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NUMERICAL SIMULATION OF THE TERM STRUCTURE OF
INTEREST RATES USING A RANDOM FIELD

STUART MCDONALD AND RODNEY BEARD

ABSrrRactT. In this paper we simulate the term structure of interest rates,
where the yield curve is based on forward rates which are modelled as a random
field. Term structure models based on random fields offer an improvement on
yield eurve models based on stochastic differential equations, because they do
not require recalibration. In the lterature, results concerning random field
models of interest rates have been entirely theoretical, and have not discussed
the implications for yield curve modelling. The simulation results presented
in this paper, to the best of our knowledge, are the first numerical results for
random field based interest rate and yield curve models.

1: INTRODUCTION

Over the last two decades a large section of research in finance has been dedicated
to the development of valuation models for interest rate derivative securities such
as options, caps, collars and swaptions. In this literature, the modelling of interest
rates typically begins with specifying a stochastic process for the price dynamics
of the bond. The spot price is then related back to the term structure of interest
rates through the yield curve. The price dynamics that are represented are usually
those of zero-coupon bonds, since the cash flows of any coupon-bearing bond can be
seen as linear combinations of the cash flows of a collection of zero-coupon bonds,
each with a termination date corresponding to the payment date of a coupon. If
we denote by P (t,7T') the spot price of a zero-coupon bond at time ¢ that pays one
dollar at maturity date T, then the T-maturity interest rate at time T, ¥ (T;¢) can
be set equal to

(1.1) Y (T;¢) =%’;’—Tl.
This function Y (-;¢) is known as the yield curve at time t, and represents the
relative yields at time ¢ of bonds with different maturities.

It should be noted that not all models representing the price dynamics of the
zero-coupon bond are suited to modelling the yield curve. The simplest model of
interest rate dynamics that can be used to fit the yield curve, is that by Ho & Lee
[25]:

(1.2) dr(t) =n(t) dt+ 2w (),

where 8 > 0 and 7 (t) is a function of time, W (t) is a Wiener process of finite
dimension, and r (¢) is the spot interest rate. The Ho & Lee model was the first
no-arbilrage model of the term structure of interest rates, i.e. careful choice of the

Key words and phrases. Term structure modelling, business cycles, yield curves, Gaussian
random fields.

JEL classification: C63, E32, E37.
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drift term 7 (¢) will result in theoretical bond prices which are the same as market
prices. However the main drawback of this type of model, is that the volatility
structure of the spot rate is assumed to be constant, hence this model implicitly
assumes that the yield curve at time ¢ will be parallel to yield curves for any time
in the future.

This is a one-factor model of interest rates, i.e. the term structure of interest
rates depends solely on their spot rate. A more general one-factor model has been
developed by Heath, Jarrow & Morton ([24]; HIM) who have shown that the yield
curve can be derived from the dynamics of the forward rates of interest. If we let

d1n P(t,T)
9T

denote the instantaneous forward rate of interest at time ¢ for a bond of fixed
maturity 7', so that

(1.3) F(t,T) =

T
(14) P, T)=exp {-/ F(tu) du} )
¢
then the yield curve can be derived as follows:
1 T
. =—_— F(t,u)du.
(1.5) Y (4,T) T_t/t (4, ) du

Notice that ast — T, P (t,T) — 1, so that bond prices converge to their face value
upon maturity. The dynamics of the forward rate are defined as follows:

(1.6) dF (t,T) = o (t, T) dt + o (¢, T) dW (1) ,

where F (t,T) is the forward rate, W (t) is Wiener process of finite dimension and
a(t,T) and o (¢,T) are the model parameters for the drift and volatility. We note
that 7 (t) = F(t,t), hence all single factor models based on the spot rate — the
Vasicek [48] and Cox-Ingersoll-Ross (Cox et al. [14]) that use constant coefficients,
as well as the model by Ho & Lee [25] that was introduced above, the Hull & White
model [26], and the lognormal models of Black, Derman & Toy [4] and Black &
Karasinski [5], which employ more sophisticated trend and volatility specifications
— can be subsumed within the HIM model.

Because there is no reason to believe that the yield curve will depend only on
a single factor, this paper concentrates on an alternative approach for modelling
interest rate term structure based on multi-factor models. Empirical research (e.g.
Litterman & Scheinkman [32], Stambaugh [46], Pearson & Sun [41], Chen & Scott
[11, 12]) seems to favour the use of multi-factor models for modelling the term struc-
ture of interest rates. There are two emerging schools. One group has attempted
to model the short rate as given by the function r(t) = R(X (¢)), where X (t)
is some finite dimensional state space vector comprising various economic indices
which may affect interest rates. The dynamics of this state variable are given as

(1.7) dX () = p (X () dt+ o (X (1)) dW (2) |

where W (¢) is an n-dimension Wiener process, u: D™ — R™ and ¢ : D™ — R**n
D™ C R™, satisfy sufficient regularity conditions for the existence and uniqueness
of solutions. Thus a zero-coupon bond maturing at time 7' will have at ¢ <Ta
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market price given by

T
(1.8) P(X,t):E[exp{—/ R(X(s))ds} X(t)].

In this type of model the state variable can either be related directly to the yield
curve, by modeling the term structure as an affine function of X () subject to
regularity conditions (e.g. Duffie & Kan [15,16]) or indirectly via a non-affine model
(e-g- Brennan & Schwartz [6], Chan [10], El Karoui et al. (17], Constantinides [13],
and Jamshidian [21]).

The other school is based on the work of Kennedy [27, 28], Goldstein [19] and
Musiela [40, 7], in which the forward rates are expressed as

(1.9) FA,T)=pnt,T)+ X (t,T),

where X (¢, T) is a Gaussian random field with zero mean and bounded covariance,
given by

(110) Cov (X (tl,Tl),X (tg,Tg)) = C(tl A t2,T17T2),

for some appropriate function ¢, and p(¢t,T) is the deterministic trend, which is
defined so that p (0,7) = F(0,T). This function ¢ will be symmetric in ¢; and ¢y
and positive semi-definite in (¢;,7}) and (t2,T2). Adler [1, 2] provides conditions
on ¢ which ensure the continuity of the Gaussian random field.

Kennedy [27] has shown that given the structure of the covariance function (1.10),
and subject to a necessary and sufficient conditions on the drift surface that the
following statements are equivalent:

L. For each ¢ > 0, the discounted bond price process {Z (t,T);F,,0<t < T} is

a martingale, where

(1.11) Z(t,T)=P (t,T)exp (— /Otr(u) du),

givenr (t) = F (t,t).
2.

T
(1.12) ,u(t,T):,u(O,T)-l—/ [c(s Av,v,T) - ¢(0,v,t)] dv, VO<s<T.
0
3.

(1.13) Pl,T)=F {exp (— /tTr(u) du)

Since the random feld driving the dynamics is Gaussian, once both the initial
term structure {4 (0,T) , T > 0} has been determined and the covariance structure
between forward rates (i.e. between bonds of different maturities) specified, then
the full distribution of the forward surface rate and the bond price surface will be
completely determined,

Specifying the covariance function of the random field X (¢,T) (1.10) as a func-
tion of ¢; A t; ensures that the random field has independent inerements in the
direction of t, i.e. for any 0 < { <#' < T the random variable X (¢, T) - X (t,7T) is
independent of the o-field 7, = ¢ { X (u,v);u < 5, u < v}. Kennedy [28, p-109-110]
has shown that the martingale property on Z (¢,T) is related to the independent
increments property of the Gaussian random field, i.e. if the martingale property
holds, then the random field X (¢, T) possesses a covariance function given by (1.10).

.7-}], VO<t<T.
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In this paper we will simulate the term structure of interest rates for this type of
model and present simulation results of two theoretical term structure models, one
based on the papers by Kennedy [27, 28], the other based on a model by Goldstein
(19, 20]. The simulations use a numerical technique developed in McDonald [35]
and McDonald and Beard [36], for modeling the evolution of a process on a random
field. This numerical technique uses the method of lines to convert the random
field into a random vector process. We then draw from the standard menu of finite
difference procedures to simulate the resulting vector SDE. As a consequence our
method is considerably simpler than many of the existing techniques in use for
simulating SPDEs and also benefits from drawing from a well defined collection
of finite difference procedures for simulating SDEs (see Kloeden and Platen [30]
provides a comprehensive discussion of these techn iques).

The remainder of the paper is split into two sections. The first of t hese provides
two models for simulation. Simulation results for each of these models, in the form
of surface plots of respective yield curves, will be provided in the appendix of this
paper. The last section motivates the technique used for the numerical simulation
of the yield curve for Kennedy-Goldstein term structure models. The results of
these simulations suggest that as o the coefficient controlling diffusion decreases,
the term structure will generate a surface which resembles the fluctnations of the
business cycle. These results also suggest that as the level of volatility increases,
this noise serves to dampen the incidence of cyclical effects recorded in the term
structure. The co-movement of the term structure of interest rates with fluctua-
tions in the business cycle suggests a possible application of this type of model to
macroeconomic dynamics.

We should also state that the range of possible applications for this simulation
procedure are very large. The technique employed in this paper has been used to
simulate the stochastic Fisher equation from population biology and the stochas-
tic Hodgkins-Huxley equation for modelling neuro-electrical transmissions [35, 36).
Other applications of SPDEs for which this technique could be applied, include
the modelling ground water transportation in soil physics and fleet dynamics for
fisheries modelling. We are currently exploring the application of our technique
for simulated likelihood to address stock-flow problems in panel data. The obvious
application of these simulated likelihood procedures for continuous spatio-tem poral
panel data would be for modelling the evolution of the term structure of interest
rates.

2. FITTING THE YIELD CURVE FROM A RANDOM FIELD

To explain why modelling innovations with random fields will remove any re-
quirement for the recalibration of the yield curve, we begin by recalling that for
either single or finite factor models of interest rates, the selection of an appropriate
drift function n* (t), the risk-neutral drift, will determine that the theoretical and
actual market prices are equivalent. The example of this, which was presented in
the introduction, was the Ho & Lee model (1.2). Using this model as an example,
Wilmott [50] has shown that the slope of the yield curve is equal to one-half of
this risk-neutral drift, while the curvature of the yield curve at the short-end is
proportional to the derivative of this drift term. In other words, both the slope and
the curvature of the yield curve are dependent on the form of n*.
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For the model presented in the introduction (1.1), the yield curve is only a
function of the term structure, with the current time ¢ acting as a parameter.
Hence the only fluctuations recorded by the yield curve will be a consequence of
the term structure. Hence, if the drift term 5* was to remain constant throughout
time as well, its form would imply a dramatic fAattening of the yield curve, which
is not shown to occur empirically. As a consequence of this, the yield curve must
~ be recalibrated to account for the changing structure of the drift equation. The
risk-neutral drift captures this evolution of the term structure over time.

This is circumvented under the random field model of the instantaneous forward
rate which was presented in the introduction. Recalling the random field model,

FUT)=pt,T)+X(t,T), 0<t<T,T>0,

where the drift 4 (¢, T") and random field X (¢, T) as previously defined, Kennedy has
shown that the interest rate term structure ¥ (t,T) can be expressed as a Gaussian
random field with covariance function

(21) COU (Y(tl,Tl),Y(tg,Tg))

1 Ty pTe
= t i
Tom @ ), [, o

If we exploit the connection between the instantaneous yield curve at time ¢t and
the forward rate F' (¢, T), this leads to a model of evolution of interest rate term in
terms of the forward rate:

(2.2) MY(?%Q - ﬁ[F(t,T)+Y(t,T)]
LOPWT) | 0¥ ()
o T

Furthermore, under Kennedy’s model, all available information at time ¢ is as-
sumed to be contained in the o-field

Fr=0{F (u,v);0 <u<tu<ov};

ie. at any point in time, the entire yield curve is observable. This contrasts
with finite-factor models, where it is assumed that there are a small number of
bonds of particular maturities for which the dynamics are specified and bond
prices may be calculated: eg. for 0 < sy < 85 < ... < s, the evolution of
P(t+s1), P(t,t +s3), ..., P (t,t + 53 ) and the spot rater (1) = F(t,t)fort > 0.
Suppose that R, is a sub-o-field such that Ry C F; and the conditional distributions
of {F(t,v);v >t} given R, are Gaussian. Then with this restricted information
the bond prices will be

(23) P(t,T) = BIP (7 R,] = o~ 7 Pt

where

T R T
(2.4) /t F(t,u)du:/t E[F(t,u)[RJdu—%Va.r (/TF(t,u)du[Rt).

If we denote by é(t,u,v) = Cov(F (t,u), F (t,v)|R:) the covariance function con-
ditional on the filtration R+, then it follows that

/tTF<t,u>du=/tTE[F<t,u) mtldu—/uit/uita(t,u,v)dudv
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which implies that
(2.5) F(t,T) = E[F(t,u)|Ry] du—/tTé(t,u,T) du.
Now consider the special case of a one-factor model where R, = o{r(t)}, and

suppose that the Markov property holds for the random field, i.e. it has the inde-
pendent increments property. Then

(26) BIF(T)IR) = (6 T)+ S0 ()~ (1,0
and
(2.7) ¢(t,u,v) = c(t,u,v) — elbtiuje(tyt,v) t’tc’g’;’ tt),t,v .

Recalling that
p
pOT)=u D)+ [ le(thv,,7) - c(0,0,T)] do,
0
this then leads to
T T . T u
(2.8) / w(tu)du :/ (0, u) +/ / le(t Av,v,u) — ¢(0,v,u)] dudv.
t t t 0

It then follows that P (s,t) may be represented as

(2.9) P(s,t) = a(t,T) e d®&TIr(®)
where
T
clt,t,u
. T = .J’_’ld
(2.10) b(t,T) /t ctt,8) U
and

ma(t,T) = In <M) +b(t,T) F(0,1)

P(0,1)
it
(2.11) —ﬂt’Z—’zb2 t,T) +d (t,T),
with
T ot
c!v,v,tfc(t,t,u[
(2.12) ait,T) = /uzv /'uzo [ ¢t t) c(v,v,u)] dudv.

Kennedy states that a random field F (t,T) is said to satisfy the first Markov
property if it satisfies the usual definition of a Markov process upon holding T
constant. The second Markov property is satisfied by F(t,T) if F(t;,T}) and
F(t3,Ty) are conditionally independent, given F (3, T}), with 0 <t < 3 and
t2 < Ty AT. The process F (t,T) is said to be Markoy in direction T"if F' (¢, T}) and
F(1,T3) are conditionally independent, given F(t,Ty), with 0 < ¢ <) <T, <Ty.
Under the situation where all three of these properties hold together, then the
random field is said to be strictly Markov. Kennedy [28, p. 117-118] has shown
that the covariance function attain the form

(2.13) ¢(t,T1,Tz) = o exp[At+ (2u - A) (T AD) — p(Ty + T)].
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In addition, providing that the o-field is strictly Markow, then d (t,T) = 0. When
E[P(t,T)|R]=EI[P(t,T)|Ql],
where Q; = o {r (u);0 < u < t}, the Ho & Lee model is attained if
(2.14) c(s,u,v) =025, Vu,v,
and the Hull & White model can be derived if
o2 sin (as) e~ @(uVv)

(2.15) c(s,u,v) = " , Yu,v.

The connection between these finite factor models and the Kennedy-Goldstein
model can be understood through the Radon-Nikodym theorem. Given that

Fir=0{F(u,v);0 <u<t,u<v}

defines the o-field for the Kennedy-Goldstein model, and R, is a sub-o-field of F,,
such that it defines the filtration for the evolution of P (Lt +s81), .y P(t,L+ 81,
0 < s <8 <..< s, and the spot rate r(t) = F(t,t) for t > 0. Then by the
Radon-Nikodym theorem it is possible to construct an equivalent o-finite measure
B andQion( ,F)and ( ,R)) respectively, such that there exists a measurable
function f () where

Qtz/Af(F(u,v)) dP,

and A € ;. The function f(-) is the Radon-Nikodym derivative and is denoted

-
t
Via the Girsanov theorem, Kennedy has been able to parametrize the drift and
volatility of the finite factor model in terms of the equivalent measure of the ran-
dom field. This same technique underlies algorithm employed for estimating Bayes
models (Phillips [42] and Phillips and Ploberger [43]) and Markov switching [22, 23]
Hence, there is a direct connection between the relationship of the single and finite-
factor models to the infinite dimensional approach of Kennedy and Goldstein, and
the success of approaches like the Bayes modelling approach of Philli ps and Markov
switching for estimating the parameters of the yield curve,

3. MORE GENERAL FORMULATIONS OF TERM STRUCTURE AS A RANDOM FIELD

Kennedy has stated that one model which adheres to the properties given in the
introduction, is where the random component X (¢,T) is a Gaussian random field
with covariance function

(3.1) ¢t T, T) =0 () 7(Th VT),

where o, 7 : 0, 00) — [0, 00) are continuous and monotone increasing and monotone
decreasing respectively such that o (0) = 0. The assumption that 7 is decreasing
corresponds to the assumption that F(t,T), 0<{< T, decreases as the maturity
in time ¢ increases. For fixed ¢

(3.2) Corr (X (¢, 1), X (t,T2)) = v/ ([ V T2) /7 (T, A T).

Thus for fixed ¢+ and 7} it can be shown that as Ty increases from Ty, =Ty, the
correlation between F' (¢, T}) and F (¢,T%) decays to 1.




8 STUART MCDONALD AND RODNEY BEARD

Following Kennedy, we assume that the spot rate has a constant volatility a >
0,then assuming o and 7 are differentiable,
2

(3.3) o't — o7’ = a®
By setting 7(¢) = ™™, XA > 0, and setting the boundary condition o (0) = 0,
integrating the differential equation gives
(3.4) o (t) = a®sinh (Xt) A
In this case
Cov(r(s),r(t)) = Cov(F(s,s),F (1))
= og(sAt)T(sVt)

2
= %e"\(sv"‘)sinh()\(s/\t))
2
O —Als—t] _ _—A(s+t)
(3.5) = [e e ],

which shows that the stochastic component of r(t), X (t,t), follows an Ornstein-
Uhlenbeck (O-U) process

(3.6) dX (t,t) = =AX (t,t) dt+ adW (2)

where W (t) is standard Brownian motion.
It then follows that )

(3.7) dr (t) = dp (t,8) = A (r () — (¢, ) dt + adW (t),
where

(3.8) pt,t) = p(0,t)+ 'a;e_)‘t /Ot sinh (\v) dv
(3.9) = u(0,t)+ a;ze“)‘t (cosh(At) —1).

Upon substituting in p (t,t) we get

(310) dr(6) = e“;‘td(e’\tﬂ(O,t)) L@

o v e~ sinh (M) — r (t)J dt + adW (t).

Providing that 4 (0,7) — 1 (0) as T — oo, then it follows that 7 (¢) has mean
reverting to the value p (0) 4 a2/2)2.
Following Kennedy, we define X (t,T) as follows:

(3.11) X(T)=W (o(t),(T)).

where W is the standard Brownian sheet, and the o and 7 functions are translation
parameters. (See Walsh [49)] for a list of scaling, inversion and translation transfor-
mations for the Brownian sheet.) In the case where o (t) = ¢, 0? > 0, Kennedy

has shown that F (¢, T) performs a Brownian motion with variance parameter o2
and drift

T
u(t,T) = M(O,T)+U2/O tAv)T(vVT)dv

o>7 (1) [T7 — (T - 1))

(3.12) = u(0,T)+ 5
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If we will let 7 (T') = e=*T, A > 0, so that
(3.13) Corr (F (,Th), F(t,Ty)) = e~ MT1-T2l/2

then we can see that the correlation structure between the forwards will decay to
zero as |T; — T3] — oo. In addition %7 (t) converges as ¢ — oo, which implies that
this model possesses the mean reverting property.

Goldstein has suggested an alternative model for the forward rate

62
(3.14) dF (,T)= <p, (t,T) +)\ﬁF(t,T)) dt+ o (t,T)dW (£, T), X >0,
where W (¢,T) is the standard Brownian sheet. To generate such a process, the

yield curve must be sufficiently smooth to ensure that 5%17 (t,T) exists. Goldstein
begins with the O-U sheet dZ (t,T), where

dz(t,t) ~ N (0,dt)
with the remainder of the field generated by

—_ T
(3.15) dZ (t,T) = e *T~D4Z (t,¢) + \/2,0/ e T gz (s,1),
t

where dz (s,t) satisfies

dsdu1 if Uy = Uz

(3.16) E[dz(s,t)]=0, Covldz(s1,t),dz (s, )] = { 0 otherwise.

He then integrates the O-U sheet:
T
dv (¢, T) = \/2,;2/ e PT=YaX (t,u) du

(3.17)

—_ T
e~ PT=GV (1) + /202 / dX (s,u) e PT~¥ gy,

]

This process gives the following correlation structure:

(3.18) Corr [dV (¢,T1) ,dV (¢, T)] = e~ (1 +p7),
where 7 = |T1 — Ty); its Taylor expansion is given by
1
(3.19) Corr[dV (t,T}),dV t,Ty)] = (1 — pr -}—5 (pT)2 + ) (1 + p1)
1
= 1 -5 (p7)% + ...,

which is differentiable. However to accommodate B%F (¢,T), its correlation func-

tion must be at least second order differentiable (see Adler [1]). Hence Goldstein
integrates over dV (¢, T),

4p% [T
(3.20) 4z (,7) = |/ - / dudV (¢, u) e=PT =),

to generate the correlation structure

(3.21) Corr (dZ (s,T1) ,dZ (s, Ty)) = 7 <1 + p1 +§ (pT)2> ,
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which satisfies this property. The covariance function for dZ (t,T) is defined as
follows

Cov(dZ (t,T1),dZ (t,Ts))
1
= e ATi-Ta <1+p ,Tl __T2I +§p2 ITl —T2|2> ds.

upon substituting |74 — Ty| for 7. Goldstein has shown that this process leads to
the following equations for the drift and volatility terms in (3.14):

_ —2p(T—t) _ ,—(p+r)(T—1)
(3.22) P T) =~ (e e ),
and
(3.23) ot,T)=ge T

respectively. Thisrandom field is therefore non-Gaussian. The results of both these
models are shown in the appendices. In both models it can be seen that a, reduction
in the size of o will lead to an increase in cyclical volatility.

4. A NUMERICAL PROCEDURE FOR THE SIMULATION OF THE TERM STRUCTURE
AS A RANDOM FIELD

The approach that has been adopted in this paper, is to model the dynamics
of the term structure as a stochastic partial differential equation (SPDE). The
procedure we will be employ is based on the method of lines (MOL). Method of
Lines is a technique for solving PDEs by reducing them to system of ordinary
differential equations (ODEs), usually by application of finite difference or finite
element techniques. MOL is attractive as a technique, because it does not change
the characteristics of the problem being solved. For example, if the original problem
is an initial value problem, then the resulting system of ODEs will also form an
initial value problem. Likewise, if the original problem is a boundary value problem,
then the resulting system of ODEs will also be a boundary value problem. The
reader is recommended to consult Ames [3] for a review on the procedure and its
application to solving boundary condition problems in deterministic PDEs.

We will be using MOL in the same way, i.e. it will be used to transform the
boundary condition problem for the SPDEs, into boundary condition problems for
a system of SDEs. A review of other numeric procedures for solving SPDEs can be
found in these papers. We begin by defining an equidistant mesh on {0,

Tmax — Tmin
N+1

The SPDEs defined in the last section, now becomes systems of SDEs. For the first
model:

Sn=nh,, withn=0,1,..,N +1 and hs =

N
(4.1) AF (tsn) = p(tsn)dt + ) 0 (t,5,)dW (1,8,), n=1,2,.. N,
n=1
where
0?7 (1) [s2 — (s, - t)’]
2

(4.2) 1t sn) = 1 (0,8,) +
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with 1 (0, s,) = F (0, 5,) and
(4.3) o (¢, 8,) = 0%, o%>0.

The second model is given as follows:

F(t,5n+1) —2F(t,3n)+ F(i, 3,,__1)) dt

(44)dF (t,8,) = u(t,sn)dt+/\< h2

N
+ 37 0 (b 8n) AW (t,50)
n=1

for n=1,2,..., N,where

(4.5) p(t, s,) = = (e—2p<sn—t) - e—(p+~)<sn—t>) ,
and

(4.6) o(t,T)=ge *T7Y,

with

(4.7) o,6>0, 0<p<1, and X\ >

K2+ p?’
The boundary values for these systems are given as follows:

T (Ta T) = 0P (Ty T) =1,
P(,T) > 1, YO<t<T,
T(t,T) > 0, VO<t<LT.

We note that each equation in the system is in the general form of a SDE driven
by a d-dimensional Wiener process:

d
dy = f(t,9)dt+ Y g, (t,y)dW; (1), y (to) = o,

i=1
where W; (t) is a standard Wiener process whose increment AW (t) = W, (t+ At)—

W (t) is AW; (1) KN (0, At). We define an equidistant grid on [0, s,] for each of
the N equations which compose the system:

tm =mbhy, withm =0,1,..,M +1 and h, = tm—a’;&%n

We note tmin, = 0 for alln = 1, woy N + 1, while tpax, = $,. We now solve each
of these systems of equations by using an Euler method based on the backward-
difference approximation — this is the backward Euler-M aruyama method, which is
an implicit Euler procedure. This contrasts with work by Tian et al. [47] which also
uses MOL to an SPDE model in stochastic hydrology. The approach employed by
Tian et al. uses a semi-implicit Euler procedure based on the method of Burrage
and Tian [8, 9. We suggest that our procedure has an intuitive appeal in that
the discretization of the space converts the random field model to a vector process,
containing information about the forward rates of bonds of different maturities.
While the use of the backward Euler method is appropriate for solving the problem
of the contingent claim on the bond.
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Applying the backward Euler-Maruyama to (4.1) and (4.4) gives:

N
(48) F(tm-1,82) = F (tm,s,) — (u (tm,8n) At + Z 0 (tm, 85) AW (tm,sn)> ,

n=1

where

o2 (tm) [‘;3‘; — ($n — tm}z]
(4.9) p (tm 8m) = 10, 8,) + = .

with 41(0,8,) = F (0, s,) and 7 (s,,) = e~*%n and
(4.10) 0 (tms $n) = 02tm, o2 > 0.

for the first model. The second model is given as follows:

(411) F(tm1,82) = F (tmy6n) — (tm, 5) At
Y (F (tm15n+1)_2F(1;1n2n'3n)+F(tmysn—l)) At

N
— Z O (tm,5n) AW (tm, s) ,
n=1

where

(4.12) b 5n) = —— (e—zp(sn—tm) _ e—(p+~)(sn—tm)) ,
and

(4.13) o (tmy Sn) - Je—n(sn—tm)’

with o, %, p, and )\ as defined earlier, forn =1,2,..., N and m = 1,2,..., M respec-
tively. The boundary conditions are as previously stated.

We will model the noise term by a white noise process ;. o~ N (0,1), hence
by the standard normal transformation

1
414 AW t 7,3 = === .
( ) (tm, sn) JAt Mt mrSm
This is arrived at by using the spectral decomposition of the spatial covariance
function (1.10) defined for the Brownian sheet W (t,T) is given by

(415) CO’U (W (tl, T1) ) w (tz,Tz)) =C (tl A tg, T],Tg) .

As noted earlier this function ¢ will be symmetric in ¢; and ¢; and positive semi-
definite in (¢1,71) and (i, T3). In addition to ensure the continuity of the random
field the covariance function must also be bounded, hence it will have a spectral
decomposition

(4.16) ety Ntg, 1, Th) = Z Amfm (T1) fm (T2),

m=1

where A, and f, (T) are respectively the ith eigenvalue and eigenvector of the
spatial covariance function. Following Ghanem and Spanos [45] this will imply that
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the Brownian sheet can be approximated by the following truncated Wiener-Tto
chaos expansion

N —
(4.17) W(T) = D vV Amiy, (8) fin (T)
m=1

where ;. is defined at the beginning of the paragraph.

The results of the simulation for both of these models are contained in the
Appendix. The simulations for these models were completed using MATLAB 5.2,

For both models, it was found that as the coefficient o increases (ie. as the
volatility increases) with respect to time, there is a reduced incidence in cyclical
behaviour which would reflect a co-movement in the business cycle. In turn, lower
volatility provides a cyclical pattern to the term structure along the temporal di-
mension. The coefficient o controls the diffusion of noise across time. These results
suggest that as the level of volatility increases, this noise serves to dampen the
incidence of cyclical effects recorded in the term structure.

It is also well known that noise can be used as a techniques for stabilizing par-
tial differential equations; Kwiecinska [31] has presented an application of this to
stabilizing the dynamics of the heat equation. The implications of this to business
cycle modelling, with respect to the arguments of Working [51], Slutsky [44] and
Magill [37] is that when the stochastic environment is nois , it acts to dampen
the dynamics of the capital accumulation process, i.e. the dynamics movements of
asset prices. As the business cycle is the dual process of the dynamics of capital
accumulation, this may explain a reduced incidence in business cycle activity which
is associated with fluctuations in the term structure.

Another implications for business cycle modelling is the effect of varying the \
coefficient in the Goldstein model. Apart from this one coefficient A, which governs
the degree of curvature in the yield curve, the Kennedy and Goldstein models are
quite similar in structure. This is also confirmed if we examine the simulations of
the Goldstein model in which we keep A constant and vary a: as the coefficient ¢ is
reduced the degree of induced cyclical behaviour increases. However, when holding
o constant and varying A we see that as the \ coefficient becomes larger the slope of
yield curve switches sign. This yield curve inversion related to correlation between
bonds of different maturities and has important implications for both interest rate
policy, and when taken in conjunction with the Brace-Gatarek-Musiela [7, 40] model
of long bonds, the pricing of options like caps and caplets.

As we stated in the introduction a natural extension of our simulation proce-
dure is to simulated likelihood and the econometric estimation continuous spatio-
temporal panel data models. Particularly since the mathematics behind random
fields was initially developed in applications using ANOVA (see Walsh [49] for an
interesting account of this connection). As stated earlier, the most immediate appli-
cation of this methodology would for the estimation of parameters for term structure
and bond pricing models of interest rates that use SPDEs to model their underlying
behaviour. Calibration procedures based on our yield curve simulations reduce the
need for recalibration of yield curve models by allowing for spatio-temporal correla-
tion. However beyond this, these simulated likelihood techniques would eventually
provide the basis for a mean-square optimal control algorithm for SPDEs. This is
essentially our long-term research program.
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5. CONCLUSION AND DISCUSSION

In this paper we have presented simulation results of two theoretical term struc-
ture models. As the yield curve is based on forward rates which are modelled as
a random field, we have introduced a new numerical technique for modeling the
evolution of a process on a random field.

As was stated earlier, this numerical technique uses the method of lines to con-
vert the random field into a random vector process. Our method is considerably
simpler than many of the existing techniques in use for simulating SPDEs and also
benefits from drawing from a well defined collection of finite difference procedures
for simulating SDEs.

The results of these simulations suggest that as o decreases, the term struc-
ture will generate a surface which resembles the fluctuations of the business cycle.
These results also suggest that as the level of volatility increases, this noise serves
to dampen the incidence of cyclical effects recorded in the term structure. The
co-movement of the term structure of interest rates with fluctuations in the busi-
ness cycle suggests a possible application of this type of model to macroeconomic
dynamics.

When we examined the simulations of the Goldstein model in which there is
coefficient A controlling the curvature of the vield curve, we see that when we
hold o constant and increase ), the slope of yield curve switches sign. This yield
curve inversion related to correlation between bonds of different mafurities and has
important implications for both interest rate policy, as well as for the pricing of
options on long bonds, like caps and caplets.

We have also state that random field term structure models offer an improvement
on the yield curve models based on SDEs, because they circumvent the problem
of recalibration which is associated with these models. It was stated that while
Markov switching or Bayesian modelling methodologies are effective for modelling
interest rate term structure, their effectiveness is due to incomplete information.

Taken together with the simulation results, this would suggest that an econo-
metric modelling approach that mcorporates a spatial-temporal aspect, would be
useful for modelling the evolution of the term structure of interest rates. The de-
velopment of an estimation method for this type of model, is likely to require the
simulation of SPDEs as part of the estimation process. As we stated in the last

section, we anticipate that this will lead us to mean-square control procedure for
SPDEs.
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6. APPENDIX: SIMULATION RESULTS FOR TERM STRUCTURE MODEL

Yield curve, sigma=0.2

B0y oot

time maturity date

Yield curve, sigma=002

time maturity date

FIGURE 1. Term structure for the Kennedy model varying sigma
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Yiald curve, siyms=0.002
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FIGURE 2. Term structure for the Kennedy model varying sigma

Yield curve, sigma=0.02, lambda=0.09
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FIGURE 3. Term structure for the Goldstein mode] varying lambda
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Yield curve, sigma=0.02, lambda=5
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FIGURE 4. Term structure for the Goldstein model varying lambda
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