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A tool for developing correct programs byre�nementD. Carrington, I. Hayes, R. Nickson, G. Watson and J. WelshSoftware Veri�cation Research CentreDepartment of Computer ScienceThe University of QueenslandAbstractThe re�nement calculus for the development of programs from speci�-cations is well suited to mechanised support. We review the requirementsfor tool support of re�nement as gleaned from our experience with a num-ber of existing re�nement tools, and report on the design and implemen-tation of a new tool to support re�nement based on these requirements.The main features of the new tool are close integration of re�nementand proof in a single tool (the same mechanism is used for both), goodmanagement of the re�nement context, an extensible theory base thatallows the tool to be adapted to new application domains, and a exibleuser interface.1 IntroductionThe re�nement calculus of Back [Bac88], Morgan [MV94, Mor94] and Morris[Mor87] neatly formalises the stepwise re�nement ideas of Wirth [Wir71] usingthe weakest precondition formalism of Dijkstra [Dij76]. Using a wide-spectrumlanguage, that incorporates both speci�cation and executable code constructs,and a set of re�nement rules, the calculus enables an abstract speci�cation tobe transformed into an executable program whose correctness depends on thecorrectness of each re�nement step.Developing software using the re�nement calculus requires a large number ofsmall steps; it is tedious and error-prone to do this by hand for other than smallexamples. To achieve larger-scale development with the re�nement calculus,it seems natural to consider computer-based tool support, and a number oftools have been developed for this purpose. One of the earliest was built byCarrington and Robinson [CR91, CR88] with the Synthesizer Generator whichuses attribute grammars to create language-based editors. This tool was limitedto integer expressions and simple and array variables. Re�nement rules were1



built-in as editing transformations. The Red tool [Vic90] was developed atOxford. Proof obligations could not be discharged within the tool but they couldbe piped to an independent theorem prover. Red had support for developingderived re�nement rules from the base set.Back has been associated with several re�nement tools. The Centipede en-vironment [BHS92] used a graphical display for re�nement diagrams [Bac91]that represent the structure of a re�nement. Another tool developed with vonWright [BvW90] was implemented using HOL [Gor88]. It was subsequentlyextended [vW94] to use the window inference paradigm. Grundy [Gru92] alsoused HOL and window inference for developing a re�nement tool, which treatedprograms as predicates with extensions to model unde�nedness and nontermi-nation. Nickson [Nic93, GNU92] developed a re�nement editor with a graphicaluser interface and its own proof system based on rewrite rules. It containedsupport for re�nement tactics as a mechanism for creating more powerful rules.The Proxac editor [vdS94] developed by van de Snepscheut is built on top of ageneral term rewriting engine. See [CHN+94c] for a more detailed analysis ofthe features of some of these tools.In this paper, we examine the requirements for a re�nement tool and describea tool known as the Program Re�nement Tool (PRT) that we have developedto meet these requirements. The distinctive features of our tool are:� the use of a theorem prover, both for applying re�nement rules and forproving obligations;� a new logic and proof paradigm (program window inference) that handlescontext in both re�nement and proof;� an extensible theory base, supporting the Z toolkit and allowing adapta-tion to new application domains;� a exible user interface that supports construction and reuse of programderivations.Section 2 investigates the requirements of a tool to support the re�nementcalculus as a program development method, and discusses design issues. Section3 describes how the PRT tool meets these requirements, Section 4 compares PRTwith other existing tools, and Section 5 summarises the results.2 RequirementsThere are several potential roles for tools that support software developmentwith the re�nement calculus. 2



Selecting rules Each re�nement step involves selecting a component of thecurrent development and an instance of a re�nement rule to apply to that com-ponent. Choosing rules is not deterministic but the tool might identify thoserules that match components of the current development and let the user makethe �nal selection.Applying rules Once the rule is selected, the application is usually straight-forward symbolic manipulation but with opportunities for formula simpli�ca-tion. This calculation step is also a candidate for tool support.Discharging proof obligations Many re�nement rules have an applicabilitycondition or proviso associated with them to ensure that they are applied in anappropriate context. For con�dence in the re�nement results, it is importantthat whenever a rule is applied, its proviso is shown to hold. These proof obli-gations are lemmas in the �rst-order predicate calculus and normally cannot bedischarged completely automatically; however many of them involve relativelyshallow proofs. The support of a sophisticated proof tool is necessary for thistask.Recording the development steps Because of the large number of stepsassociated with non-trivial re�nements, a computer-based tool can assist byrecording and managing the relationships between the stages in the develop-ment of the program being re�ned, and rule applications and provisos at eachstage. This management should allow for extending and modifying parts ofthe development while protecting its integrity. By capturing the developmenthistory, which includes all the design decisions, we provide traceability fromthe speci�cation to the implementation. The structural information stored inthis way can be used for the extraction of code and for navigation through thedevelopment. It also supports the reuse and adaptation of derivations to suitchanged speci�cations.Tools to support each of these activities would be useful, but considerablesynergy is achieved by having a single tool that integrates the multiple roles.Our objective is to create such a tool for the re�nement calculus.We partition our discussion of requirements for a re�nement tool into �vesections: representation of information, customisation, re�nement transforma-tions, proof support and user interface. These requirements are not independentbut the partitioning allows some `separation of concerns'.3



2.1 Representation of informationA tool supporting re�nement must represent many di�erent forms of informa-tion:� speci�cation and code fragments,� re�nement rules,� applicability conditions,� proofs, and� the relationships between the instances of these elements that are createdas a re�nement is performed.Speci�cation and code fragmentsThe wide-spectrum language approach of the re�nement calculus means thatspeci�cation and code fragments are expressed in a uni�ed notation. At aminimum, this notation incorporates predicate logic (for the pre- and post-condition of the speci�cation statement) and Boolean expressions (for the guardsof the if and do commands). We need a way to de�ne that logic, and a way toextend it to include the data types used in speci�cations and programs.Re�nement rulesEach re�nement rule is a schema (or template) representing a set of instances.Each instance is a theorem in the re�nement calculus, de�ned by:� a subject program fragment that the rule instance can be applied to,� the corresponding result fragment, and� the applicability condition, which may involve syntactic and semantic con-straints on the subject and result fragments.The sets of instances are described by patterns. The subject pattern for a rulemay contain metavariables that can be instantiated when the rule is applied.For example, a rule for weakening a precondition is:Pre V Pre0w: �Pre ; Post � v w: �Pre0 ; Post �The result pattern contains a metavariable (Post) that occurs in the subjectpattern, and also an independent metavariable (Pre0). Independent metavari-ables can be considered as parameters to the rule, since their instantiation is not4



determined by matching the subject pattern with the actual subject fragment,but a�ects the result.To apply a rule to a particular program fragment, the metavariables in thesubject pattern are instantiated to match the fragment and the fragment istransformed to the result pattern instantiated with the values for the metavari-ables. Independent metavariables can either be instantiated when the rule isapplied or their instantiation can be deferred. There are bene�ts from allowinguninstantiated metavariables in the program during the development [NG94]:� it allows the instantiation of metavariables to be deferred until later in thedevelopment when the choices for the metavariables are clearer; and� it allows derived rules to be developed and proved.A derived rule is a composition of other rules, possibly with a simpli�ed appli-cability condition. Derived rules provide a mechanism for extending the set ofrules in the re�nement calculus.Applicability conditionsApplicability conditions are components of re�nement rules. Many of themcan be expressed using the same logic as used in the wide-spectrum language,but other constraints are syntactic in nature, such as `the identi�ers on theleft-hand side of a multiple assignment command are distinct'. Applicabilityconditions in rule schemas can contain metavariables that appear in subjectand result patterns. Applying a re�nement rule generates an instance of thecorresponding applicability condition. This formula needs to be shown to holdin the context of the rule application.ProofsIf the tool is to manage the proof obligations arising from applying re�nementrules, some representation of proofs is required. The particular representationwill depend on the mechanism used to discharge these obligations but it isdesirable that the representation facilitates the checking and incremental mod-i�cation of proofs if the re�nement is changed.RelationshipsApplying the re�nement approach to program development generates a collec-tion of programs related by a re�nement relation. If we are to achieve the goal ofcapturing an idealised record of the development process, we need to representthe re�nement relationships between program fragments.The re�nement process can be captured as a re�nement tree where the initialspeci�cation is the root node. Each node is a program fragment and each edgerepresents a re�nement rule application. Associated with each rule application5



are the values of any instantiated parameters, the consequent proof obligationand its proof. When the re�nement is complete, the implementation code canbe collected by traversing the tree with interior nodes contributing the programstructure and the leaf nodes contributing the individual commands. This rep-resentation does not record the actual order of rule applications but does allowan idealised sequence to be generated.Contextual information must also be managed by a re�nement tool. Con-textual information is environmental data that is not necessarily representedexplicitly in the current program fragment but which is required for re�nement.Examples of contextual information are types of variables, procedure decla-rations, invariants, and local de�nitions. Contextual information is typicallyrequired for discharging proof obligations.2.2 CustomisationIt is important that users can de�ne new notation within the re�nement toolto suit particular applications. This new notation may include additional mathe-matical formalisms in speci�cations, and notation to customise the wide-spectrumlanguage to correspond to a target programming language. To de�ne new no-tation requires the ability to extend the syntax of the wide spectrum languageand the syntax and semantics of the logic of applicability conditions.It is also desirable that new re�nement rules can be de�ned. This raisesthe issue of the correctness of re�nement rules within the tool. Rules could bejusti�ed externally to the tool, but a more desirable option is to allow rules tobe proved within the tool. The latter option requires the ability to de�ne thesemantics of the wide spectrum language and the re�nement relation. It alsoincreases the requirements for proof support.2.3 Re�nement transformationsFor a re�nement tool to be e�ective at applying rules, several requirementsmust be satis�ed. Mechanisms are required for structuring collections of rulesto make them easy to use. It is desirable to be able to identify those ruleswhose subject pattern matches a given fragment. For schematic developments,pattern matching generalises to uni�cation because of metavariables in both thefragment and the subject pattern.From a set of potentially applicable rules, selection of a rule and (perhaps)instantiation of its parameters is required. When this is done, the rule can beapplied and the resulting program fragment calculated.Re�nement tactics are an alternative to the concept of derived rules. Theyare more exible combinations of existing re�nement rules where the combina-tion is computed dynamically when the tactic is applied, based on the currentcontext. Tactics require a language for expressing how rules may be combinedand how the context can inuence the outcome.6



2.4 Proof supportTo discharge proof obligations arising from re�nement, one needs a theoremprover. The prover should be integrated into the re�nement tool so that obli-gations can be discharged as they arise. The prover and the re�nement toolshould present a common interface to the user for both activities, so that theuser only need develop a single conceptual model of the interaction.The prover should be able to handle any applicability condition generatedby applying a re�nement rule, and it is essential that the underlying logic canbe customised to suit particular application domains. As a minimum, we needto be able to extend the logic to de�ne the function and predicate symbols ofour application theory.It is also desirable that the proof support is capable of justifying new re-�nement rules (Section 2.2). This requires the ability to reason schematicallyabout commands and the re�nement relation. If our theorem proving logiccan model commands, it can also express many applicability conditions thatare normally considered syntactic. For example, to model the semantics of as-signment commands, program identi�ers need to be objects in the domain ofdiscourse, distinct from the values those variables take on in di�erent compu-tational states. With such a logic, it is easy to express applicability conditionslike `all identi�ers on the left-hand side are distinct' for a rule that introduces amultiple assignment command. If we can express all such syntactic applicabilityconditions, we need not develop additional mechanisms for handling them.Proof styleThere are many styles of proof: resolution, as used in Otter [McC90]; naturaldeduction as used in Mural [JJLM91] and in LCF [GMW79] and its descen-dants; proof theories tailored to various constructive logics as used in NuPRL[CAB+86] and induction-based strategies such as those used in the Boyer-Mooreprover [BM79] and Gypsy [Goo84]. A particularly e�ective proof style is termrewriting [HKLR92]. With this approach, a sequence of formal objects is con-structed, starting with the formula to be proved, in which each object is relatedto the preceding one by some validity-preserving relation (typically, but not es-sentially, equivalence). If the �nal element of the sequence is a formula knownto be valid, the original formula is valid. Usually, successive elements of thesequence are calculated by applying conditional rewriting rules to the previouselement. Generally, the rewriting relation and term structure of the object logicallow replacement of subterms (i.e., the constructs of the object language aremonotonic with respect to the relation). This style of proof forms the basis ofthe provers A�rm [EM80] and Eves [KPS+93], and is a major proof style inIsabelle [Pau86]. Term rewriting is also a foundation of the window inferenceproof technique used in the Ergo theorem prover [UW94].Probably the greatest bene�t of using a prover based on term rewriting is the7



similarity of the proof process to the re�nement process. Both involve selectinga component to transform, choosing and instantiating a transformation rule,discharging its applicability condition and replacing the fragment by the resultof the transformation. Both activities depend on the same properties of therelations and objects concerned: reexivity (so that `no change' is always anoption); transitivity (so transformations can be composed); and monotonicityof constructors (so subterms can be replaced). Using a proof style that is similarto re�nement reduces the cognitive load on the user when switching betweenre�nement and proof steps.2.5 User interfaceThe user interface of any tool provides mechanisms for accessing the tool's func-tionality. Di�erent user interfaces are possible for a �xed set of tool functions,so it is valuable to consider the required capabilities of the user interface inaddition to the tool's functionality. Ideally, the user interface should be easy touse, so that its mechanisms do not hinder, or interfere with, the user's tasks.The user needs to be able to create and modify program fragments based onthe wide spectrum language, preferably in a form with which they are familiar.(The special symbols commonly used with the re�nement calculus can causesome di�culties.) To apply a re�nement rule, the user must identify a fragmentto be re�ned within the current development, select a rule to be applied andinstantiate any parameters of that rule. It is also convenient to have browsingfacilities for the collection of re�nement rules.During the development process, the user needs to be able to view the currentstate of the re�nement and to navigate over the complete development record.Because there is a lot of information generated during re�nement, the userinterface must be capable of hiding detail not currently relevant.As well as being able to navigate over the development record, it is desirablethat the user can modify parts of the re�nement record and observe the conse-quences (a form of `what if' analysis). Examples are changing the initial frameof the speci�cation or the parameter values of a rule application.Discharging proof obligations also has user interface implications. If weassume that this cannot be done fully automatically, mechanisms for controllingand viewing the proof activity are required.Customisation is a major requirement of a re�nement tool. The user inter-face must provide the mechanisms for performing these customisations.Two user interface styles can be compared for a re�nement tool. The �rststyle is based on a `symbolic calculator' model which concentrates on rule appli-cation. If the tool also manages the relationships between successive re�nementsteps, the user is likely to be aware of the underlying representation, typicallya re�nement tree.The second style is an `active document' model [CHN+96] where the empha-sis is on manipulating a re�nement record that approximates the textbook style8



for presenting re�nements. This style is a WYSIWYG approach with hypertextlinks possibly providing information hiding, for example, linking each proof tothe corresponding proof obligation.2.6 The Design GoalsWe now discuss the design of a re�nement tool, PRT, based on the above re-quirements. Within this framework, a set of more speci�c goals was adopted asthe basis of the design. These are a balance between the practical limitationsof producing a working tool and the desire to extend the functionality beyondthat of existing tools. The goals are also a compromise between an emphasis onthe logical basis of the tool and its theoretical foundations, and more practicalissues such as usability. The design goals adopted for PRT are to develop anintegrated tool that:� provides support for the process of selecting re�nement rules;� automates the process of applying rules as far as possible;� enables the user to prove obligations, by providing a seamless integrationof the theorem prover into the tool; and� provides a customisable user interface speci�cally engineered for the dis-play of re�nement and proof structures.Genericity is desirable at all levels of the design. The requirement for cus-tomisation is discussed in Section 2.2 and includes the ability to extend thesyntax, re�nement rules and underlying logic. Possible applications of generic-ity are in the extension of the re�nement theory to include data re�nement, aprobabilistic extension to the re�nement calculus [MMSS95], or to encompassBack's Action Systems [BS91].3 The Resulting Tool3.1 ArchitectureFrom the requirements discussed in Section 2, we developed an abstract archi-tecture comprising:� A Re�nement engine. This applies the re�nement transformation rules.It also generates the obligations incurred when rules are applied.� Proof support. A partially automated assistant to discharge the proofobligations. 9



� A Relationship Manager. This handles the structural relationshipsbetween components of the re�nement: between speci�cations and theirre�nements, between obligations and their proofs, and perhaps betweenalternative re�nements.� A User Interface. This presents the user with a uni�ed interface to theother components.This architecture is realised by implementing PRT as an application of atheorem prover, in which the roles of the re�nement engine, proof support tooland relationship manager are combined.The integrity of a program re�nement depends on the validity of the appli-cations of the re�nement rules. This in turn depends on the correctness of therules, their correct application, and the validity of the associated proof obliga-tions. The application of rules is the function of the re�nement engine. Thejusti�cation of rules and discharging of obligations are functions of the theoremprover. Substantial bene�ts accrue if these two components are combined andoperate in a similar fashion. The advantages of this arrangement are discussedfurther in [CHN+94b, CHN+94a, CHN+96]; the technical requirements for there�nement engine are described in detail in [CHN+94b].Combining the re�nement engine and prover immediately achieves the re-quirement of presenting the user with a uni�ed user interface and a single con-ceptual model for both activities. Also the re�nement and its associated proofsare held in a common data structure or set of related structures. This simpli�esthe presentation and navigation of the re�nement for the user. It also meansthat relevant information is shared between obligations and the re�nement stepsthat give rise to them. This is signi�cant for a re�nement tool since each obliga-tion is presented in the context of the current state of the re�nement, and havingthis context readily available in the proof of the obligations is an advantage.Formal re�nement is typically done when the correctness of the re�nementof resulting program from its speci�cation is important. Combining the re�ne-ment engine and prover means that the tool is dependent on a single formalsystem, so the e�ort of establishing the soundness of the tool is reduced. Thisuni�cation also simpli�es the task of managing the structural relationships sincethe complete re�nement is a single theorem and its components are subproofsof this theorem. Thus, the prover acts as the relationship manager as well.3.2 The theorem prover and re�nement engineWindow inferenceIn Section 2.4, we discussed the advantages of using a theorem prover basedon term rewriting in a re�nement tool. In PRT, we use the window inferenceproof paradigm [RS93] which is based on term rewriting. This supports goal-directed reasoning within a hierarchical proof structure. At any stage, the proof10



can contain a hierarchy of unsolved subproblems, each of which has its owncontext. Each node in the hierarchy is called a window, which is a data structurecomprising:� a focus, which is the term being transformed;� some hypotheses, which are assumed true for the transformation of thefocus;� a relation, indicating what relationship is to be preserved under the trans-formation; and� a goal, which indicates the desired outcome of transforming the focus.Using this paradigm, a problem is solved by successively focusing on compo-nent subproblems. Each focus opens a new window with hypotheses appropriatefor that subproblem. Within this window, the subproblem can be tackled byapplying transformations and perhaps decomposing it further by opening newwindows. When a subproblem is solved, for instance by reducing the focusto true for a proof or, in the case of re�nement, transforming a speci�cationstatement to code, the window is closed. The �nal proof is thus representedby a hierarchy of windows and transformations, that together constitute a validtransformation from the original problem to the required result.In a standard theorem prover, the relation being preserved is typically equiv-alence or implication, however other relations may be appropriate. When usingwindow inference for re�nement transformations, the relationship is that of `isre�ned by' [Gru92]. It is also possible to replace re�nement rules such as `weakenprecondition' by operations that allow one to open a window directly on a pre-condition and weaken it.PRT is built as an extension of the Ergo theorem prover [UW94], whichuses the window inference proof paradigm. Ergo has other characteristics thatsuit its use in a re�nement tool: it is designed to be extensible, and it supportsautomated proof through a comprehensive tactic language [Whi92]. Tactics canbe invoked automatically at each proof step, which provides a mechanism todischarge simple obligations without user intervention.Developing a logic of program window inferenceReasoning about programs requires a consideration of states. For example, thespeci�cation statementx : � x = a ; x = b � refers to two distinct states (initial and �nal), and the threeoccurrences of x refer to di�erent values:� In the frame, x denotes the variable (l-value) itself: the frame constrainsthe variables that can change from initial to �nal state.11



� In the precondition, x denotes the value taken by the variable in the initialstate. The precondition constrains the set of initial states from which thecommand is applicable.� In the postcondition, x denotes the value taken by the variable in the �nalstate. The postcondition constrains the set of acceptable �nal states.Standard treatments [Bac88, MV94, Mor87] of re�nement are based onhigher-order logic. Program variables are an explicit domain, distinct fromthe domains of values they can take. States are functions that map programvariables to values; expressions and predicates map states to values and truthvalues. Programs are then identi�ed with their meanings as predicate trans-formers; there is no explicit weakest precondition operator.An advantage of the re�nement calculus is that most developments can bedone using re�nement rules whose conditions are apparently �rst-order, and donot refer to state at all. Some `extralogical' conditions are syntactic in nature(for example, `x is a fresh variable'), while in other `logical' conditions theprogram variables behave just like logical variables (for example, `x = 0 )x � 1'). This reduction to �rst-order concepts is possible because the logicalconditions of rules are generally implicitly universally quanti�ed `for all states'.With the higher-order approaches to modelling re�nement, this universalquanti�cation must be made explicit, the di�erent denotations of identi�ersmust be distinguished, and the appearance of states as arguments of expres-sions and predicates cannot be easily hidden. On the other hand, with theseapproaches it is possible to formally prove re�nement rules, reasoning explic-itly about states and their relationships. This is not possible with classical�rst-order logic without an explicit modelling of states.Program window inference [NH95] is based on a modal logic, in which thepossible worlds are states. This modal logic can readily be related to the moretraditional higher-order semantics. Using a modal logic allows us to avoidhigher-order constructs, so that program variables behave like (modal) logicalvariables in the applicability conditions of re�nement rules. It is still possibleto distinguish occurrences of identi�ers, using modal operators that constrainthe sets of states under consideration; it is possible to prove re�nement rulesbecause states are implicit parameters [SRH94] of predicates.The program window inference theoryErgo has an extensive theory hierarchy covering classical logic, set theory, arith-metic and structures such as sequences. To support re�nements, a new theoryhas been added that implements the modal logic of program window inference.The program window inference theory includes special support for dealing withprogram variables, applying re�nement rules and managing the kinds of contextthat arise during re�nement. It includes:12



� A de�nition of the re�nement relation in terms of a primitive weakestprecondition function (wp).� The re�nement rules, which are theorem schemas in this theory.� Window opening and closing rules that apply to the re�nement relation.� Mechanisms for handling program variables and their substitution.� Tactic support for applying and instantiating re�nement rules, which hidesmuch of this detail from the user and allows substitution to be done in asimple manner.� A proof interface that has been adapted for re�nement.Each re�nement step is an application of an instance of a theorem schemain the underlying theory, with the metavariables instantiated to correspond tothe current context. Within the re�nement theory, program variables behavein special ways, and machinery to handle this is built into the theory. Forfurther details on how program variables are handled in Ergo, see [CHN+94a].Such detail is usually hidden from the user of PRT, but is necessary for a fullunderstanding of how the theory works and the soundness of its results. Theresult of a development is an Ergo theorem that asserts that the �nal programis a re�nement of the original speci�cation.Program variablesProgram variables are modelled by an in�nite collection of constants. It isnot possible to use logical variables directly, as Ergo has built-in notions ofsubstitution and quanti�cation that do not concur with the modal logic used.Substitution of expressions for program variables (needed, for example, in theapplicability condition of the re�nement rule for introducing an assignment com-mand) is represented as a modal function on predicates, and is supported by atactic that calculates such substitutions where possible. Similarly, it is possibleto bind program variables with universal and existential quanti�ers (as in thede�nition of weakest precondition for local variable and constant constructs),and tactics exist that support reasoning with those quanti�ed terms.Applying re�nement rulesIn Ergo, an axiom or theorem can be interpreted as a directional inference rule.The rule is applied by instantiating it to match the situation in which it isapplied. By default, other schematic variables are left uninstantiated. Thesemetavariables can be instantiated at any stage, later in the derivation. Forre�nement, it is more often convenient to completely instantiate rules whenthey are applied. To facilitate this, each re�nement rule is annotated with13



a list of parameters. These are schematic variables in the rule that normallyrequire explicit instantiation. The parameters have meta-types, which controlhow instantiations are obtained and checked, for example by prompting theuser. It is possible to leave parameters uninstantiated when a rule is applied,thus retaining the exibility of re�nements using metavariables [NG94].Ergo axioms and theorems can be interpreted as conditional inference rules.In this case, it is necessary to discharge the conditions when the rule is used.When a re�nement rule is applied, the conditions of the rule are discharged asfollows:� Some conditions (in particular, most of the syntactic conditions) are dis-charged automatically using tactics. Automatic discharging of conditionsis driven by a table that can be extended.� The remaining obligations are handled in one of three ways.{ The default is that the remaining obligations are recorded as conjec-tures that must be discharged before the current window is closed.{ Alternatively these obligations may be deferred. They are recordedas postulates in the theory, which the user can discharge later asseparate proofs.{ The �nal option is that these obligations must be discharged as theyare generated.Which option is currently in use can be selected by the user.ContextSeveral kinds of context are used for determining the applicability of re�nementsand for discharging obligations.l-value context captures information about the names of variables, procedures,etc. that are in scope. It is used to discharge obligations such as `x is afresh variable' or `x and y are distinct program variables'.invariant context captures information about the values of variables that ispreserved throughout a scope. Invariants [MV90] are used to incorporatetype information, while retaining an untyped re�nement logic.precondition context captures assumptions about initial values of variablesthat can be deduced from prior assignments and tests. For example, im-mediately after the guard x = y in an if command, the preconditioncontext includes x = y .These three kinds of context are represented in the Ergo hypothesis listby terms annotated lval, inv and pre. Window opening and closing rulesautomatically manage the hypothesis list, deducing new hypotheses from thecontext and manipulating existing hypotheses according to their annotations.14



3.3 The user interfaceInteraction styleThe detailed design of the user interface concentrated on presenting variousaspects of the re�nement, and in representing common operations by simpleactions in the interface. These issues are also central to the design of the in-terface of the base prover, and an Emacs interface to the Ergo theorem proveraddressing these issues was developed jointly with the Ergo developers [NU95].The Emacs Ergo interface uses the `active document' style of Section 2.5, withnavigation via the structure of the proof.An alternative interface using the UQ� editor [WH94] is also under develop-ment. UQ� is a generic syntax-directed editor that supports multiple interactingtools. The UQ� design is based on the `active document' model, with a cen-tral store that can contain multiple documents and arbitrary relations betweendocuments and parts of documents. In the UQ� version of PRT, the re�nementdevelopment is a document that is created jointly by the user, via the editor,and by Ergo which is an attached tool.Features of UQ� that make it suitable for PRT include:� UQ� relations allow structures such as re�nement trees to be imposed ondocuments.� The display and navigation of such relational structures is an integralfeature of the UQ� editor interface.� UQ� supports multiple relational structures. This feature could be usedto implement such features as alternative re�nements.� UQ� supports WYSIWYG output for the display of the symbols of the re-�nement language. This is generic, so that special symbols for applicationtheories can be added readily.� UQ� supports multiple tools operating on the central store. So tools suchas LaTEX converters, or code collectors can be added.� A graphical tool for attachment to UQ� is under development, which willallow the display and navigation of the re�nement document at a highlevel, e.g. by re�nement diagrams [Bac91].The current version of PRT uses the Ergo Emacs interface.The displayThe Emacs Ergo interface supports two styles of interaction. Initially the user ispresented with the original command-line interface to Ergo in an Emacs bu�er.With this interface, the user can select a theory to work in and start a re�nement.Other tasks such as theory management are also done at this level.15



During a re�nement development or a proof, a di�erent style of interactionis used. In this style the tool displays several Emacs frames and panes in whichinformation about the current state of the re�nement is presented. The mostimportant frames are the proof frame (Figure 1), which has panes that displaythe current state of the re�nement, and the proof script frame in which thecommands required to perform the re�nement are recorded. A number of otherframes are used for di�erent purposes: the Rules frame is used to control theselection and display of matching rules; Help is displayed in its own frame; ifthe proof browser is invoked, this also appears in its own frame; and the originalErgo command-line interface frame is retained in the background.

Figure 1: Emacs Ergo | Proof FrameThe components of the proof frame can be seen in Figure 1. This, and theother �gures, represent stages in the re�nement of a program to generate Graycodes. This is an iterative version of the example in Morgan [Mor94, pages132�.]. The details of the re�nement are not given here | it is one of our casestudies and is used as an example in the PRT User Manual [CHN+95].The proof frame has four panes. The top pane is the subproof stack, whichdisplays all the ancestors of the current subproof. This pane shows the layers16



of the re�nement. At the point in the derivation shown in Figure 1 there arethree:1 The initial speci�cation with context;3 A focus to the speci�cation, which has been re�ned to a var block;13 A focus to the speci�cation inside the block, which has been re�ned toa composition of an assignment, a speci�cation statement, and anotherassignment.Note that speci�cation statements are presented in a format similar to that ofMorgan, for example:[k,w]:[true , w = gc(n)]. In the display, ellipses are used for detail sup-pression within large terms, and can be expanded by the user if required. Thebottom pane is the subproof pane which shows the steps taken in the currentsubproof. In Figure 1, it shows a speci�cation statement being re�ned to a doloop, using the rule do1I with several hypotheses discharging the provisos. Thenext step in the development is to re�ne the speci�cation statement inside thedo loop to an assignment. Above the subproof pane is a pane showing the hy-potheses of the current window, and also a control pane, in which global optionscan be set.The interface is arranged so that point and click and menu selection canbe used for common operations. For instance, the control pane has buttonslabelled Close and Undo which respectively close a window, and undo the lastproof step. Opening a new window on a sub-term of the current focus can alsobe performed with the mouse. The user can highlight any subterm of the focus,and use the mouse to open a window on that subterm.Finding rulesThe PRT interface has a menu option to guide the user in choosing a re�nementrule. When the user selects this option, Ergo searches the re�nement rules,matching them against the current context, and displays a list of those thatmatch (see Figure 2 for an example). The matching rules are displayed inthe central pane. Each line shows the name of a rule at the left and, at theright (as the parameter to oterm), the output term of the rule as instantiatedin the current context. Where matching the subject does not fully instantiatethe rule, the result pattern contains metavariables, and, if this rule is selected,the user is prompted to supply values for these. For instance, the assignmentrule is displayed in the form B := C, and if applied, the user is prompted tosupply values for the variable and expression lists (or to explicitly defer theirinstantiation).When the user selects a rule from this list, the lower pane displays a fulldescription of the rule selected in the form:Obligation ) Subject v Result17



Figure 2: Emacs Ergo | Rule Frame
18



with Obligation, Subject and Result instantiated in the current context. InFigure 2, the assignment rule is selected. The mouse is then used to apply thecurrently selected rule, inserting a command in the proof script, and executingit. The search for applicable rules is a heuristic process and the user can opt fora looser or tighter matching as the situation demands. The parameters used bythe searching mechanism can be adjusted by editing the �elds in the templatedisplayed in the top pane. For instance, the user can edit the thys �eld so thatonly certain theories are searched. Rules are chosen by pattern matching: onepattern matches the rule and another matches the output of the rule, whenuni�ed with the current context. These patterns can also be modi�ed by theuser to control the search.ScriptsThe proof script is a simple text �le which is displayed in its own frame. Itincludes all the rule applications and the proofs of their obligations as subproofs.This frame is editable, allowing the user to add comments and correct errors,and the �le is saved when the user exits a proof.Some of the commands in the proof script will have been typed by the userinto this frame, while others record operations performed in other ways. Forinstance, the user may open a window by selecting a sub-term of the focus withthe mouse, in which case the explicit command to open the window is recordedin the proof script at the appropriate place. Where parameters are required fora rule application, the user types these into the proof script frame, so that theyare recorded as part of the script. The fragment of a proof script in Figure 3shows the commands to apply the `introduce assignment' rule and discharge theresulting obligation./* Having modified the pre-condition, do the assignment*/apply(assI)./* Identifiers: */ [w]./* Expressions: */ [(seq([k])) concat w].discharge(hyp:( _ )).[2].subs.use(jprop:sym_eq).close.Figure 3: The Fragment of the Proof Script: w := hki a wThe script is automatically saved and reloaded as part of the proof. It canalso be replayed line by line to recreate the proof. Such scripts allow reuse at a19



basic level, since, being simple text �les, they can be readily copied, combinedand edited.Browsing and printing re�nementsThe proof frame has two panes showing the current state of the proof tree.One shows all the steps performed in the current window, and the other showsall the ancestors of the current window. In these panes, subproof numbers arehighlighted, and clicking on any of these brings up a browser for that subproof ina separate frame. In PRT, Ergo subproofs may represent either the applicationof re�nement rules or the discharge of obligations. For instance, in Figure 1,subproof 13 in the top pane is the transformation of the speci�cation insidethe focus above (labelled 3) to a sequence of three statements. Clicking on the13 will bring up a browser for this transformation. The browser is a read-onlydisplay that has the same set of panes as the prover. By clicking on furthersubproof numbers in the browser, the user can navigate through the entirere�nement.The result of a re�nement in PRT is a theorem of the form:Context ) (Initial Speci�cation v Final Program)On completion, the theorem and its proof are stored and can be viewed sub-sequently using the browser. The theorem can be used in subsequent develop-ments; if it contains metavariables, it is in e�ect a derived schematic rule. Thefull proof or any subproof from it can be saved and printed in ASCII format.HelpThe Ergo reference manual is available as a hypertext document. This documentis generated automatically from special comments in the Ergo code and user-developed tactics.Ergo has a set of commands (the show commands) that list various types ofinformation about the current Ergo environment, for instance, one can displaythe set of operators de�ned in the current theory or the available tactics. TheEmacs interface has a hierarchy of menus that give access to the di�erent showcommands in a convenient way.CustomisationCustomisation of the user interface is available at several levels. The Ergo in-terface is built using X-windows Emacs, and the display can be tailored byusing standard X-windows and Emacs facilities. For instance, the fonts can beadjusted by overriding the X-windows defaults, and the mouse can be used torestructure the pane display. The Ergo Emacs interface has a number of cus-tomisation features; for example, there are buttons to adjust runtime parameterssuch as the level of detail suppression.20



3.4 ExtensibilityApplication theoriesThe Ergo design is based on a hierarchy of theories and it is relatively simple toadd theories speci�c to particular application domains. Typically, theories arebuilt and extended incrementally.For the Gray code re�nement we need a theory of Gray codes. This theoryinherits theories of integer arithmetic (including div and mod) and sequencesfrom the standard Ergo library. The theory also contains the type, de�nitionand properties of the Gray code function and associated de�nitions such as thepredicate \these two binary sequences di�er in one just place". The treatmentof Gray codes in [Mor94] relates it to the parity function, so this must also bede�ned. Theorems about Gray codes can then be proved in this theory, andused as lemmas in the re�nement.New rulesEvery re�nement rule in the system is a theorem of the program window infer-ence theory, proved using the de�nitions of re�nement and weakest precondition.There are two ways to add a new re�nement rule:� Prove the rule from �rst principles, as for the built-in rules. This canbe a di�cult process, since it generally requires abstract reasoning aboutconcepts such as substitution. PRT has little specialized tactic supportfor doing this at present.� Derive the rule by completing a schematic re�nement. It is possible to doa re�nement from an initial speci�cation that contains metavariables, and�nishing with a fragment that also contains metavariables. Such a re�ne-ment will generally introduce assumptions about the allowable bindingsfor those metavariables, which should be included in the initial context forthe re�nement. When the re�nement is complete, the result is a theorem,as described above; this theorem is in the correct form for use by PRT asa re�nement rule.New tacticsThe `apply' command is implemented by a tactic in the program window in-ference theory. It is possible to write new tactics, perhaps encapsulating arecurring sequence of re�nement steps [GNU92]. Since the full power of Prologis available for writing Ergo tactics, they can perform arbitrarily sophisticatedinput and output, branching, looping, etc., as well as invoking re�nement andproof rules. 21



New program constructsIt is possible to add new constructs to the wide-spectrum language. To do this,one must de�ne abstract and concrete syntax for the new constructs and extendthe de�nition of wp to include the new constructs. Also, one will normally wantto provide window opening and closing rules for the new constructs, specifyinghow they interact with program window inference context. Finally, one willnormally prove re�nement rules to introduce (and perhaps remove) the newconstructs.Data re�nementPRT has no support for data re�nement. This could be added by de�ning (interms of weakest preconditions | cf. [Mor94, Section 23.3.10]) a family of datare�nement relations, indexed by new and old variables and coupling invariant,and prove augmentation and diminution laws. A more practical approach maybe to add signatures to predicates, and de�ne data re�nement using encodingand decoding commands [BvW92].4 ComparisonsExisting re�nement tools can be classi�ed in a number of ways. We considersome of these classi�cations, using the following existing tools to illustrate thedi�erences and allow comparisons with PRT.CRSG The tool built by Carrington and Robinson [CR88, CR91] usingthe Synthesizer Generator.Red The re�nement calculus tool [Vic90] from Oxford University.HOL Tools [BvW90, Gru92, vW94] based on the HOL theorem prover.Centipede A tool for manipulating re�nement diagrams [Bac91, BHS92].RRE The re�nement calculus tool [GNU92, Nic93] from VictoriaUniversity of Wellington.Proxac A generic transformation tool with an instantiation [vdS94] forthe re�nement calculus.Cogito A methodology and suite of tools [BKKT94] that includesre�nement from Z.See [CHN+94c] for a more detailed review of some of these tools.Depth of formalisation HOL and Cogito model speci�cations and programsdeeply, using classical logic. Re�nement rules are proved from �rst principles.This leads to highly trustworthy proofs that re�nement developments are cor-rect, and facilitates the use of results from conventional mathematics. On the22



other hand, this deep modelling leads to notation and formalism that is some-times cumbersome to use at the level of re�nement. The other tools treatspeci�cations and programs as uninterpreted terms, manipulated syntactically.Re�nement rules cannot be proved, and developments do not have the formalstatus of mathematical theorems. No distinction between program and logi-cal variables is typically made, so some caution must be exercised when usingstandard results of classical predicate logic and mathematics.PRT uses a purpose-built logic with commands, predicates and programand logical variables as separate syntactic classes. The syntax of speci�cations,programs and logical formulas is close to that traditionally used. Considerablebene�t is gained by a formal treatment of states as possible worlds in a modallogic, because a deep modelling is possible, yet the �rst-order avour of re�ne-ment provisos is retained and standard mathematical results are available. Apossible disadvantage is that the logic is novel, perhaps reducing our con�dencein its soundness.Support for proving obligations All of the tools provide (or intend toprovide) some support for proving re�nement obligations. The tools di�er inthe kind of support they provide for this activity. CRSG and RRE attempt fullyautomatic proof (though each supports manual application of rewriting rules).HOL and Cogito include suitable tactics for assisting with the kinds of proofsthat arise in formal development, but do not attempt to fully automate proofs.Red and Centipede do not incorporate proof support directly, but can be linkedto external proof tools.PRT supports the discharge of proof obligations using the program windowinference logic. Because the applicability conditions of most rules need be provedin only a single state, the modalities can usually be ignored and the obligationsdischarged by appealing to results from classical logic. The close integrationof re�nement and proof logics exploits the similarities between these activities,reducing the number of di�erent process models and interface styles that mustbe understood by the users. Using the same underlying engine for re�nementand proof also increases one's con�dence in the validity of re�nements, since wecan be sure that the semantics underlying the activities are identical.User interface Proxac, RRE and Centipede emphasise usability, and includesophisticated graphical user interfaces. This makes it easier to experiment withthe tools, but di�cult to record derivation steps for o�-line browsing, adaptationand reuse. CRSG's interface is the Synthesizer Generator, so speci�cations,re�nements and proofs are constructed by expanding templates. The other toolshave simple, conceptually powerful command-driven interfaces. These are lesspleasant to use, but support the construction of human- and machine-readablederivation scripts that can be edited textually and fed back into the tool forreuse. 23



The re�nement and proof engine underlying PRT is command-driven, andcan be fed a script. We have two prototype user interfaces that provide sup-port for navigation and browsing of proofs, which generate commands for theunderlying engine.Genericity Proxac attains great genericity by its simplicity. It is easy to adda new (unveri�ed) re�nement or proof rule to the system, and such rules canmanipulate novel program and logical constructs without prior de�nition. RREis partly generic, since new, unproved re�nement and proof rules can be added,but it is not easy to add new program constructs. HOL and Cogito are, intheory at least, equally generic. To add a new re�nement rule, one proves atheorem in the underlying logic. To add a new program construct, one providesa de�nition of the construct, either in terms of existing constructs or usingthe semantic model. To make such additions practical, one would need to alsode�ne suitable high-level tactics for using the new rules and manipulating thenew constructs. Red supports the construction of new, derived re�nement rulesby combining existing rules, but not the introduction of new program constructs,nor the addition of primitive rules. It is not possible to extend CRSG.PRT can be extended by de�ning the weakest precondition semantics ofnew program constructs, and de�ning how program window inference contextis a�ected by these constructs. New re�nement rules can be postulated, andthey can be proved with the de�nition of re�nement and the weakest precon-dition semantics of the program constructs used. Application theories can bede�ned, building upon an extensive library that includes �rst-order predicatelogic, arithmetic and ZFC set theory.Support for managing context RRE maintains a structure that encapsu-lates the context of a program fragment (including, but not limited to, the typesof all program variables), and makes this context available in a specialised waywhen discharging proof obligations. In HOL and Cogito, the context is a formalpart of the de�nition of constructs. The other tools do not represent context atall.PRT uses program window inference, which has a powerful notation for rep-resenting di�erent kinds of context, including implicit preconditions, types andinvariants, and distinctness and aliasing properties of variables. Window rulesupdate contextual information automatically as the focus of attention moves ina derivation.5 EvaluationWe have completed several small case studies, including GCD [CHN+94c], asymbol table [Hay93] and the Gray code [Mor94]. These case studies have24



demonstrated the usability of the tool, but also its limits. In fact, it is imprac-tical with the current version of PRT to attempt examples larger than thoseused in our evaluation of existing tools [CHN+94c]. This is largely because ofnon-linear asymptotic behaviour in the version of Ergo used | the cost of aprimitive inference step depends on the number and complexity of the stepsthat have preceded it. The latest version of Ergo corrects this fault, and thisis expected to give at least an order of magnitude improvement in the size ofre�nements that can be handled with PRT.To give an idea of the amount of information in a typical small re�nement,we present some statistics from the Gray code re�nement, which is given in fullin [CHN+95]. This does not include statistics relating to the proofs of severallemmas that were used in the development of the Gray code theory.Number of re�nement steps 9Number of re�nement provisos 21Number of `lval' provisos1 14Total number of inference steps2 443Number of automatic inference steps 377Number of inference steps associated with `lval' provisos 328Number of re�nement and proof commands in script 61Notes:1. The `lval' provisos are the ones normally considered syntactic, such as `xis a fresh identi�er'. PRT discharges all `lval' provisos fully automatically.2. A window inference step is an application of a transformation rule or awindow opening rule. Each primitive step has roughly the same complex-ity, so should take roughly the same amount of time.We pay a signi�cant run-time penalty for using a logic that models syntacticobligations explicitly (though the automation means that these conditions donot burden the user). In a tool that did not do this, the 14 automatically-discharged `lval' provisos and the 328 associated inference steps would disappear(or be replaced by very simple side-conditions). Because we can model theseconditions in the logic, we can be more con�dent that the conditions of provedre�nement rules are correct and su�cient. Inadequate syntactic conditions area common source of error in postulated re�nement rules.The simple automation currently used is bene�cial, but more is needed.At present there is very little automation for obligations involving propositionallogic, arithmetic, etc. Apart from the `lval' manipulation, most of the automaticinference steps are associated with type conditions, for which Ergo does havereasonable automation.Abstraction and reuse are vital to managing complexity. PRT provides sev-eral facilities for structuring re�nements, and signi�cant bene�ts accrue from:25



� Exploiting structure in application theories, so that components can beshared among developers.� Proving theorems in application theories, to reduce the size of proofs ofprovisos within re�nements and avoid repetition of inference patterns.� Writing tactics that automate recurring proof patterns.� Proving derived re�nement rules.� Writing re�nement tactics.Ultimately, good large-scale performance will be achieved only by partitioningproblems: by using procedures, proving re�nement lemmas, and incorporat-ing a module system. PRT is a reasonable foundation for investigating thesepossibilities.
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