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1 Introdu
tionThis paper is 
on
erned with importan
e sampling (IS) and 
ross-entropy(CE) te
hniques for simulating small probabilities, in the presen
e of heavy-tailed distributions.Despite the fa
t that performan
e evaluation with heavy tails has re-
eived 
onsiderable attention in re
ent years, the literature on simulationmethods 
onsists of just a handful papers, in 
ontrast to the light{tailed 
asewhere the number of referen
es is huge. Also, the models and problems forwhi
h satisfying solutions have been developed are quite simple, basi
allyevaluating P(Y1 + � � �+ Yn > x) where Y1; : : : ; Yn are i.i.d. with 
ommon dis-tribution F 
on
entrated on (0;1) and heavy-tailed, and n a �xed integer oran independent random variable, and (
losely related) evaluating the tail ofthe M/G/1 waiting time distribution; a

ording to the Polla
zek-Khint
hine(PK) formula, this 
orresponds to taking n above as a geometri
 r.v.In the light{tailed 
ase, the intuition behind most eÆ
ient algorithms isthat one should perform an i.i.d. 
hange of measure (twist of distribution; sayof Y1; : : : ; Yn in the above setting) motivated from an asymptoti
 des
riptionof the way in whi
h the rare event in question o

urs. Heavy tail asymp-toti
s, however, usually involves just one or a few big random variables, withthe rest being una�e
ted by the rare event, 
f. e.g. (2) below, and there-fore one would not apriori expe
t a good 
hange of measure to be i.i.d. (infa
t, the �rst eÆ
ient algorithm for heavy tails, given in [5℄, does not evenuse importan
e sampling but a di�erent varian
e redu
tion method, namely,
onditional Monte Carlo). Nevertheless, it is found in [6℄ that the most ob-vious non{i.i.d. IS s
hemes do not asymptoti
ally improve the varian
e, anda further �nding of [6℄ is that an i.i.d. 
hange of measure may indeed beeÆ
ient. The IS distribution is taken independent of x in [6℄ but substantialperforman
e improvements are obtained in [14℄ by 
hoosing it dependent onx. Both in [6℄ and [14℄, the 
hange of measure whi
h is asymptoti
ally eÆ-
ient (in a sense to be made pre
ise in Se
tion 2) is subje
t to 
hoi
e within arather broad 
lass, in 
ontrast to the light{tailed 
ase where it is essentiallyunique, 
f. [7℄ Theorem 17.7. Relevant questions are therefore how sensitivethe performan
e is to the parti
ular 
hoi
e, and whether there are generalprin
iples allowing to identify the optimal 
hoi
e. In Se
tions 3, 4, we presentnumeri
al examples illustrating the �rst, and suggest a more theoreti
al ap-proa
h for the se
ond; this has its starting point in the CE method [17℄ butalso links up with the maximum likelihood method from statisti
s [18℄. Thesetting of Se
tion 3 is that of [14℄, hazard rate twisting, in the two spe
i�
examples of Pareto and Weibull distributions. In Se
tion 4, we study the2



problem of s
ale twisting in the Pareto 
ase whi
h has not been 
onsideredso far in the literature. Our results essentially indi
ate that this 
hange ofmeasure has little promise of leading to algorithms whi
h are more eÆ
ientthan existing ones. However, the numeri
al results support what is maybethe main message of the paper, that 
hoosing the IS distribution via minimalCE is a qui
k and systemati
 way to �nd a 
hange of measure whi
h is 
loseto being varian
e minimalThe setting of P(Y1 + � � �+ Yn > x) is, as noted above, suÆ
ient to dealwith the M/G/1 queue. Nevertheless, a main 
hallenge left by [6, 14℄ isto extend to more general models, in parti
ular the GI/G/1 queue (an al-gorithm is proposed in [10℄ but unfortunately it applies essentially only tothe Weibull distribution, not to the more standard 
lass of regularly varyingdistributions, and further one may obje
t that a trun
ation step is involvedwithout expli
it bounds allowing to 
ontrol the error). In [18℄ and [15℄ it isdis
ussed how parametri
 IS via the CE method 
an readily give an ex
el-lent speed up (varian
e redu
tion) for the GI/G/1 queue and more 
omplexqueueing models, for both light and heavy tail distributions. It was not 
learfrom the numeri
al results, however, whether in the heavy tail 
ase one getspolynomial 
omplexity for the GI/G/1 queue. In Se
tion 6 we 
omplementthe 
ounterexamples of [6℄ by showing in fa
t the 
omplexity is exponential.This does of 
ourse not 
ontradi
t the main �nding of the rest of the paper,that in a given setting the CE method does very well in �nding the best
hange of measure.The 
ontent of the rest of the paper is as follows. Se
tion 2 is a short pre-liminary on rare events simulation, heavy tails and the 
ross-entropy method.Some 
ruder but sometimes more easily implemented alternative to the CEmethod in Se
tion 3 are brie
y dis
ussed in Se
tion 5.2 PreliminariesWe refer to [7℄ and [12℄ for general surveys on rare events simulation andto [11, 3, 1, 20, 18, 15℄ for heavy tails. The set{up and fa
ts that will beneeded in the paper 
an be found in these referen
es as well as an abundan
eof resear
h arti
les, and we will therefore only give a brief summary.2.1 Rare events simulationWe 
onsider a family fA(x)g of events de�ned on some probability spa
e(
;F ;P) and indexed by a parameter x 2 R, su
h that z(x) = P(A(x)) ! 0as x ! 1. A Monte Carlo method estimate bz(x) of z(x) is obtained by3



simulating N repli
ates Z1; : : : ; ZN of a random variable Z(x) with EZ(x) =z(x) and letting bz(x) be the empiri
al mean. The traditional measure forthe eÆ
ien
y of the s
heme is the relative error �(x) = �VarZ(x)�1=2=z(x),and the family fZ(x)g is 
alled logarithmi
ally eÆ
ient, or for brevity justeÆ
ient, if �(x) = �o(z(x)�Æ� for any Æ > 0; often also the term polynomialor polynomial time is used.The 
rude Monte Carlo method (CMCM) 
orresponds to Z(x) = I(A(x))and sampling from the given probability measure P. It has relative error oforder z(x)�1=2 and the CMCM is therefore not eÆ
ient. Importan
e sam-pling 
orresponds to Z(x) = WI(A(x)), where now the sampling is donefrom a di�erent probability measure eP (possibly dependent on x) and W isthe likelihood ratio dP=deP. EÆ
ien
y or even varian
e redu
tion is not guar-anteed, but there are many examples in the literature where one 
an indeedobtain eÆ
ien
y by an appropriate 
hoi
e of eP. The dominant method forprodu
ing su
h a eP is to take eP as 
lose as possible to P(x) = P�� jA(x)� (the
onditional distribution given the rare event). In parti
ular, this approa
hhas proved fruitful for light tails where it most often leads to an exponential
hange of measure s
heme.2.2 Heavy tailsWe 
onsider here a heavy{tailed setting where some underlying distributionF is subexponential, meaning that the 
onvolution tail F �n(x) satis�esF �n(x) = P(Y1 + � � �+ Yn > x) � nF (x) (1)(here Y1; Y2; : : : are i.i.d. with 
ommon distribution F , and a(x) � b(x) meansa(x)=b(x) ! 1 as x!1). For the intutition behind mu
h of this paper, itis 
ru
ial to note A(x) = fY1 + � � �+ Yn > xg o

urs by n� 1 of the Yi havedistribution F and one the 
onditional distribution of Y given Y > x, and all
omponents being independent. In terms of the order statisti
s Y(1) < � � � <Y(n),


P�Y(1); : : : ; Y(n) 2 �� ��A(x)


 � F 
 � � � 
 F| {z }n�1 
P(Y 2 � jY > x) ! 0; (2)see [3℄ Lemma 5.6 p. 278 (k � k = total variation distan
e).Our main examples will be Pareto and Weibull distributions, whereF (x) = 1(1 + x=
)� ; (3)F (x) = e�(x=
)� ; (4)4



respe
tively; note that 
 is just a s
ale parameter whereas � and � determinethe degree of heavy{tailedness (one needs � < 1 for the Weibull distributionto be heavy{tailed).In terms of �(x) = � logF (x) and the hazard rate �(x) = �0(x), one maynote that twisting the hazard rate to ��(x) as in [14℄ simply means 
hanging� in (3) and 
 in (4).2.3 The 
ross{entropy methodThe 
ross-entropy method originated from an adaptive method for estimat-ing probabilities of rare events in 
omplex sto
hasti
 networks [16℄, and hasqui
kly evolved into a versatile and uni�ed method for eÆ
ient simulation and
ombinatorial and multi-extremal 
ontinuous optimization, [17, 8, 9, 15, 13℄.For our purposes we may view the CE method as a parti
ular implementationof 
hoosing a good 
hange of measure by making the importan
e samplingdistribution eP look as mu
h alike P(x) as possible. The idea is to take theKullba
k{Leibler distan
eD�P(x); eP� = E (x) log dP(x)deP (5)as a measure of 
loseness and minimize with respe
t to eP. The pra
ti
al im-plementation in more 
omplex models involves typi
ally a (numeri
al) mini-mization problem min� D(P(x);P�); (6)where we look for eP = P� not in the set of all absolutely 
ontinuous probabil-ity distributions but rather in a restri
ted parametri
 
lass fP�; � 2 �g. Forexample, for the estimation of P(Y1+ � � �+Yn > x) with a Pareto distributionas in (3), it is natural to restri
t to an i.i.d. 
hange of measure where thenew distribution of Y1; : : : ; Yn is again Pareto, only with �; 
 
hanged to e�; e
(or possibly only one of the parameters 
hanged). If, in general, Y1; : : : ; Ynare i.i.d. random variables with 
ommon density f�(y) with respe
t to theLebesgue measure, then minimization of (6) redu
es to the maximizationproblem max� E (x) nXi=1 log f�(Yi) : (7)With rare events, naive numeri
al optimization of (7) runs into diÆ
ultiesbe
ause the tilted parameters will typi
ally be far o� the given ones, and the
rux of the 
ross-entropy method is that it provides an adaptive optimization5



algorithm; we will not go into details sin
e the examples of this paper aresimple enough that we 
an deal dire
tly with the minimization.It is 
ru
ial for the following to note that entropy minimization, as in (6),is 
losely related to likelihood maximization in statisti
s, see [13℄ and [9℄. Inparti
ular, if Y1; : : : ; Yn are i.i.d. with 
ommon density f�(y), then the loglikelihood isnXi=1 log f�(Yi) = n Z log f�(y)Pn(dy) = �nD�Pn;P��+ 
onst; (8)where Pn is the empiri
al distribution. Comparing the minimization problem(6) with the maximization of (8) shows that maximum likelihood results 
anbe easily translated into minimum 
ross-entropy results, by repla
ing Pn withP(x).3 Parametri
 
ross-entropy minimization |hazard rate twistingIn this and the next se
tion, we study the estimation of P(Y1 + � � � + Yn >x) where Y1; : : : ; Yn are i.i.d. with 
ommon distribution F 
on
entrated on(0;1) and heavy-tailed. The method is importan
e sampling, where onedoes not look for the importan
e sampling distribution F � within the 
lassof all distributions on (0;1) but restri
ts attention to a parametri
 
lass(F�)�2� (� may be multidimensional). That is, F � = F�� for some �� 2 �.Inspired by the 
lassi
al optimality result in importan
e sampling, we tryto 
hoose F�� su
h that F��
� � �
F�� is as 
lose as possible to the 
onditionaldistribution of Y1; : : : ; Yn given Y1 + � � �+ Yn > x. We do this by maximumlikelihood or equivalently minimum 
ross-entropy, plugging in the asymptoti
form of the 
onditional distribution given by (2).3.1 Pareto with 
 = 1 �xedWe now take F (x) = (1 + x)��. Equivalently, the density is f(x) = �(1 +x)���1. We look for F � as another distribution of this form, with parameter��, say.First, we need to 
ompute the MLE b�. The log likelihood is n log� ��Pn1 log(1 + yi), whi
h in a straightforward way yieldsb� = nPn1 log(1 + yi) = �Z 10 log(1 + y)Fn(dy)��1;6



where Fn is the empiri
al distribution.The 
onditional distribution of Y given Y > x has density�(1 + x)�(1 + y)�+1 ; y > x:Thus, we take �� = 1=Jx, whereJx = Z 10 log(1 + y)�n� 1n �(1 + y)�+1 + 1n �(1 + x)�(1 + y)�+1 I(y > x)� dy= n� 1n� + 1n �log(1 + x) + 1��= log(1 + x)n + 1� :It follows that for large x �� � ��0 := nlog(1 + x) : (9)This is to be 
ompared with the suggestion of [14℄ to take �� = b= log(1+x), with b unspe
i�ed but arbitrary, and with that of [6℄ to take F �(x) =1= log(1 + x) whi
h has a heavier tail and may be 
onsider as a parti
ularinstan
e of the boundary 
ase b = 0.To illustrate the sensitivity to the parti
ular 
hoi
e of ��, we performeda simulation study, taking n = 2 and � = 3=2 (that is, in the range of �nitemean but in�nite varian
e whi
h is often argued to be the one of primaryinterest). We 
onsidered x = 4m; 16m; 64m; 256m where m = EY =1=(�� 1) = 2 and 
andidates �� of the form 2t=2 ��0, t 2 f�6; : : : ; 5g, where��0 is as in (9). For ea
h 
ombination of values of (x; t), R = 10; 000 repli
atesof (Y1; Y2) were produ
ed (by inversion of the ��{
.d.f. and using 
ommonrandom numbers for �xed x). The IS estimates for P(Y1 + Y2 > x) and the
orresponding 95% 
on�den
e intervals are given in Figure 1 with t on thehorizontal axis and P(Y1+Y2 > x) on the verti
al; the four panels 
orrespondto the four x values in lexi
ographi
al order. The extra ti
k on the t axis
orrespond to the t{value making �� = �, that is, to 
rude Monte Carlosimulation.
7
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Figure 1: Estimates of P(Y1 + Y2 > x) for the Pareto 
ase with �xed 
 = 1.A number of 
on
lusions to be drawn from this �gure are expe
ted: theeÆ
ien
y of the IS algorithm deteriorates as �� approa
hes the 
rude MonteCarlo value � and goes beyond, and for high values of �� the simulationestimates 
ome out as 0, 
orresponding to no ex
eedan
e of x in the R repli-
ations. Also, the growing width of the 
on�den
e intervals as �� be
omessmall 
ertainly supports some of our (unpublished) numeri
al studies, thatthe 
hoi
e F �(x) = 1= log(1 + x) of [6℄ may well be eÆ
ient asymptoti
allybut not in pra
ti
al situations.However, for the present purposes the main 
on
lusion is that indeed
hoosing �� by (asymptoti
) minimal CE appears to be very 
lose to varian
eminimality; this is of 
ourse 
ru
ial for justifying the adaptive CE algorithmin more 
omlex situations. Of main interest is also the degree of robustness ofthe 
hoi
e of ��: it is seen that there is no essential performan
e degradationin the interval t 2 [�3; 2℄ (at least), meaning �� 2 [0:4��0; 2��0℄.Remark 3.1 The 
onne
tion to maximum likelihood is suggestive, but of
ourse entropy minimization 
an be 
arried out dire
tly. In this example,the details are as follows. By taking derivatives, the solution �� to (7) isgiven as the solution toE (x) dd�  n log�� � nX1 log(1 + Yi)! = 0;8



whi
h is �� = nE (x)Pi log(1 + Yi) : 23.2 Weibull with � �xedWe 
onsider the Weibull 
ase F (x) = e�x� or equivalently with densityf(x) = �x��1e�x� for some 0 < � < 1. We write this F as F1 where F�has tail e��x� and look for F � within this 
lass of distributions.We �rst need to 
ompute the MLE b� of � based upon observations y1; : : : ; yn.The density of F� is ��x��1e��x� so that the log likelihood isn log � + n log� + (� � 1) nXi=1 log yi � � nXi=1 y�i :Di�erentiating with respe
t to � and letting the resulting expression equal to0, we obtain in a straightforward way thatb� = nPn1 y�i :This 
an be written as �Z 10 y�Fn(dy)��1where as above Fn is the empiri
al distribution.The 
onditional distribution of Y given Y > x has density�y��1e�(y��x�); y > x:Thus, we take �� = 1=Ix whereIx = Z 10 y��n� 1n �y��1e�y� + 1n�y��1e�(y��x�)I(y > x)� dy= n� 1n 
+ 1n 
xwhere 
 = Z 10 y��y��1e�y� dy = 1;
x = Z 1x y��y��1e�(y��x�) dy = x� + 1 :It follows that for large x �� � nx� : (10)9



This is to be 
ompared with the suggestion of [14℄ to take �� = b=x�, with bunspe
i�ed but arbitrary, and with that of [6℄ to take F �(x) regularly varyingwhi
h has a heavier tail and may be 
onsider as a parti
ular instan
e of theboundary 
ase b = 0.We performed a similar simulation study as for the Pareto 
ase, onlyrepla
ing the Pareto(� = 3) distribution with the Weibull(� = 1=3) distri-bution (note that here m = �(�)=�). The results are in Figure 2 and the
on
lusions are mu
h the same as for the Pareto 
ase. In parti
ular, the ��pi
ked by the CE argument appears to be very 
lose to varian
e minimal.
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Figure 2: Estimates of P(Y1 + Y2 > x) for the Weibull 
ase with �xed �.4 Parametri
 
ross-entropy minimization |s
ale twisting in the Pareto 
aseLet F (x) = (1 + x)�� with � > 1 �xed, that is, with density f(x) = �(1 +x)�(�+1). We look for a 
hange of measure with density �(1 + x=
)�(�+1)=
.The log likelihood isn log�� n log 
 � (� + 1)X log(1 + yi=
);
10



so that the MLE b
 is determined by�nb
 + (� + 1)X yi=b
21 + yi=b
 = 0 ;that is, 11 + � = 1nX yi=b
1 + yi=b
 = Z 10 y=b
1 + y=b
 Fn(dy)(note that the r.h.s. is a de
reasing fun
tion of b
 with limits 1 and 0 at 0,resp. 1, so that a solution always exists). Sin
e F (x) has density �(1 +x)�(1 + y)���1, the 
� suggested by 
ross{entropy is determined by11 + � = n� 1n Z 10 y=
�1 + y=
� F (dy) + 1n Z 1x y=
�1 + y=
� �(1 + x)�(1 + y)�+1dy (11)There appears to be no 
losed solution but we 
omputed the numeri
al onefor � = 3=2, n = 2 and the same x{values as in Se
tion 3.1. These are givenin Table 1. x 8 32 128 512
� 7.4 20.2 64.6 233.3Table 1: Optimal s
ale parameters for the Pareto 
ase with �xed � = 3=2.Table 1 suggests that 
� � 
�0 where 
�0 = 
x, and we will verify thatindeed the solution of (11) is asymptoti
ally of this form with 
 the solutionof Z 11 1
 + u �u� du = n1 + � (12)provided that n < 1 + � (as in our example). To this end, note �rst thatthe �rst integral in (11) goes to 0 as 
� goes to 1. Taking 
� = 
x andsubstituting y = x+ xz, the se
ond integral be
omesZ 1x y
x+ y �(1 + x)�(1 + y)�+1 dy = Z 10 1 + z1 + 
+ z x�(1 + x)�(1 + x+ xz)�+1 dz� Z 10 1 + z1 + 
+ z �(1 + z)�+1 dz = Z 11 1
+ u �u� du:Now just note that a similar 
onsideration as above shows that this 
an beput equal to n=(1 + �) for some 
 if and only if n < 1 + �.11



If n > 1 + �, 
� does surprisingly not go to 1 but to 
�0 , the solution of11 + � = 1n + n� 1n Z 10 y=
�01 + y=
�0 F (dy) (13)This follows simply be
ause the se
ond integral in (11) goes to 1 as x!1with 
� �xed. As example, we took � = 1=2, n = 2. Sin
e the meanis in�nite, we 
annot use the same x{values as above but 
onsidered 10i,i = 1; 2; 3; 4. The results are displayed in Table 2.x 10 100 1,000 10,000
� 4.7 9.2 11.3 11.6Table 2: Optimal s
ale parameters for the Pareto 
ase with �xed � = 1=2.Numeri
al examples for the two examples are given in Figure 3 (� = 3=2)and Figure 4 (� = 1=2). They on
e more shows that minimizing the 
ross{entropy works very well for sele
ting a good IS parameter.
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Figure 3: Estimates of P(Y1+Y2 > x) for the Pareto 
ase with �xed � = 3=2.There appears to be no theoreti
al results in the literature 
on
erning
omplexity properties of IS using a twist of 
. We next present a set ofresults in this dire
tion; the �rst explains in parti
ular the strange (at a �rstlook) suggestion of the CE method, to take 
�0 bounded if n > �+ 1.12
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Figure 4: Estimates of P(Y1+Y2 > x) for the Pareto 
ase with �xed � = 1=2.Proposition 4.1 Consider an IS s
heme given by twisting 
 from 1 to 
(x)for ea
h x and let Z(x; 
(x)) be the 
orresponding estimators. Assume n >� + 1 and that the IS is asymptoti
ally no worse than 
rude Monte Carlosimulation in the sense thatlim supx!1 VarZ�x; 
(x)�VarZ(x; 1) < 1:Then lim supx!1 
(x) <1; lim infx!1 
(x) > 0:Proof. Assume �rst that the liminf is 0. By passing to a subsequen
e ifne
essary, one may then assume 
(x)! 0. FromEZ(x; 
(x))2 = Z : : :Zfy1+���+yn>xg nYi=1 
(x)(1 + yi=
(x))�+1(1 + yi)2�+2 dyi (14)it follows thatEZ(x; 
(x))2 � Z : : :Zfy1+���+yn>xg nYi=1 
(x)(yi=
(x))�+1(1 + yi)2�+2 dyi= 1
(x)n� Z : : :Zfy1+���+yn>xg nYi=1 y�+1i(1 + yi)2�+2dyi:13



Considering P(Y1+� � �+Yn > x) for the regularly varying distributionG withdensity proportional to y�+1=(1 + y)2�+2 (hen
e tail of order x��) shows thatthe last integral is of order x�� whi
h is again of the same order as EZ(x; 1)2 .Hen
e EZ(x; 
(x))2= EZ(x; 1)2 !1. [Note that this part of the proof doesnot require n > � + 1℄.If the limsup is 1, we may similarly assume 
(x) ! 1. Using (14) weget EZ(x; 
(x))2� Z : : :Zfy1+���+yn>xg 
(x)(y1=
(x))�+1(1 + y1)2�+2 dy1 nYi=2 
(x)(1 + yi)2�+2dyi= 
(x)n���1 Z : : :Zfy1+���+yn>xg y�+11(1 + y1)2�+2dy1 nYi=2 1(1 + yi)2�+2dyi:Considering P(Y1 + � � �+ Yn > x) where Y1 follows the distribution G aboveand Y2; : : : ; Yn follow the lighter{tailed regularly varying distribution H withdensity (2�+ 1)=(1 + y)2�+2 shows that the last integral is of order P(Y1 > x)(
f. [3℄, Lemma 1.8 p. 255) whi
h in turn has the 
ommon order of x�� andEZ(x; 1)2 . Hen
e EZ(x; 
(x))2=EZ(x; 1)2 !1. 2The next results supports the �ndings of the CE method in the 
asen < � + 1, to take 
(x) of order x.Corollary 4.1 Consider the setting of Proposition 4.1 with n < �+1. Thenthe 
hoi
e 
(x) = 
x is asymptoti
ally optimal in the sense that wheneverlim sup
(x)=x =1 or lim inf 
(x)=x = 0, thenlim supx!1 VarZ�x; 
(x)�VarZ(x; 
x) =1:Furthermore, VarZ(x; 
x) � d(
)=x2�+1�n for some d(
).Proof. The key step is to show that VarZ(x; 
(x)) is of order h(x) whereh(x) = 1
(x)�+1�nx� + 
(x)nx2�+1 : (15)Indeed, this immediately gives the statement on Varz(x; 
x) sin
e both termsin (15) are of order 1=x2�+1�n when 
(x) is of order x, and further, the �rstterm is of higher order when lim inf 
(x)=x = 0 and the se
ond of lower orderwhen lim sup
(x)=x =1.Combining the two lower bounds in the proof of Proposition 4.1 giveslim inf VarZ(x; 
(x))=h(x) > 0. To get lim sup <1, we use the 
r inequality14



(a + b)r � 2r(ar + br) with r = � + 1, a = 1, b = yi=
(x) to 
on
lude as inthe last part of the proof of Proposition 4.1 thatEZ(x; 
(x))2 � 
(x)n nXk=0 
k
(x)�k(�+1)Pk(Y1 + � � �+ Yn > x)where Y1; : : : ; Yn are i.i.d. under Pk with distribution G of Y1; : : : ; Yk andH of Yk+1; : : : ; Yn. The result now follows by noting that (se again [3℄)Pk(Y1 + � � �+ Yn > x) is of order x�2��1 for k = 0 and x�� for k > 0 (thusthe k = 2; : : : ; n terms are dominated by the k = 1 term). 2The results above support the usefulness of the CE method in pi
king agood 
hange of measure also for IS using twist of 
. However, for the idea oftwisting 
 they are pessimisti
 sin
e one only 
an a
hieve varian
e redu
tionunder the 
ondition n < �+1 whi
h is rather unnatural for any given �, notleast in the important range � < 2 (in�nite varian
e). Furthermore, even ifn < � + 1 the order of VarZ(x; 
x) is always higher than x�2� in the non{trivial 
ase n > 1 so that the 
omplexity 
an never be polynomial. Thesenegative observations are further supported by:Corollary 4.2 Consider IS for the M/Pareto/1 queue using simulation fromthe PK formula with twisted 
 and let ZPK�x; 
(x)� denote the 
orrespond-ing estimator. Then no 
hoi
e of the 
(x) 
an a
hieve asymptoti
 varian
eredu
tion. That is, one always haslim infx!1 VarPK(Z(x; 
(x))VarPK(Z(x; 1) > 0:Proof. Just note that the algorithm means estimating the tail P(W > x) ofthe stationary waiting time W by ZPK(x; 1) = I(Y1 + � � � + YN > x) wherethe Yi follow the integrated tail distribution (whi
h is Pareto with � 
hangedto �� 1) and N is an independent geometri
 r.v. Thus, from above we havethat the 
ontribution to VarPK(Z(x; 
(x)) from the event N > 1 + � is ofthe same order as VarPK(Z(x; 1)). 2In 
on
lusion, twisting 
 may provide some modest varian
e redu
tionfor a given x but a twist of � appears the more promising approa
h.5 Other ideas for sele
ting IS parametersA familiar idea from statisti
s is to repla
e ML estimation by the often simplerdevi
e of moment �tting. As a simple example, 
onsider the Pareto 
ase with15




 = 1 �xed as in Se
tion 3.1. HereE�Y = 1�� 1 ; E� [Y jY > x℄ = �x+ 1�� 1 ;so that the moment method suggest to determine the �� for importan
esampling by means of1�� � 1 = E��Y = n� 1n E�Y + 1nE� [Y jY > x℄= n� 1n 1�� 1 + 1n �x + 1�� 1 ;i.e. �� = �(n+ x)n + �x :Thus �� ! 1 whi
h 
annot lead to polynomiality. The simpli
ity of thisexample thus indi
ates that the moment method is unlikely to be
ome useful.Yet another idea is to make the P�� -distribution of Y1; : : : ; Yn alike theP(x){distribution by equating to 1 the expe
ted number of Yi with Yi > x.In the same Pareto example, this gives n=x�� = 1, i.e. �� = logn= logx. Forthe Weibull example in Se
tion 3.2, one gets 
� = logn=x�. Thus, in both
ases the asymptoti
 forms are b= logF (x) as in [14℄ so that polynomialityholds. However, the numeri
al results above indi
ate that 
ross{entropyminimization is superior in terms of �nding the optimal b.Finally, in the Pareto s
ale example in Se
tion 4, one gets 
� = x=(n1=��1).6 Exponential 
omplexity for P(� (x) <1) forthe GI/G/1 queueLet Sn = X1 + � � � + Xn be a random walk (RW) su
h that Xk = Uk � Tkwhere the Uk are i.i.d. with tail (1+x)�� or equivalently with 
ommon densityf�(x) = �=(1 + x)�+1 for some � > 1 and the Tk are i.i.d. (and independentof the Uk) with mean ET > 1=(�� 1) so that EX < 0 and P(�(x) < 1) �
=x��1 where � = �(
) = inffn : Sn > 
g, see e.g. [4℄ Theorem 9.1 p. 296(P(�(x) < 1) is also the probability that the waiting time ex
eeds x in theGI/G/1 queue).Let �� = ��(x) be 
andidates for the IS parameter, satisfying P��(� <1) = 1 (that is, �� � �0 where �0 = 1 + 1=ET ). The IS estimator isZ� = Z�(x) = �Yn=1 f�(Un)f��(Un) :16



Theorem 6.1 Assume that EerT <1 for some r > 0. Then the estimatorZ� 
annot be polynomial for any 
hoi
e of �� = ��(x) � �0.Lemma 6.1 E��Z2� = E 2���� �
� ; � <1� where 
 = �2��(2�� ��) .Proof. The argument is a small extension of similar steps in [6℄, [14℄ and [19℄,but is given here for the sake of 
ompleteness. Let E t be the 
onditionalexpe
tation given T1 = t1; T2 = t2; : : : andAk = n(u1; : : : ; uk) : kXn=1(un � tn) > x; X̀n=1(un � tn) � x for ` < ko:Then E t��Z2� = 1Xk=1 E t��h kYn=1 f 2�(Un)f 2��(Un) ; � = ki= 1Xk=1 Z : : :ZAk kYn=1 f 2�(un)f 2��(un) f��(u1) : : : f��(uk) du1 : : : duk℄= 1Xk=1 Z : : :ZAk kYn=1 �2��(1 + un)2����+1 du1 : : : duk℄= 1Xk=0 
k Z : : :ZAk f2����(u1) : : : f2����(uk) du1 : : : duk= 1Xk=1 
kPt2����(� = k) = E t2���� �
� ; � <1�:Integrating T1 = t1; T2 = t2; : : : out, the result follows. 2Proof of Theorem 6.1. Let Gn = ��U1; : : : ; Un�1; T1; : : : ; Tn�, Bk = fT1 +� � �+ Tk � k�g. Then for ea
h k,E��Z2� � 
kP2����(� = k)= 
kP2������ > k � 1; U1 + � � �+ Uk > x + T1 + � � �+ Tk�� 
kP2������ > k � 1; U1 > x+ T1 + � � �+ Tk; Bk�� 
kF (x + k�)P2������ > k � 1; Bk�� 
kF 2����(x + k�)�P2����(� > k � 1)� P(B
k)�:Choose � > ET . Then the assumption EerT <1 implies by standard largedeviations estimates (e.g. [4℄ p. 355) that P(B
k) goes to 0 exponentially fast.17



Further, sin
e 2� � �� � 2� � �0 � �, P2����(� > k � 1) is bounded frombelow by P�(� > k � 1) � P�(� = 1) whi
h goes to 1 as k ! 1. Takingk = k(x) = x, we get the asymptoti
 lower bound
xF 2�����x(1 + �)� � 
x 1�1 + x(1 + �)�2�for EZ2� whi
h rules out polynomiality sin
e 
 > 1 (note that the quadrati
��(2�� ��) attains it maximum �2 at �� = � so that a lower bound for the�� in question is �0(2�� �0) < �2). 2For the swit
hing regenerative estimator, 
onsider now � s = � ^ �� where�� = inffn > 0 : Sn � 0g is the des
ending ladder epo
h.Theorem 6.2 Assume that EerT <1 for some r > 0. Then the estimatorZs� = I(� < ��) �sYn=1 f�(Un)f��(Un)for P(� < ��) 
annot be polynomial for any 
hoi
e of �� = ��(x) � �0.Proof. It is shown in [2℄ that P(� < ��) � E ��=(1 + x)�. Exa
tly as above,E��Zs� � 
kF (
 + k�)P2������ s > k � 1; Bk�� 
kF (
 + k�)�P2����(� > k � 1)� P2����(�� > k � 1)� P(B
k)�:Here the se
ond term in [� � � ℄ is uniformly small in �� for large k, and theproof is 
ompleted exa
tly as above. 2Let next F = F1 where F� is the Weibull distribution with tail e��x�where 0 < � < 1 is �xed. Let �0 < 1 
orrespond to 0 drift and 
onsider a
hange of measure where the IS distribution is F�� = F��(x) where �� � �0.Theorem 6.3 The IS s
heme given by the �� 
annot be polynomial, neitherfor P(� <1) nor for P(� < ��).Proof. From f�(x) = ��x��1e��x� we getf 21 (x)f��(x) = 1���x��1e�(2���)x� = 1��(2� ��)f2���(x):With 
 = 1=��=(2� ��), we have 
 � 1=�0=(2� �0) < 1 be
ause of �0 < 1 andget as beforeE��Z2� = E 2��� �
� ; � <1� � 
kP2����(� = k)� 
kF 2����(x + k�)�P2����(� > k � 1)� P(B
k)�� 
ke�(2����)(x+k�)��P2����(� > k � 1)� P(B
k)�:18



Taking k = x� where 1 � � < � < 1, one has P2����(� > k � 1) ! 1, 
f.[4℄ Th. 6.5 p. 405, and the rest of the argument is now pre
isely as for thePareto 
ase. 2Remark 6.1 [10℄ shows polynomiality of the same algorithm trun
ated toterminate at latest at time 
x1�� for some large 
. Of 
ourse, this is no
ontradi
tion, 
f. the way k was 
hosen in the proof. 2Referen
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