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ABSTRACT

Global likelihood maximization is an important aspect
of many statistical analyses. Often the likelihood func-
tion is highly multi-extremal. This presents a signif-
icant challenge to standard search procedures, which
often settle too quickly into an inferior local maximum.
We present a new approach based on the cross-entropy
(CE) method, and illustrate its use for the analysis of
mixture models.

1 INTRODUCTION

Many statistical problems involve the maximization of
the likelihood function, which, for each choice of model
parameters gives the probability (or density) of the ob-
served data. A typical example occurs in cluster analy-
sis where the data are assumed to come from a mixture
of (usually) Gaussian densities; and the objective is to
estimate the parameters of this mixture by maximiz-
ing the likelihood function. Direct optimization of the
likelihood function in this case is not a simple task,
due to the constraints on the parameters, and, more
importantly, the complicated nature of the likelihood
function, which in general has a great number of local
maxima and saddle-points.

Traditional local search methods such as the
gradient-based quasi-Newton method are often inade-
quate, because they usually fail to find the global maxi-
mum of the likelihood function, and in some cases fail to
converge altogether. The classic Nelder-Mead method
(Nelder and Mead 1965), which evaluates the function
at the vertices of a simplex and then iteratively shrinks
the simplex as better points are found until some de-
sired bound is obtained, may have the same problems.
Moreover, this method is formulated for unconstrained
optimization problems only.

A popular method to estimate the parameters of the
mixture model is the well-known EM algorithm; see
for example (Dempster, Laird, and Rubin 1977) and
(McLachlan and Krishnan 1997). The EM algorithm is

very fast and general, but can only be guaranteed to
converge to a local maximum, under certain continu-
ity conditions; see for example (Wu 1983) and (Boyles
1983). Moreover, the convergence of the algorithm
depends strongly on the starting values. The correct
choice of starting values may not always be clear. This
difficulty is shared by many “global” search algorithms,
such as the genetic algorithm (Goldberg 1989), where
starting values are often picked “at random”.

In this paper we present a new approach to likelihood
maximization which is based on the well-known cross-
entropy (CE) method (Rubinstein and Kroese 2004).
The purpose of this paper is to

1. explain how the CE method can be employed as a
global likelihood optimization procedure for mix-
ture models in cluster analysis,

2. introduce a useful modification of CE called the
injection method,

3. compare the CE approach with the classical EM
approach, for mixture models in cluster analysis.

The CE method has been successfully applied to
a great variety of discrete, i.e., combinatorial, opti-
mization problems, with both deterministic and ran-
dom (noisy) objective functions; see for example (Alon,
Kroese, Raviv, and Rubinstein 2004), (de Boer, Kroese,
Mannor, and Rubinstein 2004), (Chepuri and de Mello
2004), (Dubin 2002), (Helvik and Wittner 2001), (Liu,
Doucet, and Singh 2004), (Mannor, Rubinstein, and
Gat 2003), (Margolin 2002), (Rubinstein 1999), (Ru-
binstein 2002), (Rubinstein 2001), (O. Wittner and B.
E. Helvik 2002). As a consequence, the behavior of the
CE method is fairly well understood, at least from a
pragmatic point of view; see also (Margolin 2004).

However, for continuous optimization problems –
likelihood maximization being a typical example – much
less is known about the behavior of the algorithm, al-
though the main ideas are described in (Rubinstein and
Kroese 2004).

Standard implementations of the CE method some-
times have the problem that the sampling distributions
“shrink” too fast to a degenerate (atomic) distribution,
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preventing the method from finding the good solution.
We tackle this problem by “injecting” extra noise into
the sampling distributions, at certain stages of the al-
gorithm. This significantly improves the performance
in terms of accuracy.

We illustrate numerically the performance of the CE
method with that of the classic EM method, for a typ-
ical cluster problem. We find that, when the likelihood
function is ill-behaved and highly constrained, the CE
method finds superior solutions to those found by the
EM method. This is typically the case when the number
of points is not too large and the clusters are overlap-
ping. Moreover, we find that the CE algorithm is quite
robust under different starting conditions, whereas the
EM may require many random initial guesses before it
converges. The main advantage of EM over CE is its
fast convergence.

The outline for the rest of the paper is as follows.
In Section 2 we start with the basic setting of cluster-
ing analysis via mixture models, and describe how the
EM algorithm can be employed to estimate the model
parameters. The main CE algorithm is given in Sec-
tion 3 along with various modifications, including vari-
ance injection. In Section 4 we compare the CE and
EM algorithms for a 2-dimensional clustering problem.
Finally, in Section 5 we list our conclusions and possible
directions for future research.

2 CLUSTERING VIA EM

We recall the basic setting of clustering problems. The
data consists of a collection of points Y = {y1, . . . ,yn}
in some d-dimensional Euclidean space. We assume
that the data in Y are the outcomes of i.i.d. random
vectors1 Y1, . . . ,Yn, each having a mixture density

f(y; θ) =
k∑

c=1

wc fc(y; ηc), (1)

where θ = (w, η) is an unknown parameter vector,
which includes the weights w = (w1, . . . , wk) and the
vector η = (η1, . . . , ηk) containing all the parameters
of the densities {fc(·; ηc)}. The standard example is
where each density fc is Gaussian with unknown ex-
pectation vector µc and covariance matrix Σc. A fun-
damental approach to estimating the parameter θ from
the data Y is to choose the estimate such that the like-
lihood function

L(θ;Y) :=
n∏

i=1

f(yi; θ) (2)

(or, equivalently, its logarithm) is maximized. However,
finding this maximum likelihood estimate is in general

1We will always interpret vectors as column vectors.

not easy for these mixture models, since the likelihood
function L is typically multi-extremal.

A different approach is to estimate θ using the well-
known EM method (McLachlan and Krishnan 1997).
Here one views the data Y as only the observed part of
a more complete data set {C,Y}. Namely, we may gen-
erate each random vector Y via a two-step procedure:
first draw a random variable C ∈ {1, . . . , k} according
to probabilities {w1, . . . , wk} and then, given C = c,
draw Y from fc. Using this point of view, we can inter-
pret the data Y as only a part of the true data {C,Y},
where C = {C1, . . . , Cn}. The value of Ci – which indi-
cates from which distribution Yi was drawn – remains
hidden.

If θ = θo were known, then assessing to which density
fc each point y belongs would be easy. Namely, the
conditional distribution of C (dropping the index) given
Y = y is by Bayes’s formula equal to

po(c |y) := Pθo(C = c |Y = y) =
wo

c fc(y; ηo
c)

f(y; θo)
, (3)

for c = 1, . . . , k. For a given guess θ = θo one could
compute instead of the logarithm of the likelihood func-
tion (1), the expected log-likelihood function

E log L(θ; C,Y) := E
n∑

i=1

log(wCi fCi(yi; ηCi
)),

where the {Ci} are independent and distributed accord-
ing to {po(c|yi)} in (3). This is the so-called E-step of
the EM algorithm. In the M-step we maximize the ex-
pected log-likelihood with respect to the wc and ηc.
That is, we maximize

E log L(θ; C,Y) =
n∑

i=1

E
[
log wCi + log fCi(yi; ηCi

)
]

=
n∑

i=1

k∑

c=1

po(c |yi) [log wc + log fc(yi; ηc)] , (4)

under the condition that
∑

c wc = 1. Using Lagrange
multipliers in (4) and the fact that

∑
c po(c |yi) = 1,

gives the maximum likelihood estimate (MLE)

ŵc =
1
n

n∑

i=1

po(c |yi) . (5)

Finding the MLE for ηc follows now from optimizing∑
i po(c |yi) log fc(yi; ηc) . For the Gaussian case this

leads to the formulas

µ̂c =
∑n

i=1 po(c |yi)yi∑n
i=1 po(c |yi)

, (6)
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and

Σ̂c =
∑n

i=1 po(c |yi) (yi − µ̂c)(yi − µ̂c)T∑n
i=1 po(c |yi)

, (7)

which are very similar to the well-known formulas for
the MLEs of the parameters of a Gaussian distribution.
The EM algorithm in the Gaussian case now consists
of iterating equations (3), (5), (6) and (7) until conver-
gence is reached.

Note that the EM algorithm is a local search proce-
dure and therefore there is no guarantee that it con-
verges to the global maximum. Indeed, in some cases
the global maximum may be infinity; see below.

3 CLUSTERING VIA CE

As an alternative to the EM algorithm we consider the
CE approach, where we view the clustering problem as
a continuous multi-extremal optimization problem with
constraints. Specifically, we wish to maximize the log-
likelihood function

log L(θ) =
n∑

i=1

log f(yi; θ) (8)

over the set Ω of all possible θ. At this point it is im-
portant to mention that if Ω is chosen as large as pos-
sible – i.e., any mixture distribution is possible – then
the global maximization of (8) is an ill-posed problem!
Namely, by choosing “point” or “line” clusters, or in
general “degenerate” clusters, one can make the value
of the (log-)likelihood infinite. It is therefore useful to
restrict the parameter set in such a way that degener-
ate clusters (sometimes called spurious clusters) are not
allowed.

For an introductory treatment of the concepts and
theory behind the CE method we refer to the CE tuto-
rial (de Boer, Kroese, Mannor, and Rubinstein 2004),
which is also available on-line from the CE homepage
at

http://www.cemethod.org

In this paper we will only explain the relevant ideas with
respect to optimizing (8), which are quite intuitive.

Consider for simplicity the clustering problem with
dimension d = 2. We may assume that θ is vector
in (6k − 1)-dimensional space. Namely, apart from
a total of k − 1 weights (one weight can be omit-
ted since the sum of the weights is 1), each of the k
clusters is associated with 2 means, 2 standard devia-
tions and 1 correlation coefficient. Let us assume that
θ = (θ1, . . . , θ6k−1)

T
is such that θ1, . . . , θ2k are asso-

ciated with the means, θ2k+1, . . . , θ4k with the stan-
dard deviations, θ4k+1, . . . , θ5k with the correlation co-
efficients and the remaining θs with the weights. Then,

we have a constrained optimization problem over the
convex set Ω ⊂ R6k−1 with

θlow
i ≤ θi, i = 2k + 1, . . . , 4k

−ρlow
i ≤ θi ≤ ρhigh

i , i = 4k + 1, . . . , 5k,
0 ≤ θi ≤ 1, i = 5k + 1, . . . , 6k − 1 .

Here, the θlow
i and θhigh

i specify the lower- and upper-
bounds for the variances and correlation coefficients;
this in view of the “degeneracy” problem discussed be-
fore.

The basic procedure of the CE method is to itera-
tively

(a) generate random samples in Ω according to a spec-
ified sampling distribution, followed by

(b) updating of these parameters on the basis of the
best scoring samples, in order to produce better
scoring samples in the next iteration.

The updating rules follow from cross-entropy minimiza-
tion and often have a simple form.

In this paper we take the sampling distribution to
be (truncated) Gaussian with independent components.
That is, with each parameter θi in θ we associate a 1-
dimensional Gaussian distribution N(ai, b

2
i ). The up-

dating rule in (b) above is very simple in this case.
Namely, the CE parameters {(ai, b

2
i )} are updated via

the sample mean and sample standard deviation of a
fixed number of the highest scoring samples, so-called
elite samples; i.e., those that give the highest likeli-
hood. For the θi in a constrained region, that is for
i ≥ 4k + 1, we sample from a truncated Gaussian dis-
tribution on the constrained region. It can be shown
(Rubinstein and Kroese 2004) that the updating proce-
dure is exactly the same as in the non-truncated case.
For notational convenience we summarize the ai and b2

i

into vectors a and b2, and denote the Gaussian R6k−1-
dimensional distribution with independent components
with means a and variances b2 by N(a,b2). The main
algorithm is summarized as follows:

Algorithm 3.1 (CE Algorithm)

1. Initialize a0 and b2
0. Set t = 1 (level counter).

2. Generate a sample Θ1, . . . ,ΘN from N(at−1,b2
t−1)

(or its truncated version) and compute the log-
likelihoods according to (8).

3. Let ãt and b̃2
t be the sample means and variances

based on the best N elite samples.

4. Update the a and b2 in a “smooth” way as

at = α ãt + (1 − α) at−1,

b2
t = α b̃2

t + (1 − α)b2
t−1.

(9)
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5. Stop at iteration t = T if some stopping crite-
rion is met. Output aT . Otherwise increase t by
1 and return to step 2.

The result is a sequence of parameters (a0,b2
0),

(a1,b2
1), . . . that tends to some (θ∗,0) where θ∗ is the

estimate of the global maximum. Note that during
the course of Algorithm 3.1 the sampling distribution
“shrinks” to a degenerate distribution. That is, each
variance b2

i tends to 0, so that the mean ai corresponds
to the optimal θi.

The algorithm is quite robust under the choice of the
initial parameters a0 and b2

0, provided that the initial
variances are chosen large enough. A convenient choice
is to let the initial means and variances be equal to the
means and variances of the data.

Injection

When the smoothing parameter α is large, say 0.9, the
convergence to a degenerate distribution may happen
too quickly, which would “freeze” the algorithm in a
sub-optimal solution. One way to prevent this from
happening is to use dynamic smoothing (Rubinstein and
Kroese 2004) where at iteration t the variance b2 is up-
dated using a smoothing parameter

βt = β − β

(
1 − 1

t

)q

, (10)

where q is a small integer (typically between 5 and 10)
and β is a large smoothing constant (typically between
0.8 and 0.99). The mean parameter a can be updated
in the conventional way, with constant smoothing pa-
rameter α. By using βt instead of α the convergence
to the degenerate case has polynomial speed instead of
exponential. A difficulty with dynamic smoothing is
that when the optimal function value is unknown it is
difficult to formulate a good stopping criterion due to
the slower convergence of the algorithm.

In this paper we introduce a different technique,
which can be applied to any optimization problem,
and was observed to work very well for various multi-
extremal optimization problems. The idea is to “inject”
extra variance into the sampling distribution in order to
avoid premature shrinkage, according to the following
recipe:

1. If during the course of Algorithm 3.1, at iteration
t say, the maximum of the variances in b2

t is less
than ε (say 0.01), add

∣∣S∗
t − S∗

t−1

∣∣ h,

to the variances, for some h between 0.1 and 10.
Here S∗

t is the best log-likelihood value obtained in
iteration t.

2. If the number of variance injections exceeds some
number d, say 5, then stop and display the best
solution found, namely at, otherwise increase t and
proceed with the next iteration of Algorithm 3.1.

Running the variance injection method can be viewed
as running the CE algorithm more than once.

Note that 2. above gives our stopping criterion in step
5 of the CE algorithm. Different stopping criteria are
possible.

Another modification that proved useful in our situa-
tion was to update the means a and variances b2 using
different smoothing parameters.

4 NUMERICAL EXPERIMENT

In this section we illustrate the performance of the EM
and CE algorithms for a 2-dimensional clustering prob-
lem with 6 Gaussian clusters. It is not our intention to
give here an exhaustive study, but we do believe that
the present results give an indication of the usefulness
of the CE method in comparison with the EM method.

For the EM algorithm we used the recent matlab im-
plementation in the matlab classification toolbox (Stork
and Yom-Tov 2004); see also (Duda, Hart, and Stork
2001). In the EM experiments we used “random” start-
ing values as in (McLachlan and Krishnan 1997).

In the CE experiment we used a sample size of
N = 90 and an elite sample size of N elite = 12. Each
mean a was updated using a smoothing parameter of
0.9. The variances were updated using a smoothing pa-
rameter of 0.3. The initial means and variances (in a0)
were chosen equal to the mean and variance of the data.
The initial weights (in a0) were chosen equal. The val-
ues in b2

0 were chosen large enough in order to provide
a uniform sample from Ω in the first iteration. The
injection parameters were ε = 0.01 and h = 2. Note
that the CE method is fairly insensitive to the choice of
the parameters. We stop the CE algorithm after d = 5
injections.

In the experiment n = 200 data points are drawn
from a Gaussian mixture distribution with parameters
given in Table 1.

Table 1: Parameters for the Experiment

µ σ2 Cov w
(0.60,6.00) (1.00,1.00) 0.90 0.10

(1.00,-10.00) (1.00,1.00) -0.90 0.10
(10.00,-1.00) (2.00,2.00) 0.00 0.20
(0.00,10.00) (2.00,2.00) 0.00 0.20
(1.00,-3.00) (2.00,2.00) -0.00 0.20
(-5.00,5.00) (2.00,2.00) 0.00 0.20
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The first column gives the mean vectors for the six
Gaussian distributions in the mixture, the second col-
umn the variances, the third column the covariances
and the last column the mixture weights.

To complete the specification of our test problem, we
need to give the constraints θlow and θhigh. For the
present case we allow only variances greater or equal
to 0.75, and correlation coefficients between -0.95 and
0.95.

Table 2 gives the evolution of a typical run of the CE
algorithm for this data set, and the above constraints.
In the table we list, from left to right, the best value
for the negative of the log-likelihood in each iteration,
the overall best value and the maximum CE variance.
Note that we want to minimize the negative of the log-
likelihood. For this run the CPU time – using a matlab
implementation on a 2.4 GHz computer – was 38 sec-
onds.

Table 2: Typical Evolution of the CE Algorithm

t S∗
t minu≤t S∗

u maxi b2
t (i)

20 1160.89 1142.00 35.30
40 1053.52 1052.65 24.62
60 1013.71 1013.38 3.01
80 1005.13 1005.13 0.98

100 1001.60 1001.55 0.91
120 998.45 998.45 0.06
140 1028.42 997.96 0.12
160 1002.02 997.96 0.05
180 998.81 997.96 0.03
200 997.00 997.00 0.02
220 1023.58 996.03 0.12
240 1000.91 996.03 0.19
260 990.64 990.64 0.08
280 982.11 982.11 0.02
300 1013.77 981.52 0.22
320 988.15 981.52 0.15
340 981.94 981.52 0.05
360 980.53 980.34 0.01
380 994.29 980.34 0.08
400 983.26 980.34 0.05
420 980.73 980.34 0.02
440 1015.13 980.34 0.21
460 985.78 980.34 0.13
480 981.75 980.34 0.04
500 980.43 980.34 0.01

In order to make a fair comparison we run multiple
copies of the EM algorithm, so that the total time for
all EM runs is no less than the time taken by the CE
algorithm (38 seconds, here). Solutions of the EM algo-
rithm that do not satisfy the constraints are discarded.

Table 3 gives the estimates using EM (using the best
of all the multiple EM runs) and CE. In this case CE
finds the global maximum but EM fails to do so. The
difference in estimates is quite significant. Note that in
this case EM finds only 5 clusters.

Table 3: Estimates for the Experiment

µ σ2 Cov w
(4.07, 4.34) (2.12, 1.75) -1.73 0.09
(5.16 5.94) (1.00, 1.58) -0.51 0.10

EM (10.11, -0.94) (2.61, 1.90) 0.26 0.20
(1.09, -5.01 ) (1.79 14.678) -0.06 0.31
(0.25, 8.73) (1.97, 5.25) 0.20 0.29

(0, 0) (1 , 1) 0 0

(0.24, 5.91) (0.81,0.75) 0.72 0.08
(1.05 , -10.01) (0.79,0.76) -0.71 0.11

CE (10.10, -0.90) (2.52,1.98) 0.14 0.21
(0.07, 9.97) (2.31,2.17) 0.53 0.19
(1.11, -2.78) (2.44,1.67) 0.25 0.20
(-4.45 ,5.25 ) (1.88,2.66) -0.55 0.21

Figure 1 illustrates the quality of the estimates. The
0.95-quantile ellipses found with CE correspond exactly
with the data, whereas EM only “recognizes” one clus-
ter.

−4 −2 0 2 4 6 8 10 12 14
−15

−10

−5

0

5

10

15

DATA
EM
CE

Figure 1: Illustration of the Experiment

We have repeated this experiment 10 times, in which
CE found the correct clusters 4 out of 10 times, but
EM failed. The results are given in Table 4. Note that
here, again, the negative of the log-likelihood values are
given.
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Table 4: The Negative of the Log-Likelihood Values for
CE and EM for 10 Repetitions

CE EM time
980.33 1048.62 38
982.75 1052.99 32
998.01 1041.86 34
980.36 1047.83 31
980.32 1047.83 36
997.98 1052.99 34
994.19 1047.83 40
1004.76 1057.18 39
994.08 1052.99 35
980.62 1052.99 34

It is important to note that the CE method is not sen-
sitive to the initial conditions. This is in sharp contrast
with the performance of the EM method, the conver-
gence of which is heavily dependent on an initial guess
that is not too far away from the optimal solution. This
explains why the CE method appears more consistent
than the EM method.

5 CONCLUSIONS AND FUTURE RE-
SEARCH

We have introduced a constrained global likelihood op-
timization approach to (mixture) model-based cluster-
ing analysis, based on the CE method. Numerical ex-
periments indicate that the new method is very effec-
tive and could be used as an alternative to the ubiq-
uitous EM algorithm. When comparing the two, the
main advantage of EM is its speed. We observed that,
typically, EM converges 10–100 times faster than CE.
However, this was using a state-of-the art implementa-
tion for EM and a non-optimized implementation for
CE. The disadvantages of EM are that (1) EM requires
“correct” starting values and (2) it is difficult to deal
with constrained parameters, other than just accepting
or rejecting a candidate solution generated by EM.

The advantages of CE is that it deals better with
both starting values and constraints. The differences
between CE and EM become more clear when the data
set is small to medium, 20–300, and the clusters are
superimposed. In that case the log-likelihood function
has many local maxima.

Under what conditions exactly CE outperforms EM
in clustering analysis remains an issue for future re-
search and requires more numerical experimentation.
Moreover, there are various other approaches to clus-
tering analysis, including the K-means and the linear
vector quantization algorithms (Duda, Hart, and Stork
2001). Another direction for future research is to com-

pare CE with these algorithms. Early results indicate
the superior accuracy of CE.

One of advantages of the CE method which we have
not mentioned yet is that it can be readily applied to
other multi-extremal optimization problems. The core
code remains virtually the same; only the objective
function needs changing. A study on the performance
of the CE method, when applied to a whole range of
difficult optimization problems, be it likelihood opti-
mization or otherwise, is an interesting direction for
future research. Another issue worth considering is the
“optimal” choice of the CE parameters. As we men-
tioned, the algorithm is fairly insensitive to the choice
of parameters, but additional information about for ex-
ample the selection of the injection parameter h would
be useful. Other modifications for clustering problems
include the “gradual feeding” of data, where one starts
with say 20% of the data to identify the clusters quickly
and then gradually increases the data set to determine
the actual clusters. Also a different choice of the sam-
pling distribution may be considered. Examples are the
class of beta distributions and the class of double expo-
nential distributions.
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