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Abstract

We investigate the amount of cooperation between agents in a population during
reward collection that is required to minimize the overall collection time. In our
computer simulation agents have the option to broadcast the position of a reward
to neighboring agents with a normally distributed certainty. We modify the standard
deviation of this certainty to investigate its optimum setting for a varying number
of agents and rewards. Results reveal that an optimum exists and that (a) the
collection time and the number of agents and (b) the collection time and the number
of rewards, follow a power law relationship under optimum conditions. We suggest
that the standard deviation can be self-tuned via a feedback loop and list some
examples from nature were we believe this self-tuning to take place.

Key words: agent population, co-operation, reward collection, armed bandit
search, optimum standard deviation, exploitation and exploration

1 Introduction

We investigate the behavior of a collective systems of agents that are able
to communicate locally. The aim is to analyze how communication between
agents can be optimized to fulfill a larger common goal such as the minimiza-
tion of time taken to search for and collect randomly distributed rewards.
We begin with a definition of the terminology we will be using in section 2
which enables us to formulate a generic description of the problem in section 3.
Section 4 then introduces the parameter values we investigate followed by pre-
sentation of the results in section 5. The discussion of the results contained in
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section 6 is followed by section 7 were we suggest the existence of naturally
occurring examples. Finally, we conclude by offering some closing remarks in
section 8.

2 Definitions

We use the generic term agent for an artificial or biological entity playing a
part in the behavior of a population. An agent can be a gene or an animal such
as an insect or human being, or an artificial entity such as a software-agent,
a router in a communications network, a central processor in a multi-CPU
cluster or a mechanical robot, to just name a few examples. We also use
the word population as a generic term for a collection of agents in a defined
environment. A population can be represented by terms such as “genome”,
“group”, “swarm”, “ant-colony”, “collective” or similar. Agents will generally
try to collect rewards located at targets in a certain problem domain (context)
which we will call their world. Those rewards can consist of food or completed
tasks. Total reward collection time is to be always minimized and reverse-
proportional to the fitness of the population. Using this terminology we will
now attempt a more general formulation of the problem under investigation.

3 Problem Description

Located in a d-dimensional world of size Aworld, at each trial are K targets
with a total of R equally distributed rewards so that each individual target
consists of R/K rewards. The size of the targets, Atarget, is chosen so that
an arbitrary ratio a = Aworld/Atarget is achieved. A population of N agents
of zero extent (i.e. point-size agents) are uniform-randomly placed into this
world at each iteration (cf. Fig. 1 for configuration). If an agent happens to
be placed in a target area, the agent removes c (carrying capacity) rewards at
this iteration. The agent will remain at this position and continue to remove
c rewards at subsequent iterations until all rewards at this target position
have been taken. The agent(s) may be joined by other agents that discover
the target location at a later iteration. All agents participating in reward
collection will again be participating in target location once the reward is
exhausted. If all rewards are exhausted the number of iterations is recorded
as T and the trial is complete. In addition to discovering a target by direct
placement into a target by chance, the discovery of targets can be achieved via
communication between agents. An agent located in a target will broadcast
its position to all surrounding agents. If agents capture the message, they will
join the broadcasting agent in the target at the next iteration. However, the
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Fig. 1. Example configuration of K = 5 targets (bars) containing a total of R = 100
rewards and N = 50 agents (triangles) in a d = 1 -dimensional world of size
Aworld = 100. Targets are occupying 10 percent (a = 0.1) of the world size.

probability that surrounding agents will capture this broadcast depends on
their distance from the broadcasting agent according to a normal distribution
with standard deviation σ (once an agent is committed to a target, it will
not accept broadcasts from other agents at different targets anymore). The
choice of σ will therefore determine how many agents are on average being
recruited for reward collection at each iteration. These recruited agents will
therefore be unavailable for further target search, which will have some effect
on the total reward collection time. We expect to find an optimum value that
minimizes this time. This optimum value for σ will depend on the number of
agents N , targets K, rewards R, the ratio a, the carrying capacity c and the
dimensionality of the world d.

We call the problem we designed here the bandit-search problem, since it is
reminiscent of the so-called K-armed bandit problem in which an optimal
strategy has to be found for selecting from a number (K) of one-armed slot
machines (bandits) with unknown reward probability to maximize the total
payoff [10, p.2,3]. Both problems share a common theme; the essence of the
bandit problem is the systematic search for the balance between exploration
and exploitation necessary for effective optimization. It is known that each
bandit is distributing rewards, what is not known is how much because the
reward amount is stochastic. In comparison, the bandit-search problem consists
of finding the bandit in the first place; once found, the reward is not stochastic
but predictable and continuous until depleted. The optimization thereby shifts
from a strategy of “bandit-selection” to a strategy of “bandit handle-pulls
versus bandit search”. Both problem models deal with the determination of
the optimal tradeoff between balancing the benefits of gathering information
(exploration) versus that of maximizing short-term payoff (exploitation).
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4 Simulations

Since our bandit-search problem can not be satisfactorily analyzed anymore
using a simple mathematical approach, we investigate the effects and influences
of a variation in parameter values via computer modelling as follows. We
select a varying number of targets (bandits) K = 1, 5, 20, 50 and agents N =
1, 50, 100, 500 with a fixed ratio r = 2 for the number of rewards per agents
r = R/N to exclude the likely influence of total number of rewards on the
results (we did not separately investigate the influence of a varying number of
total rewards R). We choose a 1-dimensional world of size A = 100 and a fixed
ratio a = 0.1 for the target to world size a = Aworld/

∑
Atarget and a carrying

capacity of c = 1. For each of the 16 resulting combinations of agents and
targets we investigated a minimum of 26 standard deviations ranging from
σ = 0, 1, 2, 3, 4, 5, 10, 15, 20, . . . , 100 and ∞, and reported the mean of 1000
trials for each instance (16 · 26 · 1000 = 416, 000 trials in total). Some more
points were calculated where deemed necessary.

5 Results

The results of these runs are represented in graphic form in Fig. 2 for 1, 5, 20
and 50 agents. The significant points of those graphs, namely mean total
collection times T for σ = 0, σ = σopt and σ = ∞, are summarized in a single
graph, Fig. 3, for better comparison.

From these results we draw the following conclusions.

(1) The optimum rate of assistance σopt (or successful information transfer)
that minimizes the total collection time T , changes with the number of
agents N and number of targets K.

(2) With an increase in number of targets K, the advantages of providing
reliable assistance are shifted in favor of providing no assistance. Reliable
assistance is closer to the optimum for smaller number of targets and
optimal for a single target.

(3) No assistance is always worse than optimum assistance. However, with a
large number of targets present, no assistance approaches optimum.

(4) Reliable assistance is either worse than optimum assistance or at least
the same.

(5) No assistance can be either worse or better than reliable assistance, de-
pendent on the number of targets K. The more targets are present, the
more advantageous it becomes if no assistance is provided.

(6) The time taken for reward collection is decreased with an increase in
agents and this relationship follows a power-law as Fig. 4 shows. For an
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Fig. 2. Reward collection times T with varying number of targets (separate graphs
for K = 1,K = 5,K = 20,K = 50) for a population of N = 10, 50, 100 and 500
agents with a = 0.1, r = 2, c = 1 and d = 1. Each point represents the mean of 1000
trials. Points marked 4 at σ = 0 (left) represent times resulting from sole collection
of agent(s) finding the target while all other agents were free to explore the world
for additional targets, i.e. no information transfer occurred. Points marked ¯ at
σ = 100 (right) are not to be confused with the points calculated from σ = 100, but
instead represent times resulting from collection by all agents immediately after a
target had been located by a single agent (or more than one agent simultaneously).
Points marked ¤ represent the optimum value for σ for target location broadcasting,
resulting in minimum reward collection time.

optimum value of the standard deviation (marked by the symbol ¤),
we notice an exponential decay in efficiency for an increased number of
agents. The larger the number of distributed targets K is, the more ad-
vantages will be gained from an increase in agents N in terms of reducing
the overall collection time T . This effect is reduced with increasing num-
ber of agents.
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Fig. 3. Comparison of reward collection times T for a population of
N = 10, 50, 100, 500 agents and K = 1, 5, 20, 50 targets (summary of previous Fig. 2
now representing points marked 4,¯, ¤ there as bars). Each bar represents the
mean of 1000 trials (please note the different scales for the mean time). All param-
eters as in Fig. 2. Three bars are shown for each combination of N and R. The bar
on the left represents the time taken to collect all rewards without communicating
the location of targets to any other agent (no assistance). The bar on the right
represents the time taken if all agents are collecting the rewards immediately after
their discovery by at least one agent (reliable assistance). The bar in the center,
which is always either lower or at least the same height as the other two bars, in-
dicates the time taken when only the optimum number of agents participated in
the collection of rewards while all other agents continued the search for new targets
(optimum assistance). This optimum number was determined from simulation runs
using σ = 0, 1, 2, 3, 4, 5, 10, 15, 20, . . . , 100 and marked with ¤ in previous graphs.

6 Discussion

The power law relationship of the collection time with both variables, number
of agents N and number of rewards K displayed in Fig. 4, is reminiscent of
the Danish theoretical physicist Per Bak’s self-organized criticality [3]. “Self-
organized” is often associated with the word “emergent” [6, p.99]. It seems
that if a population of agents would be able to regulate its own standard
deviation via a feedback loop to tune it optimally, it could lead to the emer-
gent ability of the system to minimize collection time which in turn shows a
power law relationship with process variables poising the system to reside at
the edge of chaos. Kauffman [9] remarked that adaptive agents tune internal
redundancy and couplings with one another to achieve a self organized critical
state. The optimum amount of collaboration between agents minimizes the re-
ward collection time which is equivalent to a maximization of agent-population
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Fig. 4. Mean reward collection times T under optimum conditions (σ = σopt) for
varying number of agents N and targets K (mean of 1000 trials). All parameters
as in Fig. 2. The logarithmic plot shows the power law relationship between both,
the number of agents and the mean minimum collection time and also the number
of targets and the collection time. Under optimal conditions an increase in agents
will have a positive effect on the overall collection time T . For a large number of
targets this effect is dramatic but weakens with an increase in agent numbers.

fitness. Furthermore, using this power law relationship with a known quan-
tity of agents and targets, we can predict the minimal collection time under
optimal conditions. Our results are an extension of finding a balance between
exploration and exploitation into the temporal dimension.

It has not escaped our attention that the functionality of the standard de-
viation as used in our context resembles that of genetic epistasis. From a
biological perspective, epistasis entails the interaction (enhancement or sup-
pression) of alleles of different genes. Kauffman’s [8] epistasis value K deter-
mines how many other genes, from a total of N genes, a single gene interacts
with. Similarly the standard deviation σ employed in our investigations de-
termines how many other agents a single agent interacts with. Both values,
K and σ, can possess optimum values that maximize fitness as Kauffman and
we have shown. The standard deviation σ can therefore be understood as the
stochastic counterpart of the static epistasis value K given by Kauffman.

Below we list some examples where we suggest that feedback loops exist that
enable optimal self-tuning of behavior in this way.
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7 Examples

Deneubourg [4] noticed an “error” (as he called it) during communication
among ants of the location of a food source. Some ants would not follow the
instructions given to them by other ants to help exploit a known source, and
wander away instead. Those ants were however free to discover new sources and
Deneubourg showed, via computer simulations, that this behavior maximizes
the total intake of scattered food for the colony over time. The standard
deviation of this communication error can evolve to an optimum value that
matches the degree of distribution of food normally encountered by particular
species of ants.

Heck and Ghosh [7] computer-simulated the behavior of an ant colony in an
attempt to study “synthetic creativity”. The authors differentiated between
“normal” ants that find food, collect food and follow artificial pheromone trails
to food, and “creative” ants that only find food and establish a trail to it. The
results of their simulation shows a U-shaped collection time for an increasing
number of “creative” ants [7, p.62]. The authors however omitted to explain
the importance of tuned standard deviations in this context.

Seeley et al [13] observed a similarly tuned probabilistic behavior in bees.
Bees report the location of a patch of flowers via a well known wiggle dance.
The standard deviation from the true direction to the location of a newly
discovered patch allows other bees to explore the limits of this patch.

Allen and McGlade [1] report on different hunting strategies observed in fish-
ermen, one of the few remaining examples of ancestral hunting activities in
humans. Hunting contains elements of discovery and exploitation as opposed
to agriculture, which only contains the latter. Their research is concerned with
an improved model for fishing behavior in a fisheries management plan by the
Government. The authors argue that fishery models should be based on the
Lotka-Volterra equation rather than the logistic equation and base their con-
clusions on a case study of the groundfish fisheries of Nova Scotia, a Province
in SE Canada. The logistic equation only considers fish populations but the
Lotka-Volterra equation includes the behavior of fishermen as well. The inclu-
sion of their behavior into the model reveals the advantage that a combination
of two kind of fishing strategies have for the whole of the population, as ob-
served in the case study. The first strategy is to search randomly with the
risk of finding nothing, the second is to go to an area of known best return
regardless of how low it is. If only the second strategy is chosen the result will
be disastrous, all fishing activities will virtually shut down. The fishing fleet
and individual catches will be small since efforts will only be concentrated on
a single location. The first strategy however will result in the maintenance
of the whole fishing area with a larger fishing industry and larger catches. A
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reduction in information of areas of best return thereby allows a random re-
sponse by the boats which will in turn explore less visited parts of the system.
This involves more risk for skippers but results in avoiding certain disaster
when discovery is totally abandoned in the opposite case. Allen and McGlade
refer to the types of searches exploration and discovery. They liken discov-
ery to invention and creation and stress the importance of the fact that they
can be achieved through non-rational behavior, as in his examples of fish-
ing strategies. The complementarity of the two behaviors results in a mixed
strategy that optimizes the desired outcome. Here a deviation of behavior is
spread over a number of individuals in a population. Two types of fishermen
are identified, high risk-taking “hunters” and low risk-taking “followers”. The
authors generalize that a balance of both strategies maximizes the efficiency
of the whole population and propose that a society should encompass both,
in the form of freedom for discovery and preservation of traditional strategies.

In another paper [2], the same authors publish details of their model that
shows that evolution is able to act on the rate of change. They hypothesize
that fidelity of reproduction is a hereditary characteristic which could itself
vary. Their simulations show that if a population contains a certain amount of
random variability, selection is able to operate on it to regulate the variability
necessary for hill climbing or countering the evolution of other species. We [12]
have also demonstrated that this is indeed possible using a simple computer
simulation of a population of agents containing a feedback loop with their
environment. The processes not only include the selection of fit individuals
but also the creation of new types. This makes variability itself part of a
species’ strategy and produces populations with not optimal behavior but the
ability to learn. Adaptation and change now become a permanent feature of
evolutionary strategy. Evolution is driven by the noise to which it leads and
consists not only of the selection of optimal behavior but selection of species
that can produce change thereby enabling an ability to cope with change.

8 Conclusion

Using a simple computer simulation of an interacting population of reward
collecting agents, we have shown that there exists an optimum amount of co-
operation between agents that minimizes the population’s reward collection
time. We investigated some parameters for the number of agents and the num-
ber of rewards and found that the optimum is sensitive to those parameters
and located somewhere between agents providing no assistance and full as-
sistance. Our simulations have also highlighted the power law relationships
between the optimized collection time and the number of agents in one case,
and the number of rewards in the other. This hints towards a self organized
critical edge of chaos state that is thought to be the preferred operational state
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of dissipative systems [11].

We suggest that a feedback loop can positively affect the discovery of the
optimum setting and present some examples from nature where such a process
can be observed. In all these cases, either artificial or natural, the quantitative
aspects of cooperation between agents and the inclusion of feedback loops and
algorithms to tune cooperation to an optimum value should receive increased
attention.
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