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A tool for developing correct programs by
refinement

D. Carrington, I. Hayes, R. Nickson, G. Watson and J. Welsh
Software Verification Research Centre
Department of Computer Science
The University of Queensland

Abstract

The refinement calculus for the development of programs from specifi-
cations is well suited to mechanised support. We review the requirements
for tool support of refinement as gleaned from our experience with a num-
ber of existing refinement tools, and report on the design and implemen-
tation of a new tool to support refinement based on these requirements.

The main features of the new tool are close integration of refinement
and proof in a single tool (the same mechanism is used for both), good
management of the refinement context, an extensible theory base that
allows the tool to be adapted to new application domains, and a flexible
user interface.

1 Introduction

The refinement calculus of Back [Bac88], Morgan [MV94, Mor94] and Morris
[Mor87] neatly formalises the stepwise refinement ideas of Wirth [Wir71] using
the weakest precondition formalism of Dijkstra [Dij76]. Using a wide-spectrum
language, that incorporates both specification and executable code constructs,
and a set of refinement rules, the calculus enables an abstract specification to
be transformed into an executable program whose correctness depends on the
correctness of each refinement step.

Developing software using the refinement calculus requires a large number of
small steps; it is tedious and error-prone to do this by hand for other than small
examples. To achieve larger-scale development with the refinement calculus,
it seems natural to consider computer-based tool support, and a number of
tools have been developed for this purpose. One of the earliest was built by
Carrington and Robinson [CR91, CR88] with the Synthesizer Generator which
uses attribute grammars to create language-based editors. This tool was limited
to integer expressions and simple and array variables. Refinement rules were



built-in as editing transformations. The Red tool [Vic90] was developed at
Oxford. Proof obligations could not be discharged within the tool but they could
be piped to an independent theorem prover. Red had support for developing
derived refinement rules from the base set.

Back has been associated with several refinement tools. The Centipede en-
vironment [BHS92] used a graphical display for refinement diagrams [Bac91]
that represent the structure of a refinement. Another tool developed with von
Wright [BvW90] was implemented using HOL [Gor88]. Tt was subsequently
extended [vW94] to use the window inference paradigm. Grundy [Gru92] also
used HOL and window inference for developing a refinement tool, which treated
programs as predicates with extensions to model undefinedness and nontermi-
nation. Nickson [Nic93, GNU92] developed a refinement editor with a graphical
user interface and its own proof system based on rewrite rules. It contained
support for refinement tactics as a mechanism for creating more powerful rules.
The Proxac editor [vdS94] developed by van de Snepscheut is built on top of a
general term rewriting engine. See [CHNT94c] for a more detailed analysis of
the features of some of these tools.

In this paper, we examine the requirements for a refinement tool and describe
a tool known as the Program Refinement Tool (PRT) that we have developed
to meet these requirements. The distinctive features of our tool are:

e the use of a theorem prover, both for applying refinement rules and for
proving obligations;

e anew logic and proof paradigm (program window inference) that handles
context in both refinement and proof;

e an extensible theory base, supporting the Z toolkit and allowing adapta-
tion to new application domains;

e a flexible user interface that supports construction and reuse of program
derivations.

Section 2 investigates the requirements of a tool to support the refinement
calculus as a program development method, and discusses design issues. Section
3 describes how the PRT tool meets these requirements, Section 4 compares PRT
with other existing tools, and Section b summarises the results.

2 Requirements

There are several potential roles for tools that support software development
with the refinement calculus.



Selecting rules Each refinement step involves selecting a component of the
current development and an instance of a refinement rule to apply to that com-
ponent. Choosing rules is not deterministic but the tool might identify those
rules that match components of the current development and let the user make
the final selection.

Applying rules Once the rule is selected, the application is usually straight-
forward symbolic manipulation but with opportunities for formula simplifica-
tion. This calculation step is also a candidate for tool support.

Discharging proof obligations Many refinement rules have an applicability
condition or proviso associated with them to ensure that they are applied in an
appropriate context. For confidence in the refinement results, it is important
that whenever a rule is applied, its proviso is shown to hold. These proof obli-
gations are lemmas in the first-order predicate calculus and normally cannot be
discharged completely automatically; however many of them involve relatively
shallow proofs. The support of a sophisticated proof tool is necessary for this
task.

Recording the development steps Because of the large number of steps
assoclated with non-trivial refinements, a computer-based tool can assist by
recording and managing the relationships between the stages in the develop-
ment of the program being refined, and rule applications and provisos at each
stage. This management should allow for extending and modifying parts of
the development while protecting its integrity. By capturing the development
history, which includes all the design decisions, we provide traceability from
the specification to the implementation. The structural information stored in
this way can be used for the extraction of code and for navigation through the
development. It also supports the reuse and adaptation of derivations to suit
changed specifications.

Tools to support each of these activities would be useful, but considerable
synergy is achieved by having a single tool that integrates the multiple roles.
Our objective is to create such a tool for the refinement calculus.

We partition our discussion of requirements for a refinement tool into five
sections: representation of information, customisation, refinement transforma-
tions, proof support and user interface. These requirements are not independent
but the partitioning allows some ‘separation of concerns’.



2.1 Representation of information

A tool supporting refinement must represent many different forms of informa-
tion:

e specification and code fragments,
e refinement rules,

e applicability conditions,

e proofs, and

e the relationships between the instances of these elements that are created
as a refinement is performed.

Specification and code fragments

The wide-spectrum language approach of the refinement calculus means that
specification and code fragments are expressed in a unified notation. At a
minimum, this notation incorporates predicate logic (for the pre- and post-
condition of the specification statement) and Boolean expressions (for the guards
of the if and do commands). We need a way to define that logic, and a way to
extend it to include the data types used in specifications and programs.

Refinement rules

Fach refinement rule is a schema (or template) representing a set of instances.
Each instance is a theorem in the refinement calculus, defined by:

e a subject program fragment that the rule instance can be applied to,
e the corresponding result fragment, and

e the applicability condition, which may involve syntactic and semantic con-
straints on the subject and result fragments.

The sets of instances are described by patterns. The subject pattern for a rule
may contain metavariables that can be instantiated when the rule is applied.
For example, a rule for weakening a precondition is:

Pre = Pre’

w: [ Pre , Post] C w: [ Pre’ , Post]

The result pattern contains a metavariable (Post) that occurs in the subject
pattern, and also an independent metavariable (Pre’). Independent metavari-
ables can be considered as parameters to the rule, since their instantiation is not



determined by matching the subject pattern with the actual subject fragment,
but affects the result.

To apply a rule to a particular program fragment, the metavariables in the
subject pattern are instantiated to match the fragment and the fragment is
transformed to the result pattern instantiated with the values for the metavari-
ables. Independent metavariables can either be instantiated when the rule is
applied or their instantiation can be deferred. There are benefits from allowing
uninstantiated metavariables in the program during the development [NG94]:

¢ it allows the instantiation of metavariables to be deferred until later in the
development when the choices for the metavariables are clearer; and

e it allows derived rules to be developed and proved.

A derived rule is a composition of other rules, possibly with a simplified appli-
cability condition. Derived rules provide a mechanism for extending the set of
rules in the refinement calculus.

Applicability conditions

Applicability conditions are components of refinement rules. Many of them
can be expressed using the same logic as used in the wide-spectrum language,
but other constraints are syntactic in nature, such as ‘the identifiers on the
left-hand side of a multiple assignment command are distinct’. Applicability
conditions in rule schemas can contain metavariables that appear in subject
and result patterns. Applying a refinement rule generates an instance of the
corresponding applicability condition. This formula needs to be shown to hold
in the context of the rule application.

Proofs

If the tool is to manage the proof obligations arising from applying refinement
rules, some representation of proofs is required. The particular representation
will depend on the mechanism used to discharge these obligations but it is
desirable that the representation facilitates the checking and incremental mod-
ification of proofs if the refinement is changed.

Relationships

Applying the refinement approach to program development generates a collec-
tion of programs related by a refinement relation. If we are to achieve the goal of
capturing an idealised record of the development process, we need to represent
the refinement relationships between program fragments.

The refinement process can be captured as a refinement tree where the initial
specification 1s the root node. Each node is a program fragment and each edge
represents a refinement rule application. Associated with each rule application



are the values of any instantiated parameters, the consequent proof obligation
and its proof. When the refinement is complete, the implementation code can
be collected by traversing the tree with interior nodes contributing the program
structure and the leaf nodes contributing the individual commands. This rep-
resentation does not record the actual order of rule applications but does allow
an 1dealised sequence to be generated.

Contextual information must also be managed by a refinement tool. Con-
textual information is environmental data that is not necessarily represented
explicitly in the current program fragment but which is required for refinement.
Examples of contextual information are types of variables, procedure decla-
rations, invariants, and local definitions. Contextual information is typically
required for discharging proof obligations.

2.2 Customisation

It 1s important that users can define new notation within the refinement tool
to suit particular applications. This new notation may include additional mathe-
matical formalismsin specifications, and notation to customise the wide-spectrum
language to correspond to a target programming language. To define new no-
tation requires the ability to extend the syntax of the wide spectrum language
and the syntax and semantics of the logic of applicability conditions.

It is also desirable that new refinement rules can be defined. This raises
the issue of the correctness of refinement rules within the tool. Rules could be
justified externally to the tool, but a more desirable option 1s to allow rules to
be proved within the tool. The latter option requires the ability to define the
semantics of the wide spectrum language and the refinement relation. It also
increases the requirements for proof support.

2.3 Refinement transformations

For a refinement tool to be effective at applying rules, several requirements
must be satisfied. Mechanisms are required for structuring collections of rules
to make them easy to use. It is desirable to be able to identify those rules
whose subject pattern matches a given fragment. For schematic developments,
pattern matching generalises to unification because of metavariables in both the
fragment and the subject pattern.

From a set of potentially applicable rules, selection of a rule and (perhaps)
instantiation of its parameters is required. When this is done, the rule can be
applied and the resulting program fragment calculated.

Refinement tactics are an alternative to the concept of derived rules. They
are more flexible combinations of existing refinement rules where the combina-
tion is computed dynamically when the tactic is applied, based on the current
context. Tactics require a language for expressing how rules may be combined
and how the context can influence the outcome.



2.4 Proof support

To discharge proof obligations arising from refinement, one needs a theorem
prover. The prover should be integrated into the refinement tool so that obli-
gations can be discharged as they arise. The prover and the refinement tool
should present a common interface to the user for both activities, so that the
user only need develop a single conceptual model of the interaction.

The prover should be able to handle any applicability condition generated
by applying a refinement rule, and it is essential that the underlying logic can
be customised to suit particular application domains. As a minimum, we need
to be able to extend the logic to define the function and predicate symbols of
our application theory.

It is also desirable that the proof support is capable of justifying new re-
finement rules (Section 2.2). This requires the ability to reason schematically
about commands and the refinement relation. If our theorem proving logic
can model commands, it can also express many applicability conditions that
are normally considered syntactic. For example, to model the semantics of as-
signment commands, program identifiers need to be objects in the domain of
discourse, distinct from the values those variables take on in different compu-
tational states. With such a logic, it is easy to express applicability conditions
like ‘all identifiers on the left-hand side are distinct’ for a rule that introduces a
multiple assignment command. If we can express all such syntactic applicability
conditions, we need not develop additional mechanisms for handling them.

Proof style

There are many styles of proof: resolution, as used in Otter [McC90]; natural
deduction as used in Mural [JJLM91] and in LCF [GMW79] and its descen-
dants; proof theories tailored to various constructive logics as used in NuPRL
[CABT86] and induction-based strategies such as those used in the Boyer-Moore
prover [BM79] and Gypsy [Goo84]. A particularly effective proof style is term
rewriting [HKLR92]. With this approach, a sequence of formal objects is con-
structed, starting with the formula to be proved, in which each object 1s related
to the preceding one by some validity-preserving relation (typically, but not es-
sentially, equivalence). If the final element of the sequence is a formula known
to be valid, the original formula is valid. Usually, successive elements of the
sequence are calculated by applying conditional rewriting rules to the previous
element. Generally, the rewriting relation and term structure of the object logic
allow replacement of subterms (i.e., the constructs of the object language are
monotonic with respect to the relation). This style of proof forms the basis of
the provers Affirm [EM80] and Eves [KPSt93], and is a major proof style in
Isabelle [Pau86]. Term rewriting is also a foundation of the window inference
proof technique used in the Ergo theorem prover [UW94].

Probably the greatest benefit of using a prover based on term rewriting is the



similarity of the proof process to the refinement process. Both involve selecting
a component to transform, choosing and instantiating a transformation rule,
discharging its applicability condition and replacing the fragment by the result
of the transformation. Both activities depend on the same properties of the
relations and objects concerned: reflexivity (so that ‘no change’ is always an
option); transitivity (so transformations can be composed); and monotonicity
of constructors (so subterms can be replaced). Using a proof style that is similar
to refinement reduces the cognitive load on the user when switching between
refinement and proof steps.

2.5 User interface

The user interface of any tool provides mechanisms for accessing the tool’s func-
tionality. Different user interfaces are possible for a fixed set of tool functions,
so 1t 1s valuable to consider the required capabilities of the user interface in
addition to the tool’s functionality. Ideally, the user interface should be easy to
use, so that its mechanisms do not hinder, or interfere with, the user’s tasks.

The user needs to be able to create and modify program fragments based on
the wide spectrum language, preferably in a form with which they are familiar.
(The special symbols commonly used with the refinement calculus can cause
some difficulties.) To apply a refinement rule, the user must identify a fragment
to be refined within the current development, select a rule to be applied and
instantiate any parameters of that rule. It is also convenient to have browsing
facilities for the collection of refinement rules.

During the development process, the user needs to be able to view the current
state of the refinement and to navigate over the complete development record.
Because there is a lot of information generated during refinement, the user
interface must be capable of hiding detail not currently relevant.

As well as being able to navigate over the development record, it is desirable
that the user can modify parts of the refinement record and observe the conse-
quences (a form of ‘what if” analysis). Examples are changing the initial frame
of the specification or the parameter values of a rule application.

Discharging proof obligations also has user interface implications. If we
assume that this cannot be done fully automatically, mechanisms for controlling
and viewing the proof activity are required.

Customisation is a major requirement of a refinement tool. The user inter-
face must provide the mechanisms for performing these customisations.

Two user interface styles can be compared for a refinement tool. The first
style is based on a ‘symbolic calculator’ model which concentrates on rule appli-
cation. If the tool also manages the relationships between successive refinement
steps, the user is likely to be aware of the underlying representation, typically
a refinement tree.

The second style is an ‘active document’ model [CHNT96] where the empha-
sis 18 on manipulating a refinement record that approximates the textbook style



for presenting refinements. This style is a WYSIWYG approach with hypertext
links possibly providing information hiding, for example, linking each proof to
the corresponding proof obligation.

2.6 The Design Goals

We now discuss the design of a refinement tool, PRT, based on the above re-
quirements. Within this framework, a set of more specific goals was adopted as
the basis of the design. These are a balance between the practical limitations
of producing a working tool and the desire to extend the functionality beyond
that of existing tools. The goals are also a compromise between an emphasis on
the logical basis of the tool and its theoretical foundations, and more practical
issues such as usability. The design goals adopted for PRT are to develop an
integrated tool that:

e provides support for the process of selecting refinement rules;
e automates the process of applying rules as far as possible;

e enables the user to prove obligations, by providing a seamless integration
of the theorem prover into the tool; and

e provides a customisable user interface specifically engineered for the dis-
play of refinement and proof structures.

Genericity is desirable at all levels of the design. The requirement for cus-
tomisation is discussed in Section 2.2 and includes the ability to extend the
syntax, refinement rules and underlying logic. Possible applications of generic-
ity are in the extension of the refinement theory to include data refinement, a
probabilistic extension to the refinement calculus [MMSS95], or to encompass
Back’s Action Systems [BS91].

3 The Resulting Tool

3.1 Architecture

From the requirements discussed in Section 2, we developed an abstract archi-
tecture comprising:

¢ A Refinement engine. This applies the refinement transformation rules.
It also generates the obligations incurred when rules are applied.

e Proof support. A partially automated assistant to discharge the proof
obligations.



¢ A Relationship Manager. This handles the structural relationships
between components of the refinement: between specifications and their
refinements, between obligations and their proofs, and perhaps between
alternative refinements.

e A User Interface. This presents the user with a unified interface to the
other components.

This architecture is realised by implementing PRT as an application of a
theorem prover, in which the roles of the refinement engine, proof support tool
and relationship manager are combined.

The integrity of a program refinement depends on the validity of the appli-
cations of the refinement rules. This in turn depends on the correctness of the
rules,; their correct application, and the validity of the associated proof obliga-
tions. The application of rules is the function of the refinement engine. The
justification of rules and discharging of obligations are functions of the theorem
prover. Substantial benefits accrue if these two components are combined and
operate in a similar fashion. The advantages of this arrangement are discussed
further in [CHNT94b, CHN*94a, CHNT96]; the technical requirements for the
refinement engine are described in detail in [CHNT94b].

Combining the refinement engine and prover immediately achieves the re-
quirement of presenting the user with a unified user interface and a single con-
ceptual model for both activities. Also the refinement and its associated proofs
are held in a common data structure or set of related structures. This simplifies
the presentation and navigation of the refinement for the user. It also means
that relevant information is shared between obligations and the refinement steps
that give rise to them. This is significant for a refinement tool since each obliga-
tion is presented in the context of the current state of the refinement, and having
this context readily available in the proof of the obligations is an advantage.

Formal refinement 1s typically done when the correctness of the refinement
of resulting program from its specification is important. Combining the refine-
ment engine and prover means that the tool is dependent on a single formal
system, so the effort of establishing the soundness of the tool is reduced. This
unification also simplifies the task of managing the structural relationships since
the complete refinement is a single theorem and its components are subproofs
of this theorem. Thus, the prover acts as the relationship manager as well.

3.2 The theorem prover and refinement engine
Window inference

In Section 2.4, we discussed the advantages of using a theorem prover based
on term rewriting in a refinement tool. In PRT, we use the window inference
proof paradigm [RS93] which is based on term rewriting. This supports goal-
directed reasoning within a hierarchical proof structure. At any stage, the proof
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can contain a hierarchy of unsolved subproblems, each of which has its own
context. Each node in the hierarchy is called a window, which 1s a data structure
comprising:

e a focus, which 1s the term being transformed;

e some hypotheses, which are assumed true for the transformation of the
focus;

e a relation, indicating what relationship is to be preserved under the trans-
formation; and

e a goal, which indicates the desired outcome of transforming the focus.

Using this paradigm, a problem is solved by successively focusing on compo-
nent subproblems. Each focus opens a new window with hypotheses appropriate
for that subproblem. Within this window, the subproblem can be tackled by
applying transformations and perhaps decomposing it further by opening new
windows. When a subproblem is solved, for instance by reducing the focus
to true for a proof or, in the case of refinement, transforming a specification
statement to code, the window is closed. The final proof is thus represented
by a hierarchy of windows and transformations, that together constitute a valid
transformation from the original problem to the required result.

In a standard theorem prover, the relation being preserved is typically equiv-
alence or implication, however other relations may be appropriate. When using
window inference for refinement transformations, the relationship is that of ‘is
refined by’ [Gru92]. Tt is also possible to replace refinement rules such as ‘weaken
precondition’ by operations that allow one to open a window directly on a pre-
condition and weaken it.

PRT is built as an extension of the Ergo theorem prover [UW94], which
uses the window inference proof paradigm. Ergo has other characteristics that
suit its use in a refinement tool: it i1s designed to be extensible, and it supports
automated proof through a comprehensive tactic language [Whi92]. Tactics can
be invoked automatically at each proof step, which provides a mechanism to
discharge simple obligations without user intervention.

Developing a logic of program window inference

Reasoning about programs requires a consideration of states. For example, the
specification statement

T [:17 =a, = b] refers to two distinct states (initial and final), and the three
occurrences of z refer to different values:

e In the frame, z denotes the variable (l-value) itself: the frame constrains
the variables that can change from initial to final state.
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e In the precondition, z denotes the value taken by the variable in the initial
state. The precondition constrains the set of initial states from which the
command is applicable.

e In the postcondition, # denotes the value taken by the variable in the final
state. The postcondition constrains the set of acceptable final states.

Standard treatments [Bac88, MV94, Mor87] of refinement are based on
higher-order logic. Program variables are an explicit domain, distinct from
the domains of values they can take. States are functions that map program
variables to values; expressions and predicates map states to values and truth
values. Programs are then identified with their meanings as predicate trans-
formers; there is no explicit weakest precondition operator.

An advantage of the refinement calculus is that most developments can be
done using refinement rules whose conditions are apparently first-order, and do
not refer to state at all. Some ‘extralogical’ conditions are syntactic in nature
(for example, ‘z is a fresh variable’), while in other ‘logical’ conditions the
program variables behave just like logical variables (for example, ‘c = 0 =
z < 1). This reduction to first-order concepts is possible because the logical
conditions of rules are generally implicitly universally quantified ‘for all states’.

With the higher-order approaches to modelling refinement, this universal
quantification must be made explicit, the different denotations of identifiers
must be distinguished, and the appearance of states as arguments of expres-
sions and predicates cannot be easily hidden. On the other hand, with these
approaches it is possible to formally prove refinement rules, reasoning explic-
itly about states and their relationships. This is not possible with classical
first-order logic without an explicit modelling of states.

Program window inference [NH95] is based on a modal logic, in which the
possible worlds are states. This modal logic can readily be related to the more
traditional higher-order semantics. Using a modal logic allows us to avoid
higher-order constructs, so that program variables behave like (modal) logical
variables in the applicability conditions of refinement rules. It is still possible
to distinguish occurrences of identifiers, using modal operators that constrain
the sets of states under consideration; it is possible to prove refinement rules
because states are implicit parameters [SRH94] of predicates.

The program window inference theory

Ergo has an extensive theory hierarchy covering classical logic, set theory, arith-
metic and structures such as sequences. To support refinements, a new theory
has been added that implements the modal logic of program window inference.
The program window inference theory includes special support for dealing with
program variables, applying refinement rules and managing the kinds of context
that arise during refinement. It includes:
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A definition of the refinement relation in terms of a primitive weakest
precondition function (wp).

e The refinement rules, which are theorem schemas in this theory.
e Window opening and closing rules that apply to the refinement relation.
e Mechanisms for handling program variables and their substitution.

e Tactic support for applying and instantiating refinement rules, which hides
much of this detail from the user and allows substitution to be done in a
simple manner.

e A proof interface that has been adapted for refinement.

Each refinement step is an application of an instance of a theorem schema
in the underlying theory, with the metavariables instantiated to correspond to
the current context. Within the refinement theory, program variables behave
in special ways, and machinery to handle this is built into the theory. For
further details on how program variables are handled in Ergo, see [CHN*94a].
Such detail 1s usually hidden from the user of PRT, but is necessary for a full
understanding of how the theory works and the soundness of its results. The
result of a development is an Ergo theorem that asserts that the final program
is a refinement of the original specification.

Program variables

Program variables are modelled by an infinite collection of constants. It is
not possible to use logical variables directly, as FErgo has built-in notions of
substitution and quantification that do not concur with the modal logic used.
Substitution of expressions for program variables (needed, for example, in the
applicability condition of the refinement rule for introducing an assignment com-
mand) is represented as a modal function on predicates, and is supported by a
tactic that calculates such substitutions where possible. Similarly, it 1s possible
to bind program variables with universal and existential quantifiers (as in the
definition of weakest precondition for local variable and constant constructs),
and tactics exist that support reasoning with those quantified terms.

Applying refinement rules

In Ergo, an axiom or theorem can be interpreted as a directional inference rule.
The rule is applied by instantiating it to match the situation in which it is
applied. By default, other schematic variables are left uninstantiated. These
metavariables can be instantiated at any stage, later in the derivation. For
refinement, it is more often convenient to completely instantiate rules when
they are applied. To facilitate this, each refinement rule is annotated with
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a list of parameters. These are schematic variables in the rule that normally
require explicit instantiation. The parameters have meta-types, which control
how instantiations are obtained and checked, for example by prompting the
user. It is possible to leave parameters uninstantiated when a rule is applied,
thus retaining the flexibility of refinements using metavariables [NG94].

Ergo axioms and theorems can be interpreted as conditional inference rules.
In this case, it is necessary to discharge the conditions when the rule is used.
When a refinement rule is applied, the conditions of the rule are discharged as
follows:

e Some conditions (in particular, most of the syntactic conditions) are dis-
charged automatically using tactics. Automatic discharging of conditions
is driven by a table that can be extended.

e The remaining obligations are handled in one of three ways.

— The default is that the remaining obligations are recorded as conjec-
tures that must be discharged before the current window is closed.

— Alternatively these obligations may be deferred. They are recorded
as postulates in the theory, which the user can discharge later as
separate proofs.

— The final option is that these obligations must be discharged as they
are generated.

Which option is currently in use can be selected by the user.

Context

Several kinds of context are used for determining the applicability of refinements
and for discharging obligations.

l-value context captures information about the names of variables, procedures,
etc. that are in scope. It is used to discharge obligations such as ‘z is a
fresh variable’ or ‘z and y are distinct program variables’.

invariant context captures information about the values of variables that is
preserved throughout a scope. Invariants [MV90] are used to incorporate
type information, while retaining an untyped refinement logic.

precondition context captures assumptions about initial values of variables
that can be deduced from prior assignments and tests. For example, im-
mediately after the guard z = y in an if command, the precondition
context includes z = y.

These three kinds of context are represented in the Ergo hypothesis list
by terms annotated lval, inv and pre. Window opening and closing rules
automatically manage the hypothesis list, deducing new hypotheses from the
context and manipulating existing hypotheses according to their annotations.
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3.3 The user interface
Interaction style

The detailed design of the user interface concentrated on presenting various
aspects of the refinement, and in representing common operations by simple
actions in the interface. These issues are also central to the design of the in-
terface of the base prover, and an Emacs interface to the Ergo theorem prover
addressing these issues was developed jointly with the Ergo developers [NU95].
The Emacs Ergo interface uses the ‘active document’ style of Section 2.5, with
navigation via the structure of the proof.

An alternative interface using the UQ* editor [WH94] is also under develop-
ment. UQ™ is a generic syntax-directed editor that supports multiple interacting
tools. The UQ* design is based on the ‘active document’ model, with a cen-
tral store that can contain multiple documents and arbitrary relations between
documents and parts of documents. In the UQ" version of PRT, the refinement
development 1s a document that is created jointly by the user, via the editor,
and by Ergo which is an attached tool.

Features of UQ* that make it suitable for PRT include:

e UQ* relations allow structures such as refinement trees to be imposed on
documents.

e The display and navigation of such relational structures is an integral
feature of the UQ* editor interface.

e UQ* supports multiple relational structures. This feature could be used
to implement such features as alternative refinements.

o UQ" supports WYSIWYG output for the display of the symbols of the re-
finement language. This is generic, so that special symbols for application
theories can be added readily.

e UQ" supports multiple tools operating on the central store. So tools such
as INTEX converters, or code collectors can be added.

e A graphical tool for attachment to UQ* is under development, which will
allow the display and navigation of the refinement document at a high
level, e.g. by refinement diagrams [Bac91].

The current version of PRT uses the Ergo Emacs interface.

The display

The Emacs Ergo interface supports two styles of interaction. Initially the user is
presented with the original command-line interface to Ergo in an Emacs buffer.
With this interface, the user can select a theory to work in and start a refinement.
Other tasks such as theory management are also done at this level.
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During a refinement development or a proof, a different style of interaction
is used. In this style the tool displays several Emacs frames and panes in which
information about the current state of the refinement i1s presented. The most
important frames are the proof frame (Figure 1), which has panes that display
the current state of the refinement, and the proof script frame in which the
commands required to perform the refinement are recorded. A number of other
frames are used for different purposes: the Rules frame is used to control the
selection and display of matching rules; Help is displayed in its own frame; if
the proof browser is invoked, this also appears in its own frame; and the original
Ergo command-line interface frame is retained in the background.

[®] Ergo Proof Frame gray:gray_code

[Fuffers File Edit Ergo Help

1: Ival(w : ident) and lwal(.. .) and ... and ... = {[w]:[true, w = .. .] refd
focus([2, 1], empty)

3: [[ war [k : nats] & [k, w]:[true, w = gco(n)] ]]
focus([2], empty)

13: [w., k] := [empty_seq, nl; [k, w]:[... = ..., ... &and ...]; [w] := [... co$

[ | focus{[1, 2], empty)

+*Ergo Subproof-Stack* — (Ergo-Subproof-Stack)--all--—-—--————————————
17: 1wvalin : ident)
18: inv n : nats
19: inv w : binary se
20: 1val{[k. w] : listof{ident))
21: preisp{[w. k] := [empty_seq, n]., true))
22: 1lval{k D : ident => (k 0 ident nfi [..., ..., k., ...In
23: prefigcin) = ... concat w =» gci{n) = ... concat w
mv ... =...andnot ... =>k=¢1land ... = ...
25: inv k @ ints

--%*-Emacs: *Ergo Hypotheses* {Erqo-Hypotheses) --Bot-—-
This i1s svhproof 115
1: [k, w]:[gc(n) = goik) concat w, k =< 1 and gein) = ... concat w]
refsto by rules:dolI, £, [hyp : 22, hyp @ 23, ... ... ]...]

2 do 1 ¢ k then

[[ com [k O] @

[k, w]:[... and ..., ... and ...]
11

od

--%*-Emacs:

+*Ergo Subproof*  — (Ergo-Subproofi--411---—--—————-————————————

Figure 1: Emacs Ergo — Proof Frame

The components of the proof frame can be seen in Figure 1. This, and the
other figures, represent stages in the refinement of a program to generate Gray
codes. This is an iterative version of the example in Morgan [Mor94, pages
132ff.]. The details of the refinement are not given here — it is one of our case
studies and is used as an example in the PRT User Manual [CHN195].

The proof frame has four panes. The top pane is the subproof stack, which
displays all the ancestors of the current subproof. This pane shows the layers
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of the refinement. At the point in the derivation shown in Figure 1 there are
three:

1 The initial specification with context;
3 A focus to the specification, which has been refined to a var block;

13 A focus to the specification inside the block, which has been refined to
a composition of an assignment, a specification statement, and another
assignment.

Note that specification statements are presented in a format similar to that of
Morgan, for example:

[k,w]:[true , w = gc(n)]. In the display, ellipses are used for detail sup-
pression within large terms, and can be expanded by the user if required. The
bottom pane is the subproof pane which shows the steps taken in the current
subproof. In Figure 1, it shows a specification statement being refined to a do
loop, using the rule do1I with several hypotheses discharging the provisos. The
next step in the development is to refine the specification statement inside the
do loop to an assignment. Above the subproof pane is a pane showing the hy-
potheses of the current window, and also a control pane, in which global options
can be set.

The interface is arranged so that point and click and menu selection can
be used for common operations. For instance, the control pane has buttons
labelled Close and Undo which respectively close a window, and undo the last
proof step. Opening a new window on a sub-term of the current focus can also
be performed with the mouse. The user can highlight any subterm of the focus,
and use the mouse to open a window on that subterm.

Finding rules

The PRT interface has a menu option to guide the user in choosing a refinement
rule. When the user selects this option, Ergo searches the refinement rules,
matching them against the current context, and displays a list of those that
match (see Figure 2 for an example).  The matching rules are displayed in
the central pane. Each line shows the name of a rule at the left and, at the
right (as the parameter to oterm), the output term of the rule as instantiated
in the current context. Where matching the subject does not fully instantiate
the rule, the result pattern contains metavariables, and, if this rule is selected,
the user is prompted to supply values for these. For instance, the assignment
rule is displayed in the form B := C, and if applied, the user is prompted to
supply values for the variable and expression lists (or to explicitly defer their
instantiation).

When the user selects a rule from this list, the lower pane displays a full
description of the rule selected in the form:

Obligation = Subject C Result
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[#] Eryo Rules Frame

nffers File Edit Ergo ]
Search Execute Revert Add Constraint ...

[

iterm{[k, w]:[gc{n} = go{k) concat w and k = k 0, gein) = gelk) concat w and 03
reln(’ reft.refsto’ ),

thys ([wptof{reft}]).

matching (Eny)

otermi{do E then [[ con [B] 2 [k, w8
dim{f), condic), oterm(B:[gcin) = gc(k) concat w ang
dirm{f). condic), oterm(if B then [k, w]:[{gcin) = g3
dirm{f), condic), oterm{[k, w]:[gcin) = go(k) concats)
dirm{f). condic), oterm{[k, w]:[B. gcin) = gcik) cond
dim(f), cond{c), oterm([[ war [B : C] @ [B, k, w]:[§
dirm(f). condic), oterm({[[ war [B] & [B. k, w]:[gcin3
dim{f), condic), oterm{[k, w]:[gcin) = go(k) concats
dirm{f), cond{c). oterm(B := C}]
dim(f), cond{c). rm{skip)]
{Ergo-Rules) --23%-————————-—————————— - ———————

--%*-Emacs: *Ergo Rule
postulate rules:assI ===
{prefgcin) = goik) concat w and k = 1 0 =» subs{B, G, gcin) = gcoik) concat
wand 0 =< k and k <« k_0}))
and {lwal{same_lengthi(E, GC}))
and (lwal(subset(B, [k, w]i))
and (lwval{E : listof{ident)))
=>
[k, w]:[gcin) = golk) concat w and k = k 0, goin) = go(k) concat w and 0 =<
kand k ¢ k_0]
refsto
E =0
--**-Emacs: *Ergo Selected-Rule+
Looking for rules ... done

{Fundamental)--411---—--——————————————————]

Figure 2: Emacs Ergo — Rule Frame
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with Obligation, Subject and Result instantiated in the current context. In
Figure 2, the assignment rule is selected. The mouse is then used to apply the
currently selected rule, inserting a command in the proof script, and executing
it.

The search for applicable rules is a heuristic process and the user can opt for
a looser or tighter matching as the situation demands. The parameters used by
the searching mechanism can be adjusted by editing the fields in the template
displayed in the top pane. For instance, the user can edit the thys field so that
only certain theories are searched. Rules are chosen by pattern matching: one
pattern matches the rule and another matches the output of the rule, when
unified with the current context. These patterns can also be modified by the
user to control the search.

Scripts

The proof script 1s a simple text file which is displayed in its own frame. It
includes all the rule applications and the proofs of their obligations as subproofs.
This frame is editable; allowing the user to add comments and correct errors,
and the file is saved when the user exits a proof.

Some of the commands in the proof script will have been typed by the user
into this frame, while others record operations performed in other ways. For
instance, the user may open a window by selecting a sub-term of the focus with
the mouse, in which case the explicit command to open the window 1s recorded
in the proof script at the appropriate place. Where parameters are required for
a rule application, the user types these into the proof script frame, so that they
are recorded as part of the script. The fragment of a proof script in Figure 3
shows the commands to apply the ‘introduce assignment’ rule and discharge the
resulting obligation.

/* Having modified the pre-condition, do the assignment*/
apply(assI).
/* Identifiers: */ [w].
/* Expressions: */ [(seq([k])) concat w].
discharge(hyp: ( _ )).
[2].

subs.

use(jprop:sym_eq) .
close.

Figure 3: The Fragment of the Proof Script: w := (k) " w

The script is automatically saved and reloaded as part of the proof. It can
also be replayed line by line to recreate the proof. Such scripts allow reuse at a
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basic level, since, being simple text files, they can be readily copied, combined
and edited.

Browsing and printing refinements

The proof frame has two panes showing the current state of the proof tree.
One shows all the steps performed in the current window, and the other shows
all the ancestors of the current window. In these panes, subproof numbers are
highlighted, and clicking on any of these brings up a browser for that subproof in
a separate frame. In PRT, Ergo subproofs may represent either the application
of refinement rules or the discharge of obligations. For instance, in Figure 1,
subproof 13 in the top pane is the transformation of the specification inside
the focus above (labelled 3) to a sequence of three statements. Clicking on the
13 will bring up a browser for this transformation. The browser 1s a read-only
display that has the same set of panes as the prover. By clicking on further
subproof numbers in the browser, the user can navigate through the entire
refinement.
The result of a refinement in PRT is a theorem of the form:

Context = (Initial Specification C Final Program)

On completion, the theorem and its proof are stored and can be viewed sub-
sequently using the browser. The theorem can be used in subsequent develop-
ments; if 1t contains metavariables, it is in effect a derived schematic rule. The
full proof or any subproof from it can be saved and printed in ASCII format.

Help

The Ergo reference manual is available as a hypertext document. This document
is generated automatically from special comments in the Ergo code and user-
developed tactics.

Ergo has a set of commands (the show commands) that list various types of
information about the current Ergo environment, for instance, one can display
the set of operators defined in the current theory or the available tactics. The
Emacs interface has a hierarchy of menus that give access to the different show
commands in a convenient way.

Customisation

Customisation of the user interface is available at several levels. The Ergo in-
terface is built using X-windows Emacs, and the display can be tailored by
using standard X-windows and Emacs facilities. For instance, the fonts can be
adjusted by overriding the X-windows defaults, and the mouse can be used to
restructure the pane display. The Ergo Emacs interface has a number of cus-
tomisation features; for example, there are buttons to adjust runtime parameters
such as the level of detail suppression.
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3.4 Extensibility

Application theories

The Ergo design is based on a hierarchy of theories and it is relatively simple to
add theories specific to particular application domains. Typically, theories are
built and extended incrementally.

For the Gray code refinement we need a theory of Gray codes. This theory
inherits theories of integer arithmetic (including div and mod) and sequences
from the standard Ergo library. The theory also contains the type, definition
and properties of the Gray code function and associated definitions such as the
predicate “these two binary sequences differ in one just place”. The treatment
of Gray codes in [Mor94] relates it to the parity function, so this must also be
defined. Theorems about Gray codes can then be proved in this theory, and
used as lemmas in the refinement.

New rules

Every refinement rule in the system is a theorem of the program window infer-
ence theory, proved using the definitions of refinement and weakest precondition.
There are two ways to add a new refinement rule:

e Prove the rule from first principles, as for the built-in rules. This can
be a difficult process, since it generally requires abstract reasoning about
concepts such as substitution. PRT has little specialized tactic support
for doing this at present.

e Derive the rule by completing a schematic refinement. It is possible to do
a refinement from an initial specification that contains metavariables, and
finishing with a fragment that also contains metavariables. Such a refine-
ment will generally introduce assumptions about the allowable bindings
for those metavariables, which should be included in the initial context for
the refinement. When the refinement is complete, the result is a theorem,
as described above; this theorem is in the correct form for use by PRT as
a refinement rule.

New tactics

The ‘apply’ command is implemented by a tactic in the program window in-
ference theory. It is possible to write new tactics, perhaps encapsulating a
recurring sequence of refinement steps [GNU92]. Since the full power of Prolog
is available for writing Ergo tactics, they can perform arbitrarily sophisticated
input and output, branching, looping, etc., as well as invoking refinement and
proof rules.

21



New program constructs

It is possible to add new constructs to the wide-spectrum language. To do this,
one must define abstract and concrete syntax for the new constructs and extend
the definition of wp to include the new constructs. Also, one will normally want
to provide window opening and closing rules for the new constructs, specifying
how they interact with program window inference context. Finally, one will
normally prove refinement rules to introduce (and perhaps remove) the new
constructs.

Data refinement

PRT has no support for data refinement. This could be added by defining (in
terms of weakest preconditions — cf. [Mor94, Section 23.3.10]) a family of data
refinement relations, indexed by new and old variables and coupling invariant,
and prove augmentation and diminution laws. A more practical approach may

be to add signatures to predicates, and define data refinement using encoding
and decoding commands [BvW92].

4 Comparisons
Existing refinement tools can be classified in a number of ways. We consider

some of these classifications, using the following existing tools to illustrate the
differences and allow comparisons with PRT.

CRSG The tool built by Carrington and Robinson [CR88, CR91] using
the Synthesizer Generator.

Red The refinement calculus tool [Vic90] from Oxford University.

HOL Tools [BvW90, Gru92, vW94] based on the HOL theorem prover.

Centipede A tool for manipulating refinement diagrams [Bac91, BHS92].

RRE The refinement calculus tool [GNU92, Nic93] from Victoria
University of Wellington.

Proxac A generic transformation tool with an instantiation [vdS94] for
the refinement calculus.

Cogito A methodology and suite of tools [BKKT94] that includes

refinement from Z.

See [CHN*94c] for a more detailed review of some of these tools.

Depth of formalisation HOL and Cogito model specifications and programs
deeply, using classical logic. Refinement rules are proved from first principles.
This leads to highly trustworthy proofs that refinement developments are cor-
rect, and facilitates the use of results from conventional mathematics. On the
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other hand, this deep modelling leads to notation and formalism that is some-
times cumbersome to use at the level of refinement. The other tools treat
specifications and programs as uninterpreted terms, manipulated syntactically.
Refinement rules cannot be proved, and developments do not have the formal
status of mathematical theorems. No distinction between program and logi-
cal variables is typically made, so some caution must be exercised when using
standard results of classical predicate logic and mathematics.

PRT uses a purpose-built logic with commands, predicates and program
and logical variables as separate syntactic classes. The syntax of specifications,
programs and logical formulas is close to that traditionally used. Considerable
benefit is gained by a formal treatment of states as possible worlds in a modal
logic, because a deep modelling is possible, yet the first-order flavour of refine-
ment provisos is retained and standard mathematical results are available. A
possible disadvantage is that the logic is novel, perhaps reducing our confidence
in its soundness.

Support for proving obligations All of the tools provide (or intend to
provide) some support for proving refinement obligations. The tools differ in
the kind of support they provide for this activity. CRSG and RRE attempt fully
automatic proof (though each supports manual application of rewriting rules).
HOL and Cogito include suitable tactics for assisting with the kinds of proofs
that arise in formal development, but do not attempt to fully automate proofs.
Red and Centipede do not incorporate proof support directly, but can be linked
to external proof tools.

PRT supports the discharge of proof obligations using the program window
inference logic. Because the applicability conditions of most rules need be proved
in only a single state, the modalities can usually be ignored and the obligations
discharged by appealing to results from classical logic. The close integration
of refinement and proof logics exploits the similarities between these activities,
reducing the number of different process models and interface styles that must
be understood by the users. Using the same underlying engine for refinement
and proof also increases one’s confidence in the validity of refinements, since we
can be sure that the semantics underlying the activities are identical.

User interface Proxac, RRE and Centipede emphasise usability, and include
sophisticated graphical user interfaces. This makes it easier to experiment with
the tools, but difficult to record derivation steps for off-line browsing, adaptation
and reuse. CRSG’s interface is the Synthesizer Generator, so specifications,
refinements and proofs are constructed by expanding templates. The other tools
have simple, conceptually powerful command-driven interfaces. These are less
pleasant to use, but support the construction of human- and machine-readable
derivation scripts that can be edited textually and fed back into the tool for
reuse.
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The refinement and proof engine underlying PRT is command-driven, and
can be fed a script. We have two prototype user interfaces that provide sup-
port for navigation and browsing of proofs, which generate commands for the
underlying engine.

Genericity Proxac attains great genericity by its simplicity. It is easy to add
a new (unverified) refinement or proof rule to the system, and such rules can
manipulate novel program and logical constructs without prior definition. RRE
is partly generic, since new, unproved refinement and proof rules can be added,
but it is not easy to add new program constructs. HOL and Cogito are, in
theory at least, equally generic. To add a new refinement rule, one proves a
theorem in the underlying logic. To add a new program construct, one provides
a definition of the construct, either in terms of existing constructs or using
the semantic model. To make such additions practical, one would need to also
define suitable high-level tactics for using the new rules and manipulating the
new constructs. Red supports the construction of new, derived refinement rules
by combining existing rules, but not the introduction of new program constructs,
nor the addition of primitive rules. It is not possible to extend CRSG.

PRT can be extended by defining the weakest precondition semantics of
new program constructs, and defining how program window inference context
is affected by these constructs. New refinement rules can be postulated, and
they can be proved with the definition of refinement and the weakest precon-
dition semantics of the program constructs used. Application theories can be
defined, building upon an extensive library that includes first-order predicate
logic, arithmetic and ZFC set theory.

Support for managing context RRE maintains a structure that encapsu-
lates the context of a program fragment (including, but not limited to, the types
of all program variables), and makes this context available in a specialised way
when discharging proof obligations. In HOL and Cogito, the context is a formal
part of the definition of constructs. The other tools do not represent context at
all.

PRT uses program window inference, which has a powerful notation for rep-
resenting different kinds of context, including implicit preconditions, types and
invariants, and distinctness and aliasing properties of variables. Window rules
update contextual information automatically as the focus of attention moves in
a derivation.

5 Evaluation

We have completed several small case studies, including GCD [CHN194¢], a
symbol table [Hay93] and the Gray code [Mor94]. These case studies have
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demonstrated the usability of the tool, but also its limits. In fact, it is imprac-
tical with the current version of PRT to attempt examples larger than those
used in our evaluation of existing tools [CHNT94¢]. This is largely because of
non-linear asymptotic behaviour in the version of Ergo used — the cost of a
primitive inference step depends on the number and complexity of the steps
that have preceded it. The latest version of Ergo corrects this fault, and this
is expected to give at least an order of magnitude improvement in the size of
refinements that can be handled with PRT.

To give an idea of the amount of information in a typical small refinement,
we present some statistics from the Gray code refinement, which is given in full
in [CHNT95]. This does not include statistics relating to the proofs of several
lemmas that were used in the development of the Gray code theory.

Number of refinement steps 9
Number of refinement provisos 21
Number of ‘Ival’ provisos? 14
Total number of inference steps? 443
Number of automatic inference steps 377
Number of inference steps associated with ‘lval’ provisos 328
Number of refinement and proof commands in script 61

Notes:

1. The ‘lval’ provisos are the ones normally considered syntactic, such as ‘z
is a fresh identifier’. PRT discharges all ‘lval’ provisos fully automatically.

2. A window inference step 1s an application of a transformation rule or a
window opening rule. Each primitive step has roughly the same complex-
ity, so should take roughly the same amount of time.

We pay a significant run-time penalty for using a logic that models syntactic
obligations explicitly (though the automation means that these conditions do
not burden the user). In a tool that did not do this, the 14 automatically-
discharged ‘Ival’ provisos and the 328 associated inference steps would disappear
(or be replaced by very simple side-conditions). Because we can model these
conditions in the logic, we can be more confident that the conditions of proved
refinement rules are correct and sufficient. Inadequate syntactic conditions are
a common source of error in postulated refinement rules.

The simple automation currently used is beneficial, but more is needed.
At present there is very little automation for obligations involving propositional
logic, arithmetic, etc. Apart from the ‘Ival’ manipulation, most of the automatic
inference steps are associated with type conditions, for which Ergo does have
reasonable automation.

Abstraction and reuse are vital to managing complexity. PRT provides sev-
eral facilities for structuring refinements, and significant benefits accrue from:
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e Exploiting structure in application theories, so that components can be
shared among developers.

e Proving theorems in application theories, to reduce the size of proofs of
provisos within refinements and avoid repetition of inference patterns.

e Writing tactics that automate recurring proof patterns.
e Proving derived refinement rules.
e Writing refinement tactics.

Ultimately, good large-scale performance will be achieved only by partitioning
problems: by using procedures, proving refinement lemmas, and incorporat-
ing a module system. PRT is a reasonable foundation for investigating these
possibilities.
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