an Operating System for Reconfigurable
Computing," in Proc. IEEE Symposium on FCCM, 2001.

[10] Xilinx, "Configuration Details," in Virtex2 Platform FPGA User Guide. San Jose, CA, 2004, pp.
293-306.

