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1. Introduction 

A range of techniques have been established to lock a laser source to an optical cavity [1], or some other 
external reference (e.g., atomic or molecular transition). An overview of many of these techniques is 
provided in [2]. Such locking schemes are broadly divided into those which monitor variations in either the 
transmitted or reflected intensity of some probe beam, and those based on interferometry.  

In intensity based schemes, light from the source to be locked is incident on a reference and then passes to a 
detector. The detected intensity then depends on the detuning of the source. By monitoring the intensity of 
the light after interacting with the reference, and knowing the dependence on detuning, an error signal is 
obtained. Intensity locking schemes include: locking to the transmission peak of a cavity, locking to the 
side of a transmission fringe [3], dithering the source frequency about a transmission peak [4] and 
saturation spectroscopy [5]. Common to all intensity locking schemes is that only the intensity of the output 
signal matters, and if it is recombined with part of the original signal, this is done incoherently (e.g., by 
differencing the signals from two photodetectors, before and after the cavity).  

The other category of locking schemes is interferometric in nature, by this we mean that two (or more) 
modes of a probe light field are combined coherently (the prerequisite for interference) to generate the error 
signal. These modes may be orthogonal spatial modes (e.g., tilt-locking [6]) or polarisation modes (e.g., 
Hänsch–Couillaud locking [7]), or even different frequency components (e.g., Pound–Drever–Hall locking 
[8 and 9]).   

Here we present a locking scheme which uses the phase difference between orthogonal modes, either 
spatial or polarisation, as the target error signal. In both cases we use polarisation assisted phase retrieval to 
obtain our error signal.  

2. Polarisation assisted phase retrieval 

While it is often sufficient to consider light as only a scalar field (as in, for example, fringe side locking), 
light is more fully described as a vector field. As such, approximating the propagation of light as a plane 
wave, with the electric field oscillating transverse to the direction of propagation, the electric field at any 
point may be described as the sum of two independent components which are orthogonally polarised. The 
choice of the orthogonal basis for this description of the field is arbitrary, but it is simpler to realise this 
technique experimentally if a linear polarisation basis is chosen. Following convention, we label the two 
orthogonal linear polarisations as "horizontal" (H) and "vertical" (V). Polarisation assisted phase retrieval 
allows us then to determine the phase difference between these components.  

Consider some plane polarised light, where the electric field of the beam is in an unknown superposition of 
horizontal and vertical polarisation components, i.e., 

 
(1)



 
where AH and AV are the amplitudes of the two field components, is the angular frequency of the light, t is 
the time, k=2 /  is the wavenumber of the light, z is distance in the direction of propagation and is the 
phase difference between the two polarisations.  

The Stokes parameters for the total field are well known [10]. Expanding these, using the definitions of EH 
and EV in Eq. (1), and applying Euler’s formula, we find: 
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S2=2(AHAVcos ), (2)

 
S3=2(AHAVsin ). (2)

 
The Stokes parameters may be obtained by measurement of the intensity of the horizontal, diagonal and 
right-circular components, i.e., 
 

Si=2Ii−I0 (i=0,1,2,3), (3)
 
where Ii are the measured intensities, I0 is the total light intensity and i=1,2,3 refer to the horizontal, 
diagonal and right-circular components, respectively.  

The expressions for S2 and S3 in Eqs. ((2a), (2b), (2c) and (2d)) combine to yield the phase difference 
between EH and EV. (This analysis method was presented by Freund [11] in the context of locating and 
analysing optical vortices.) Viz, 

 
(4)

 
or, equivalently (after [11]), 
 

S2+iS3=2AHAVei . (5)
 
The phase difference between EH and EV, , may be extracted from either of the above expressions. 
Experimentally, obtaining from Eq. (4) would almost certainly require the use of fast digital processing to 
calculate the arctangent function. However, this would pose no particular difficulty as this is a routine 
process in real time control systems where precision to better than 20 significant digits is possible [12]. If a 
higher frequency response is required, Eq. (5) may prove amenable to an analogue sideband technique, 
allowing to be measured without having to directly calculate the arctangent. If a linear phase response is 
not required, (e.g., in frequency locking) then the signal provided by S3/S2 will indicate if there is a phase 
difference between the components and the direction of this phase shift, and this may be readily 
implemented in analogue electronics.  

The relative intensities of the H and V polarised components have no effect on the value of the recovered 
phase, providing both are detectable. If one of the linearly polarised components is greater than the other, it 



contributes equally to both S2 and S3 and so, inspecting Eqs. ((4) and (5)), we see that there is no net effect 
on . The limiting factors in choosing the intensities of the H and V components are the efficiency of the 
detectors and detector noise.  

3. Frequency locking by analysis of orthogonal polarisation 
modes 

Consider some light field, Ei, which may be decomposed into two orthogonal components, incident on a 
particular cavity. Further, these components are orthogonally linearly polarised and have a fixed phase 
relationship 

 (6)
 
Here Ei1 and Ei2 are complex amplitudes of the field components, and and are the basis vectors of the 
orthogonal modes. Choose to be horizontally polarised and to be vertically polarised. Note that the 
basis vectors, and , are not necessarily directions in real space, e.g., they may be orthogonal spatial 
modes. The cavity is chosen such that the and field components are resonant at different frequencies. 
We choose the component to be resonant at the frequency we want to lock to, so the component will 
be almost completely reflected. The reflected field from this cavity is defined to be 
 

 (7)
 
where Fr1 and Fr2 are the cavity reflectances for the and components, respectively. As the frequency of 
the input beam is changed and passes through the resonance for , this component of the reflected field 
will experience a phase shift relative to the component. As the component is horizontally polarised 
and the component is vertically polarised we simply measure the S2 and S3 Stokes parameters of the 
reflected light. Applying the polarisation assisted phase retrieval method described above yields the relative 
phase between the and components. This is our error signal.  

4. Applications 

We now demonstrate our technique by modelling several cavities of interest and comparing the results with 
existing methods. The model reference cavity is chosen, for simplicity, to be a symmetric, confocal, two-
mirror cavity and Hermite–Gauss modes are used to approximate the spatial modes of the cavity, as 
expected experimentally. Following Siegman [13], the round trip gain for this cavity is 

g=r2e−2 L−i(2kL−
rt

), (8)
 
where r is the reflectance of the cavity mirrors, is the absorption per unit length in the cavity, L is the 
cavity length, k is the wavenumber of the light in the cavity and rt is the round trip Guoy phase shift for 
the mode being analysed, given, for this particular cavity, by 
 

 (9)
 
where m and n are the Hermite–Gauss mode numbers. The wavenumber, k, is defined as 
 



 
(10)

 
where nc is the effective refractive index for the cavity and 0 is the free space wavelength of the light.  

Combining Eqs. ((8), (9) and (10)), the round trip gain is 

 

 
(11)

 
Letting Ei be the electric field of the incident light, the reflected field is 
 

 
(12)

 
Dividing Eq. (12) by the incident field Ei and substituting for g yields the cavity reflectance 
 

 
(13)

4.1. Polarisation dependent cavities 

We now consider the application of our locking method to two types of polarisation dependencies in the 
reference cavity, linear polarisation dichroism and birefringence. In both cases we use the H–V polarisation 
basis, as, without any loss of generality, we can choose to define the H direction to be parallel to the non-
absorbing axis in the case of dichroism, and parallel to the fast axis for the birefringent case. Fig. 1 shows 
schematically a possible experimental setup for analysing orthogonal polarisation modes to obtain a 
locking signal for a polarisation dependent cavity. The initial linear polarisation of the laser source 
determines the fraction of the incident light which goes into each component. The input field is 

 (14)
 
where and are the H and V polarisation basis vectors. For each of the polarisation components the 
cavity reflectance is calculated from Eq. (13), by substituting the appropriate polarisation dependant terms 
for each. Doing so yields 
 

 
 



 

Fig. 1. Schematic of one possible experimental setup to implement orthogonal polarisation mode analysis 
for locking a polarisation dependent cavity.  

From this, the Stoke’s parameters are calculated (Eqs. ((2a), (2b), (2c) and (2d))), and either Eq. ((4) and 
(5)) yields the error signal.  

For a dichroic cavity, the reflectances are given by 

 
(15)

 
where 0 is the cavity loss per unit length experienced by both components and d is the loss per unit 
length experienced only by the vertically polarised component due to the dichroism. Fig. 2 compares our 
method with Hänsch–Couillaud locking, and shows the associated locking potentials [2], calculated for a 
reference cavity which is linearly dichroic. Our locking technique is shown for both the case where the 
actual phase shift between the orthogonal components is recovered, and for the case where the tangent of 
the phase shift is recovered. In their original paper [7] Hänsch and Couillaud examined the case of a cavity 
containing a linear polarising element. We followed their example by choosing the value of d to be 
effectively infinite. The plots in Fig. 2 show that the error signal generated by the method we describe is 
notably steeper than that of Hänsch–Couillaud locking near the resonance. In fact the orthogonal modes 
error signal is the cavity dispersion; no steeper locking signal can be obtained with linear means. This is 
also seen in the steeper locking potentials for small detuning. The inset to Fig. 2 shows the same error 
signals calculated for several free spectral ranges. The error responses generated by the method we describe 
is noteably steeper than that of Hänsch–Couillaud locking near the resonance. In fact the orthogonal modes 
error signal is the cavity dispersion; no steeper locking signal can be obtained with linear means. This is 
also seen in the steeper locking potentials for small detuning. The inset to Fig. 2 shows the same error 
signals calculated for several free spectral ranges. The error responses generated by these two methods 
overlap far from resonance. Thus, our method is more sensitive at small detunings, and is comparable to 
Hänsch–Couillaud locking at large detunings. For both methods the effective locking width is one free 
spectral range of the reference cavity. 
 



Fig. 2. Error signals and locking potentials [2] for Hänsch–Couillaud locking and our method, applied to a 
cavity which exhibits linear polarisation dichroism. The orthogonal mode error signal returned may be 
either the phase shift ( ) imparted by the cavity, or the tan of this angle, as appropriate for the application 
(see text). The inset shows detuning over several free spectral ranges of the cavity. 

For a birefringent cavity, the reflectances are given by 

 
(16)

 
where the effective cavity refractive indices for the fast and slow axes of the birefringent element are nfast 
and nslow, respectively. Fig. 3 shows a comparison of calculated locking error signals for Hänsch–Couillaud 
locking and the method described here, for the case of a cavity containing some birefringent element. It is 
seen that, as with the dichroic cavity, near resonance our method produces a steeper error signal, making it 
more sensitive to small detunings. Again, inset in this figure are the same error signals calculated for 
several free spectral ranges of the reference cavity, showing that at large detuning the method of analysing 
orthogonal modes has a locking signal similar to Hänsch–Couillaud locking. As before, the effective 
locking width for both methods is one free spectral range of the reference cavity.  
 



Fig. 3. Error signals and locking potentials for Hänsch–Couillaud locking and our method for a cavity 
which is birefringent in linear polarisation. The error signal generated by the analysis of orthogonal 
polarisation modes may be either the phase shift ( ) imparted by the cavity, or the tan of this angle, as 
appropriate for the application (as before). The inset shows detuning over several free spectral ranges of the 
cavity. In each free spectral range there are two resonances, one from each of the orthogonal modes, for 
which the cavity has different refractive indices.  

Typically, cavities in applications such as optical frequency conversion are birefringent. However, we note 
that ring cavities and those that exhibit whispering gallery modes (WGM) are also effectively birefringent 
due to the polarisation dependent phase shifts on reflection. Standing wave cavities, such as the example 
provided here, are also often birefringent to some extent in practice, due to stresses in the mirrors or other 
optical elements.  

4.2. Orthogonal spatial modes 

For an empty cavity (i.e., one with no polarisation dependence) the H and V polarised components no 
longer suffice to produce the relative phase shift required to yield an error signal from the analysis of 
orthogonal polarisation modes. However, the Guoy phase shift term in Eqs. ((9) and (13)) means that two 
spatial modes can be found which are resonant at different frequencies. As before, without any loss of 
generality, we model the particular case of a confocal cavity, where all the even modes (i.e., the sum of the 
mode numbers m and n is even) will fall at one frequency and all the odd modes at another, half the 
cavity’s free spectral range away. We choose the two lowest order modes which fall at different 
frequencies, namely: TEM00 and TEM01. We want to lock the laser source to a frequency at which the 
TEM00 mode is resonant with the cavity, and so will experience a phase shift relative to the TEM01 
component on reflection. The TEM01 spatial mode has two lobes with a relative phase shift of half a 
wavelength between them and these are quarter a wavelength shifted in phase from the TEM00 component.  



Recently, a locking scheme was proposed, tilt-locking [6], which made use of just such a setup, but only 
considering a scalar light field. If there were no relative phase shift, the two lobes of the TEM01 component 
experience the same interference with the TEM00 and so have the same resultant intensity. If there were a 
relative phase shift, one lobe of the TEM01 would experience constructive interference, and the other 
destructive. So one lobe would have a greater intensity than the other, and which lobe had the greater, 
depends on which side of the resonance the detuning occurs. By measuring the intensity of the two lobes of 
the reflected field on a split detector and differencing them, an error signal is generated.  

We now extend this to use the vector properties of the light field. Fig. 4 shows schematically a possible 
experimental setup for implementing our technique, for an empty cavity using orthogonal spatial modes, 
one of which (TEM01) may be generated holographically [14]. The initial linear polarisation of the laser 
source determines the fraction of the incident light which goes into each component. To allow us to extract 
the phase shift, one spatial component (TEM00) is H polarised and the other (TEM01) is V polarised. We 
can now apply the polarisation assisted phase retrieval method described earlier. The basis for this system 
is then the product of the orthogonal spatial mode basis and the H–V basis.  

 

Fig. 4. Schematic of one possible experimental setup to implement orthogonal spatial mode analysis for 
locking an empty cavity.  

The expression for the input field in this case is 

 (17)
 
where, as before EH and EV are the complex field amplitudes of the H and V components, but the basis 
vectors and are two of the bases of the product space of the spatial and polarisation modes. The basis 
vector is the component of the field which is both TEM00 and H polarised. Similarly, 

is the component which is both TEM01 and V polarised. The other two components of the 
product space [15] are zero. The cavity reflectances are given by 
 



 
(18)

 
As with tilt-locking, the two modes experience a relative phase shift due to the cavity, which depends on 
detuning. However, unlike tilt-locking, we measure the relative phase of each lobe via the polarisation 
assisted phase retrieval method and sum the two. Recall that at resonance the lobes of the TEM01 
component have a phase of ± /2 relative to the TEM00. Whereas, off resonance, the TEM00 phase will shift 
towards that of one lobe or the other of the TEM01, and will cause the summed phases to be either positive 
or negative depending on the direction of the detuning, as shown in Fig. 5.  

Fig. 5. Error signals and locking potentials for tilt-locking and our method for an empty cavity. The error 
signal in the latter case is exactly the phase shift ( ) imparted by the cavity. The inset shows detuning over 
several free spectral ranges of the cavity. In each free spectral range there are two resonances, one from 
each of the orthogonal modes (TEM00 and TEM01).  

In this figure, the error signal from our method is much steeper near the cavity resonance than tilt-locking 
and so is expected to be more sensitive to detuning. This is an advantage in applications using empty 
cavities, e.g., gravity wave interferometry, where sensitivity is paramount. Once again, the inset to this 
figure shows the error signals for both methods calculated for several free spectral ranges of the cavity. The 
effective locking width for both methods is one free spectral range.  

5. Conclusion 
We described a novel method for locking a laser source to a resonance, such as a cavity. We have shown 
numerical results comparing this method to other locking methods, and found it provides a significantly 
steeper locking signal. Table 1 lists example cases where it can be used, and a suitable choice of orthogonal 
components for each example case. Generally, this locking technique may be applied to any case where a 
cavity or other resonance will partially affect each of two incident components, imparting a relative phase 



shift. This phase shift must be related to the resonance condition of one component. The polarisation 
assisted phase retrieval technique described in this work can then be applied to extract the phase shift and 
this is the error signal used to lock the system.  
 
Table 1. Examples of orthogonal modes for frequency locking a range of cavity types 

 

In the examples presented here, our method makes use of two orthogonal modes, which are orthogonally 
polarised and resonant at different frequencies. For some cases (e.g., birefringent or dichroic) these 
requirements are degenerate and the orthogonal polarisations are also the orthogonal modes. This 
degeneracy is exploited by Hänsch–Couillaud locking. In other cases the resonant response is independent 
of polarisation and a pair of spatial modes are used to obtain a relative phase shift, as in tilt-locking. Thus, a 
family of locking techniques exist which depend on this phase shift between two effectively orthogonal 
modes. Members of this family range from tilt-locking where only the intensity is used, to Hänsch–
Couillaud locking where the intensity and part of the polarisation information is used, to the method 
described in this paper where intensity and all the polarisation information is used. This method alone 
returns the actual dispersion curve of the resonance, and this is why it generates the steepest locking signal.  

This method can be readily extended to more exotic dependencies such as, for example, orbital angular 
momentum, and phase discontinuities or singularities. In these cases, the relative phase measurements 
could be undertaken using properties of the light field other than polarisation. The potential for extending 
the technique we have presented here, to allow phase shift measurements by means other than polarisation 
analysis bears further investigation.  
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