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1 IntrodutionThis paper is onerned with importane sampling (IS) and ross-entropy(CE) tehniques for simulating small probabilities, in the presene of heavy-tailed distributions.Despite the fat that performane evaluation with heavy tails has re-eived onsiderable attention in reent years, the literature on simulationmethods onsists of just a handful papers, in ontrast to the light{tailed asewhere the number of referenes is huge. Also, the models and problems forwhih satisfying solutions have been developed are quite simple, basiallyevaluating P(Y1 + � � �+ Yn > x) where Y1; : : : ; Yn are i.i.d. with ommon dis-tribution F onentrated on (0;1) and heavy-tailed, and n a �xed integer oran independent random variable, and (losely related) evaluating the tail ofthe M/G/1 waiting time distribution; aording to the Pollazek-Khinthine(PK) formula, this orresponds to taking n above as a geometri r.v.In the light{tailed ase, the intuition behind most eÆient algorithms isthat one should perform an i.i.d. hange of measure (twist of distribution; sayof Y1; : : : ; Yn in the above setting) motivated from an asymptoti desriptionof the way in whih the rare event in question ours. Heavy tail asymp-totis, however, usually involves just one or a few big random variables, withthe rest being una�eted by the rare event, f. e.g. (2) below, and there-fore one would not apriori expet a good hange of measure to be i.i.d. (infat, the �rst eÆient algorithm for heavy tails, given in [5℄, does not evenuse importane sampling but a di�erent variane redution method, namely,onditional Monte Carlo). Nevertheless, it is found in [6℄ that the most ob-vious non{i.i.d. IS shemes do not asymptotially improve the variane, anda further �nding of [6℄ is that an i.i.d. hange of measure may indeed beeÆient. The IS distribution is taken independent of x in [6℄ but substantialperformane improvements are obtained in [14℄ by hoosing it dependent onx. Both in [6℄ and [14℄, the hange of measure whih is asymptotially eÆ-ient (in a sense to be made preise in Setion 2) is subjet to hoie within arather broad lass, in ontrast to the light{tailed ase where it is essentiallyunique, f. [7℄ Theorem 17.7. Relevant questions are therefore how sensitivethe performane is to the partiular hoie, and whether there are generalpriniples allowing to identify the optimal hoie. In Setions 3, 4, we presentnumerial examples illustrating the �rst, and suggest a more theoretial ap-proah for the seond; this has its starting point in the CE method [17℄ butalso links up with the maximum likelihood method from statistis [18℄. Thesetting of Setion 3 is that of [14℄, hazard rate twisting, in the two spei�examples of Pareto and Weibull distributions. In Setion 4, we study the2



problem of sale twisting in the Pareto ase whih has not been onsideredso far in the literature. Our results essentially indiate that this hange ofmeasure has little promise of leading to algorithms whih are more eÆientthan existing ones. However, the numerial results support what is maybethe main message of the paper, that hoosing the IS distribution via minimalCE is a quik and systemati way to �nd a hange of measure whih is loseto being variane minimalThe setting of P(Y1 + � � �+ Yn > x) is, as noted above, suÆient to dealwith the M/G/1 queue. Nevertheless, a main hallenge left by [6, 14℄ isto extend to more general models, in partiular the GI/G/1 queue (an al-gorithm is proposed in [10℄ but unfortunately it applies essentially only tothe Weibull distribution, not to the more standard lass of regularly varyingdistributions, and further one may objet that a trunation step is involvedwithout expliit bounds allowing to ontrol the error). In [18℄ and [15℄ it isdisussed how parametri IS via the CE method an readily give an exel-lent speed up (variane redution) for the GI/G/1 queue and more omplexqueueing models, for both light and heavy tail distributions. It was not learfrom the numerial results, however, whether in the heavy tail ase one getspolynomial omplexity for the GI/G/1 queue. In Setion 6 we omplementthe ounterexamples of [6℄ by showing in fat the omplexity is exponential.This does of ourse not ontradit the main �nding of the rest of the paper,that in a given setting the CE method does very well in �nding the besthange of measure.The ontent of the rest of the paper is as follows. Setion 2 is a short pre-liminary on rare events simulation, heavy tails and the ross-entropy method.Some ruder but sometimes more easily implemented alternative to the CEmethod in Setion 3 are briey disussed in Setion 5.2 PreliminariesWe refer to [7℄ and [12℄ for general surveys on rare events simulation andto [11, 3, 1, 20, 18, 15℄ for heavy tails. The set{up and fats that will beneeded in the paper an be found in these referenes as well as an abundaneof researh artiles, and we will therefore only give a brief summary.2.1 Rare events simulationWe onsider a family fA(x)g of events de�ned on some probability spae(
;F ;P) and indexed by a parameter x 2 R, suh that z(x) = P(A(x)) ! 0as x ! 1. A Monte Carlo method estimate bz(x) of z(x) is obtained by3



simulating N repliates Z1; : : : ; ZN of a random variable Z(x) with EZ(x) =z(x) and letting bz(x) be the empirial mean. The traditional measure forthe eÆieny of the sheme is the relative error �(x) = �VarZ(x)�1=2=z(x),and the family fZ(x)g is alled logarithmially eÆient, or for brevity justeÆient, if �(x) = �o(z(x)�Æ� for any Æ > 0; often also the term polynomialor polynomial time is used.The rude Monte Carlo method (CMCM) orresponds to Z(x) = I(A(x))and sampling from the given probability measure P. It has relative error oforder z(x)�1=2 and the CMCM is therefore not eÆient. Importane sam-pling orresponds to Z(x) = WI(A(x)), where now the sampling is donefrom a di�erent probability measure eP (possibly dependent on x) and W isthe likelihood ratio dP=deP. EÆieny or even variane redution is not guar-anteed, but there are many examples in the literature where one an indeedobtain eÆieny by an appropriate hoie of eP. The dominant method forproduing suh a eP is to take eP as lose as possible to P(x) = P�� jA(x)� (theonditional distribution given the rare event). In partiular, this approahhas proved fruitful for light tails where it most often leads to an exponentialhange of measure sheme.2.2 Heavy tailsWe onsider here a heavy{tailed setting where some underlying distributionF is subexponential, meaning that the onvolution tail F �n(x) satis�esF �n(x) = P(Y1 + � � �+ Yn > x) � nF (x) (1)(here Y1; Y2; : : : are i.i.d. with ommon distribution F , and a(x) � b(x) meansa(x)=b(x) ! 1 as x!1). For the intutition behind muh of this paper, itis ruial to note A(x) = fY1 + � � �+ Yn > xg ours by n� 1 of the Yi havedistribution F and one the onditional distribution of Y given Y > x, and allomponents being independent. In terms of the order statistis Y(1) < � � � <Y(n),P�Y(1); : : : ; Y(n) 2 �� ��A(x) � F 
 � � � 
 F| {z }n�1 
P(Y 2 � jY > x) ! 0; (2)see [3℄ Lemma 5.6 p. 278 (k � k = total variation distane).Our main examples will be Pareto and Weibull distributions, whereF (x) = 1(1 + x=)� ; (3)F (x) = e�(x=)� ; (4)4



respetively; note that  is just a sale parameter whereas � and � determinethe degree of heavy{tailedness (one needs � < 1 for the Weibull distributionto be heavy{tailed).In terms of �(x) = � logF (x) and the hazard rate �(x) = �0(x), one maynote that twisting the hazard rate to ��(x) as in [14℄ simply means hanging� in (3) and  in (4).2.3 The ross{entropy methodThe ross-entropy method originated from an adaptive method for estimat-ing probabilities of rare events in omplex stohasti networks [16℄, and hasquikly evolved into a versatile and uni�ed method for eÆient simulation andombinatorial and multi-extremal ontinuous optimization, [17, 8, 9, 15, 13℄.For our purposes we may view the CE method as a partiular implementationof hoosing a good hange of measure by making the importane samplingdistribution eP look as muh alike P(x) as possible. The idea is to take theKullbak{Leibler distaneD�P(x); eP� = E (x) log dP(x)deP (5)as a measure of loseness and minimize with respet to eP. The pratial im-plementation in more omplex models involves typially a (numerial) mini-mization problem min� D(P(x);P�); (6)where we look for eP = P� not in the set of all absolutely ontinuous probabil-ity distributions but rather in a restrited parametri lass fP�; � 2 �g. Forexample, for the estimation of P(Y1+ � � �+Yn > x) with a Pareto distributionas in (3), it is natural to restrit to an i.i.d. hange of measure where thenew distribution of Y1; : : : ; Yn is again Pareto, only with �;  hanged to e�; e(or possibly only one of the parameters hanged). If, in general, Y1; : : : ; Ynare i.i.d. random variables with ommon density f�(y) with respet to theLebesgue measure, then minimization of (6) redues to the maximizationproblem max� E (x) nXi=1 log f�(Yi) : (7)With rare events, naive numerial optimization of (7) runs into diÆultiesbeause the tilted parameters will typially be far o� the given ones, and therux of the ross-entropy method is that it provides an adaptive optimization5



algorithm; we will not go into details sine the examples of this paper aresimple enough that we an deal diretly with the minimization.It is ruial for the following to note that entropy minimization, as in (6),is losely related to likelihood maximization in statistis, see [13℄ and [9℄. Inpartiular, if Y1; : : : ; Yn are i.i.d. with ommon density f�(y), then the loglikelihood isnXi=1 log f�(Yi) = n Z log f�(y)Pn(dy) = �nD�Pn;P��+ onst; (8)where Pn is the empirial distribution. Comparing the minimization problem(6) with the maximization of (8) shows that maximum likelihood results anbe easily translated into minimum ross-entropy results, by replaing Pn withP(x).3 Parametri ross-entropy minimization |hazard rate twistingIn this and the next setion, we study the estimation of P(Y1 + � � � + Yn >x) where Y1; : : : ; Yn are i.i.d. with ommon distribution F onentrated on(0;1) and heavy-tailed. The method is importane sampling, where onedoes not look for the importane sampling distribution F � within the lassof all distributions on (0;1) but restrits attention to a parametri lass(F�)�2� (� may be multidimensional). That is, F � = F�� for some �� 2 �.Inspired by the lassial optimality result in importane sampling, we tryto hoose F�� suh that F��
� � �
F�� is as lose as possible to the onditionaldistribution of Y1; : : : ; Yn given Y1 + � � �+ Yn > x. We do this by maximumlikelihood or equivalently minimum ross-entropy, plugging in the asymptotiform of the onditional distribution given by (2).3.1 Pareto with  = 1 �xedWe now take F (x) = (1 + x)��. Equivalently, the density is f(x) = �(1 +x)���1. We look for F � as another distribution of this form, with parameter��, say.First, we need to ompute the MLE b�. The log likelihood is n log� ��Pn1 log(1 + yi), whih in a straightforward way yieldsb� = nPn1 log(1 + yi) = �Z 10 log(1 + y)Fn(dy)��1;6



where Fn is the empirial distribution.The onditional distribution of Y given Y > x has density�(1 + x)�(1 + y)�+1 ; y > x:Thus, we take �� = 1=Jx, whereJx = Z 10 log(1 + y)�n� 1n �(1 + y)�+1 + 1n �(1 + x)�(1 + y)�+1 I(y > x)� dy= n� 1n� + 1n �log(1 + x) + 1��= log(1 + x)n + 1� :It follows that for large x �� � ��0 := nlog(1 + x) : (9)This is to be ompared with the suggestion of [14℄ to take �� = b= log(1+x), with b unspei�ed but arbitrary, and with that of [6℄ to take F �(x) =1= log(1 + x) whih has a heavier tail and may be onsider as a partiularinstane of the boundary ase b = 0.To illustrate the sensitivity to the partiular hoie of ��, we performeda simulation study, taking n = 2 and � = 3=2 (that is, in the range of �nitemean but in�nite variane whih is often argued to be the one of primaryinterest). We onsidered x = 4m; 16m; 64m; 256m where m = EY =1=(�� 1) = 2 and andidates �� of the form 2t=2 ��0, t 2 f�6; : : : ; 5g, where��0 is as in (9). For eah ombination of values of (x; t), R = 10; 000 repliatesof (Y1; Y2) were produed (by inversion of the ��{.d.f. and using ommonrandom numbers for �xed x). The IS estimates for P(Y1 + Y2 > x) and theorresponding 95% on�dene intervals are given in Figure 1 with t on thehorizontal axis and P(Y1+Y2 > x) on the vertial; the four panels orrespondto the four x values in lexiographial order. The extra tik on the t axisorrespond to the t{value making �� = �, that is, to rude Monte Carlosimulation.
7
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Figure 1: Estimates of P(Y1 + Y2 > x) for the Pareto ase with �xed  = 1.A number of onlusions to be drawn from this �gure are expeted: theeÆieny of the IS algorithm deteriorates as �� approahes the rude MonteCarlo value � and goes beyond, and for high values of �� the simulationestimates ome out as 0, orresponding to no exeedane of x in the R repli-ations. Also, the growing width of the on�dene intervals as �� beomessmall ertainly supports some of our (unpublished) numerial studies, thatthe hoie F �(x) = 1= log(1 + x) of [6℄ may well be eÆient asymptotiallybut not in pratial situations.However, for the present purposes the main onlusion is that indeedhoosing �� by (asymptoti) minimal CE appears to be very lose to varianeminimality; this is of ourse ruial for justifying the adaptive CE algorithmin more omlex situations. Of main interest is also the degree of robustness ofthe hoie of ��: it is seen that there is no essential performane degradationin the interval t 2 [�3; 2℄ (at least), meaning �� 2 [0:4��0; 2��0℄.Remark 3.1 The onnetion to maximum likelihood is suggestive, but ofourse entropy minimization an be arried out diretly. In this example,the details are as follows. By taking derivatives, the solution �� to (7) isgiven as the solution toE (x) dd�  n log�� � nX1 log(1 + Yi)! = 0;8



whih is �� = nE (x)Pi log(1 + Yi) : 23.2 Weibull with � �xedWe onsider the Weibull ase F (x) = e�x� or equivalently with densityf(x) = �x��1e�x� for some 0 < � < 1. We write this F as F1 where F�has tail e��x� and look for F � within this lass of distributions.We �rst need to ompute the MLE b� of � based upon observations y1; : : : ; yn.The density of F� is ��x��1e��x� so that the log likelihood isn log � + n log� + (� � 1) nXi=1 log yi � � nXi=1 y�i :Di�erentiating with respet to � and letting the resulting expression equal to0, we obtain in a straightforward way thatb� = nPn1 y�i :This an be written as �Z 10 y�Fn(dy)��1where as above Fn is the empirial distribution.The onditional distribution of Y given Y > x has density�y��1e�(y��x�); y > x:Thus, we take �� = 1=Ix whereIx = Z 10 y��n� 1n �y��1e�y� + 1n�y��1e�(y��x�)I(y > x)� dy= n� 1n + 1n xwhere  = Z 10 y��y��1e�y� dy = 1;x = Z 1x y��y��1e�(y��x�) dy = x� + 1 :It follows that for large x �� � nx� : (10)9



This is to be ompared with the suggestion of [14℄ to take �� = b=x�, with bunspei�ed but arbitrary, and with that of [6℄ to take F �(x) regularly varyingwhih has a heavier tail and may be onsider as a partiular instane of theboundary ase b = 0.We performed a similar simulation study as for the Pareto ase, onlyreplaing the Pareto(� = 3) distribution with the Weibull(� = 1=3) distri-bution (note that here m = �(�)=�). The results are in Figure 2 and theonlusions are muh the same as for the Pareto ase. In partiular, the ��piked by the CE argument appears to be very lose to variane minimal.
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Figure 2: Estimates of P(Y1 + Y2 > x) for the Weibull ase with �xed �.4 Parametri ross-entropy minimization |sale twisting in the Pareto aseLet F (x) = (1 + x)�� with � > 1 �xed, that is, with density f(x) = �(1 +x)�(�+1). We look for a hange of measure with density �(1 + x=)�(�+1)=.The log likelihood isn log�� n log  � (� + 1)X log(1 + yi=);
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so that the MLE b is determined by�nb + (� + 1)X yi=b21 + yi=b = 0 ;that is, 11 + � = 1nX yi=b1 + yi=b = Z 10 y=b1 + y=b Fn(dy)(note that the r.h.s. is a dereasing funtion of b with limits 1 and 0 at 0,resp. 1, so that a solution always exists). Sine F (x) has density �(1 +x)�(1 + y)���1, the � suggested by ross{entropy is determined by11 + � = n� 1n Z 10 y=�1 + y=� F (dy) + 1n Z 1x y=�1 + y=� �(1 + x)�(1 + y)�+1dy (11)There appears to be no losed solution but we omputed the numerial onefor � = 3=2, n = 2 and the same x{values as in Setion 3.1. These are givenin Table 1. x 8 32 128 512� 7.4 20.2 64.6 233.3Table 1: Optimal sale parameters for the Pareto ase with �xed � = 3=2.Table 1 suggests that � � �0 where �0 = x, and we will verify thatindeed the solution of (11) is asymptotially of this form with  the solutionof Z 11 1 + u �u� du = n1 + � (12)provided that n < 1 + � (as in our example). To this end, note �rst thatthe �rst integral in (11) goes to 0 as � goes to 1. Taking � = x andsubstituting y = x+ xz, the seond integral beomesZ 1x yx+ y �(1 + x)�(1 + y)�+1 dy = Z 10 1 + z1 + + z x�(1 + x)�(1 + x+ xz)�+1 dz� Z 10 1 + z1 + + z �(1 + z)�+1 dz = Z 11 1+ u �u� du:Now just note that a similar onsideration as above shows that this an beput equal to n=(1 + �) for some  if and only if n < 1 + �.11



If n > 1 + �, � does surprisingly not go to 1 but to �0 , the solution of11 + � = 1n + n� 1n Z 10 y=�01 + y=�0 F (dy) (13)This follows simply beause the seond integral in (11) goes to 1 as x!1with � �xed. As example, we took � = 1=2, n = 2. Sine the meanis in�nite, we annot use the same x{values as above but onsidered 10i,i = 1; 2; 3; 4. The results are displayed in Table 2.x 10 100 1,000 10,000� 4.7 9.2 11.3 11.6Table 2: Optimal sale parameters for the Pareto ase with �xed � = 1=2.Numerial examples for the two examples are given in Figure 3 (� = 3=2)and Figure 4 (� = 1=2). They one more shows that minimizing the ross{entropy works very well for seleting a good IS parameter.
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Figure 3: Estimates of P(Y1+Y2 > x) for the Pareto ase with �xed � = 3=2.There appears to be no theoretial results in the literature onerningomplexity properties of IS using a twist of . We next present a set ofresults in this diretion; the �rst explains in partiular the strange (at a �rstlook) suggestion of the CE method, to take �0 bounded if n > �+ 1.12
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Figure 4: Estimates of P(Y1+Y2 > x) for the Pareto ase with �xed � = 1=2.Proposition 4.1 Consider an IS sheme given by twisting  from 1 to (x)for eah x and let Z(x; (x)) be the orresponding estimators. Assume n >� + 1 and that the IS is asymptotially no worse than rude Monte Carlosimulation in the sense thatlim supx!1 VarZ�x; (x)�VarZ(x; 1) < 1:Then lim supx!1 (x) <1; lim infx!1 (x) > 0:Proof. Assume �rst that the liminf is 0. By passing to a subsequene ifneessary, one may then assume (x)! 0. FromEZ(x; (x))2 = Z : : :Zfy1+���+yn>xg nYi=1 (x)(1 + yi=(x))�+1(1 + yi)2�+2 dyi (14)it follows thatEZ(x; (x))2 � Z : : :Zfy1+���+yn>xg nYi=1 (x)(yi=(x))�+1(1 + yi)2�+2 dyi= 1(x)n� Z : : :Zfy1+���+yn>xg nYi=1 y�+1i(1 + yi)2�+2dyi:13



Considering P(Y1+� � �+Yn > x) for the regularly varying distributionG withdensity proportional to y�+1=(1 + y)2�+2 (hene tail of order x��) shows thatthe last integral is of order x�� whih is again of the same order as EZ(x; 1)2 .Hene EZ(x; (x))2= EZ(x; 1)2 !1. [Note that this part of the proof doesnot require n > � + 1℄.If the limsup is 1, we may similarly assume (x) ! 1. Using (14) weget EZ(x; (x))2� Z : : :Zfy1+���+yn>xg (x)(y1=(x))�+1(1 + y1)2�+2 dy1 nYi=2 (x)(1 + yi)2�+2dyi= (x)n���1 Z : : :Zfy1+���+yn>xg y�+11(1 + y1)2�+2dy1 nYi=2 1(1 + yi)2�+2dyi:Considering P(Y1 + � � �+ Yn > x) where Y1 follows the distribution G aboveand Y2; : : : ; Yn follow the lighter{tailed regularly varying distribution H withdensity (2�+ 1)=(1 + y)2�+2 shows that the last integral is of order P(Y1 > x)(f. [3℄, Lemma 1.8 p. 255) whih in turn has the ommon order of x�� andEZ(x; 1)2 . Hene EZ(x; (x))2=EZ(x; 1)2 !1. 2The next results supports the �ndings of the CE method in the asen < � + 1, to take (x) of order x.Corollary 4.1 Consider the setting of Proposition 4.1 with n < �+1. Thenthe hoie (x) = x is asymptotially optimal in the sense that wheneverlim sup(x)=x =1 or lim inf (x)=x = 0, thenlim supx!1 VarZ�x; (x)�VarZ(x; x) =1:Furthermore, VarZ(x; x) � d()=x2�+1�n for some d().Proof. The key step is to show that VarZ(x; (x)) is of order h(x) whereh(x) = 1(x)�+1�nx� + (x)nx2�+1 : (15)Indeed, this immediately gives the statement on Varz(x; x) sine both termsin (15) are of order 1=x2�+1�n when (x) is of order x, and further, the �rstterm is of higher order when lim inf (x)=x = 0 and the seond of lower orderwhen lim sup(x)=x =1.Combining the two lower bounds in the proof of Proposition 4.1 giveslim inf VarZ(x; (x))=h(x) > 0. To get lim sup <1, we use the r inequality14



(a + b)r � 2r(ar + br) with r = � + 1, a = 1, b = yi=(x) to onlude as inthe last part of the proof of Proposition 4.1 thatEZ(x; (x))2 � (x)n nXk=0 k(x)�k(�+1)Pk(Y1 + � � �+ Yn > x)where Y1; : : : ; Yn are i.i.d. under Pk with distribution G of Y1; : : : ; Yk andH of Yk+1; : : : ; Yn. The result now follows by noting that (se again [3℄)Pk(Y1 + � � �+ Yn > x) is of order x�2��1 for k = 0 and x�� for k > 0 (thusthe k = 2; : : : ; n terms are dominated by the k = 1 term). 2The results above support the usefulness of the CE method in piking agood hange of measure also for IS using twist of . However, for the idea oftwisting  they are pessimisti sine one only an ahieve variane redutionunder the ondition n < �+1 whih is rather unnatural for any given �, notleast in the important range � < 2 (in�nite variane). Furthermore, even ifn < � + 1 the order of VarZ(x; x) is always higher than x�2� in the non{trivial ase n > 1 so that the omplexity an never be polynomial. Thesenegative observations are further supported by:Corollary 4.2 Consider IS for the M/Pareto/1 queue using simulation fromthe PK formula with twisted  and let ZPK�x; (x)� denote the orrespond-ing estimator. Then no hoie of the (x) an ahieve asymptoti varianeredution. That is, one always haslim infx!1 VarPK(Z(x; (x))VarPK(Z(x; 1) > 0:Proof. Just note that the algorithm means estimating the tail P(W > x) ofthe stationary waiting time W by ZPK(x; 1) = I(Y1 + � � � + YN > x) wherethe Yi follow the integrated tail distribution (whih is Pareto with � hangedto �� 1) and N is an independent geometri r.v. Thus, from above we havethat the ontribution to VarPK(Z(x; (x)) from the event N > 1 + � is ofthe same order as VarPK(Z(x; 1)). 2In onlusion, twisting  may provide some modest variane redutionfor a given x but a twist of � appears the more promising approah.5 Other ideas for seleting IS parametersA familiar idea from statistis is to replae ML estimation by the often simplerdevie of moment �tting. As a simple example, onsider the Pareto ase with15



 = 1 �xed as in Setion 3.1. HereE�Y = 1�� 1 ; E� [Y jY > x℄ = �x+ 1�� 1 ;so that the moment method suggest to determine the �� for importanesampling by means of1�� � 1 = E��Y = n� 1n E�Y + 1nE� [Y jY > x℄= n� 1n 1�� 1 + 1n �x + 1�� 1 ;i.e. �� = �(n+ x)n + �x :Thus �� ! 1 whih annot lead to polynomiality. The simpliity of thisexample thus indiates that the moment method is unlikely to beome useful.Yet another idea is to make the P�� -distribution of Y1; : : : ; Yn alike theP(x){distribution by equating to 1 the expeted number of Yi with Yi > x.In the same Pareto example, this gives n=x�� = 1, i.e. �� = logn= logx. Forthe Weibull example in Setion 3.2, one gets � = logn=x�. Thus, in bothases the asymptoti forms are b= logF (x) as in [14℄ so that polynomialityholds. However, the numerial results above indiate that ross{entropyminimization is superior in terms of �nding the optimal b.Finally, in the Pareto sale example in Setion 4, one gets � = x=(n1=��1).6 Exponential omplexity for P(� (x) <1) forthe GI/G/1 queueLet Sn = X1 + � � � + Xn be a random walk (RW) suh that Xk = Uk � Tkwhere the Uk are i.i.d. with tail (1+x)�� or equivalently with ommon densityf�(x) = �=(1 + x)�+1 for some � > 1 and the Tk are i.i.d. (and independentof the Uk) with mean ET > 1=(�� 1) so that EX < 0 and P(�(x) < 1) �=x��1 where � = �() = inffn : Sn > g, see e.g. [4℄ Theorem 9.1 p. 296(P(�(x) < 1) is also the probability that the waiting time exeeds x in theGI/G/1 queue).Let �� = ��(x) be andidates for the IS parameter, satisfying P��(� <1) = 1 (that is, �� � �0 where �0 = 1 + 1=ET ). The IS estimator isZ� = Z�(x) = �Yn=1 f�(Un)f��(Un) :16



Theorem 6.1 Assume that EerT <1 for some r > 0. Then the estimatorZ� annot be polynomial for any hoie of �� = ��(x) � �0.Lemma 6.1 E��Z2� = E 2���� �� ; � <1� where  = �2��(2�� ��) .Proof. The argument is a small extension of similar steps in [6℄, [14℄ and [19℄,but is given here for the sake of ompleteness. Let E t be the onditionalexpetation given T1 = t1; T2 = t2; : : : andAk = n(u1; : : : ; uk) : kXn=1(un � tn) > x; X̀n=1(un � tn) � x for ` < ko:Then E t��Z2� = 1Xk=1 E t��h kYn=1 f 2�(Un)f 2��(Un) ; � = ki= 1Xk=1 Z : : :ZAk kYn=1 f 2�(un)f 2��(un) f��(u1) : : : f��(uk) du1 : : : duk℄= 1Xk=1 Z : : :ZAk kYn=1 �2��(1 + un)2����+1 du1 : : : duk℄= 1Xk=0 k Z : : :ZAk f2����(u1) : : : f2����(uk) du1 : : : duk= 1Xk=1 kPt2����(� = k) = E t2���� �� ; � <1�:Integrating T1 = t1; T2 = t2; : : : out, the result follows. 2Proof of Theorem 6.1. Let Gn = ��U1; : : : ; Un�1; T1; : : : ; Tn�, Bk = fT1 +� � �+ Tk � k�g. Then for eah k,E��Z2� � kP2����(� = k)= kP2������ > k � 1; U1 + � � �+ Uk > x + T1 + � � �+ Tk�� kP2������ > k � 1; U1 > x+ T1 + � � �+ Tk; Bk�� kF (x + k�)P2������ > k � 1; Bk�� kF 2����(x + k�)�P2����(� > k � 1)� P(Bk)�:Choose � > ET . Then the assumption EerT <1 implies by standard largedeviations estimates (e.g. [4℄ p. 355) that P(Bk) goes to 0 exponentially fast.17



Further, sine 2� � �� � 2� � �0 � �, P2����(� > k � 1) is bounded frombelow by P�(� > k � 1) � P�(� = 1) whih goes to 1 as k ! 1. Takingk = k(x) = x, we get the asymptoti lower boundxF 2�����x(1 + �)� � x 1�1 + x(1 + �)�2�for EZ2� whih rules out polynomiality sine  > 1 (note that the quadrati��(2�� ��) attains it maximum �2 at �� = � so that a lower bound for the�� in question is �0(2�� �0) < �2). 2For the swithing regenerative estimator, onsider now � s = � ^ �� where�� = inffn > 0 : Sn � 0g is the desending ladder epoh.Theorem 6.2 Assume that EerT <1 for some r > 0. Then the estimatorZs� = I(� < ��) �sYn=1 f�(Un)f��(Un)for P(� < ��) annot be polynomial for any hoie of �� = ��(x) � �0.Proof. It is shown in [2℄ that P(� < ��) � E ��=(1 + x)�. Exatly as above,E��Zs� � kF ( + k�)P2������ s > k � 1; Bk�� kF ( + k�)�P2����(� > k � 1)� P2����(�� > k � 1)� P(Bk)�:Here the seond term in [� � � ℄ is uniformly small in �� for large k, and theproof is ompleted exatly as above. 2Let next F = F1 where F� is the Weibull distribution with tail e��x�where 0 < � < 1 is �xed. Let �0 < 1 orrespond to 0 drift and onsider ahange of measure where the IS distribution is F�� = F��(x) where �� � �0.Theorem 6.3 The IS sheme given by the �� annot be polynomial, neitherfor P(� <1) nor for P(� < ��).Proof. From f�(x) = ��x��1e��x� we getf 21 (x)f��(x) = 1���x��1e�(2���)x� = 1��(2� ��)f2���(x):With  = 1=��=(2� ��), we have  � 1=�0=(2� �0) < 1 beause of �0 < 1 andget as beforeE��Z2� = E 2��� �� ; � <1� � kP2����(� = k)� kF 2����(x + k�)�P2����(� > k � 1)� P(Bk)�� ke�(2����)(x+k�)��P2����(� > k � 1)� P(Bk)�:18
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