SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 01-31

A formal model of cognitive processes
for an Air Traffic Control task

Simon Connelly, Peter Lindsay,
Andrew Neal' and Mike Humphreys'

Key Centre for Human Factors and Applied Cognitive Psychology
The University of Queensland

August 2001

Phone: 461 7 3365 1003
Fax: 461 7 3365 1533
http://svrc.it.uq.edu.au

Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript
files are available via http://svrc.it.uq.edu.au

A formal model of cognitive processes
for an Air Traffic Control task

Simon Connelly, Peter Lindsay,
Andrew Neal' and Mike Humphreys!

Key Centre for Human Factors and Applied Cognitive Psychology
The University of Queensland

Abstract

This document describes a formal model of the cognitive processes involved in a sim-
plified Air Traffic Control task. The model has been developed as part of the SafeHCI
project, which is investigating detection and prevention of human error in safety-critical
systems. The model will serve as the basis for development of new techniques for pre-
diction of error sources and classification of error types. This document describes the
cognitive model in detail.

1 Introduction

This document uses notation from computer science to model the cognitive processes underlying
a simplified Air Traffic Control (ATC) task. The cognitive model has been developed as part
of a collaboration between the SVRC and the Key Centre for Human Factors and Applied
Cognitive Psychology, to investigate prediction of human (operator) errors associated with
computer based systems. Experiments conducted on an ATC simulator are being used to
validate the underlying cognitive psychology theories.

The purpose of the cognitive model is to identify the main cognitive processes involved in
using the ATC simulator, and how “control” (roughly, the operator’s attention) moves from
one process to another. The model is hierarchical, in that some processes are broken down
into component subprocesses: in particular, both memory-based and rule-based (concurrent)
processes are considered [4].

The model is reasonably generic but is primarily intended to represent the behaviour of ex-
perienced air-traffic controllers. Thus for example the model is broadly consistent with the
Eurocontrol task analysis of en-route control [3], although of course our simulator and task are
far simpler than in a real ATC system. Subjects in the simulator experiments were trained
along the same lines as given here, so the model can reasonably be taken to represent the
behaviour of novice (trained) users also.

This document is structured as follows: Section 2 describes the ATC simulator and the ATC
task for which the cognitive model was developed, and introduces the main domain terminology.
Section 3 describes the memory mechanisms used in the task, focusing on the nature of task-
related data stored in short and long term memory. Section 4 describes the cognitive processes
and the flow of control between processes.

2 Background and terminology

This section gives details of the simulator, its functionality and use in experiments, and intro-
duces task-related terminology used in the cognitive model. Section 2.6 describes some of the
ways this case study differs from “real” en-route ATC systems

2.1 Overview

In broad terms, the simulator presents a highly simplified en-route ATC system in which aircraft
fly along straight-line segments — called flight paths — between waypoints within a fixed sector of
airspace (see Figure 1). The primary task of the operator is to ensure that the aircraft moving
through the sector remain separated by no less than the defined minimum separation distance
(5000m): failure of this requirement is called separation violation. Within the simulator the
only control that the operator can exert is to change the speed of individual aircraft: see
Section 2.3 for details.

2.2 ATC simulator display

The ATC simulator has a display which depicts a simulated sector of airspace — consisting
of airports, waypoints and flight paths — together with the location and details of aircraft
currently flying within the sector: see Figure 1.} Flight paths are shown as dark lines, aircraft
are represented by circles, airports are shown as squares and waypoints as triangles. Details
of each aircraft (call sign, aircraft type, speed and flight route) are shown on labels attached
to the aircraft symbols. Flight routes are represented as sequences of waypoint/airport codes.
The display is updated at short intervals to give the impression that the aircraft are moving.
Figure 1 also contains a simulation timer in the top right hand corner. This timer is used to
aid in analysis of the operator’s behaviour (such as how long it took the operator to notice a
conflict after it entered the sector); it is also provided to aid the operator in time judgements.

Separation violations are indicated in two ways: the colour of the two aircraft changes to yellow
(see Figure 2) and an audible alarm sounds. This alert continues until the minimum separation
between the two aircraft is restored (either through operator action, or by passing each other).

2.3 User Interface functionality

The operator is responsible for changes to aircraft speeds within the sector, due to the limited
amount of input required, the simulator is fairly simple. This is a benefit, as the operator should
not be overwhelmed with options if they need to perform actions in a hurry. The simulator
User Interface (UI) provides the operator with two main functions:

1. selecting a single aircraft, and

2. changing the speed of the selected aircraft.

An aircraft is selected by clicking the left button when the cursor is positioned over an aircraft.
The selected aircraft is highlighted using a solid dot within the circle that represents the aircraft

IThe scale of the sector shown is 160x120km

Figure 1: A (black and white) screenshot of the ATC simulator.

Figure 2: A partial screenshot showing two aircraft undergoing separation violation

(see Figure 3). Only one aircraft can be selected at a time: when a new aircraft is selected the
previously selected aircraft loses its highlighting.

Changing the speed of the selected aircraft involves three steps:

1. Opening the speed menu by clicking the right button. The aircraft must be selected before
the speed menu can be accessed. The menu appears at the position of the cursor.

MTS
/FEF
210 kméh
@ QuT KIWE
v 310

873

Figure 3: A partial screenshot of the Speed Menu for the selected aircraft.

2. Navigating the speed menu by moving amongst the menu entries. The speed choices in
the menu depend on the type of aircraft selected. A tick (v') within the menu indicates
the aircraft’s current speed (see Figure 3).

3. Selecting a speed by left clicking on the desired menu entry.

The operator may abort this operation by clicking the left button when the cursor is positioned
outside the speed menu.

2.4 Task terminology

A conflict is defined as two aircraft being on courses that, if their speeds are left unchanged,
will lead them to violate the minimum separation standard at some time while they are within
the sector.? Two distinct types of conflict occur within our case study:

e An owvertaking conflict is one in which a faster aircraft approaches a slower aircraft flying
ahead of it along the same flight route. In such a situation separation violation will result
if the faster aircraft catches up to the slower aircraft while on the same flight path.

e A convergence conflict is one in which two aircraft on intersecting flight routes pass within
5000m of each other as they pass or approach the point of intersection.

For the purposes of this case study, a problem is defined to be a pair of aircraft to which the
controller pays attention as possibly being in conflict. The term episode refers to a problem
as it develops over time. An episode is said to be active if the problem is the focus of the
operator’s current attention. A single episode can be activated and deactivated many times as
the controller switches attention between different problems. Only one episode can be active
at a time.

When the operator has studied a given problem they will determine one or more corrective
actions to be taken: namely, the aircraft whose speed they should change, the new speed, and
when or where the change should take place (e.g. “after waypoint X”). Some of the details may
not be determined precisely (e.g. simply “slow down aircraft A”).

2This differs from real air traffic control, where the operator is also concerned with seperation violations
which would occur outside their sector.

A plan may have an associated window of opportunity during which it is safe to take corrective
action. A window of opportunity can be discontinuous: for example, it may be safe to take
action between times t; and ¢, and between t;3 and ¢;, but not between ¢, and ¢3, because of
the presence of other aircraft.

2.5 Scenarios used in the experiments

The air-traffic control simulation is run using scripted scenarios. A scenario script describes
the starting positions, times, speeds, routes, etc of the aircraft involved in the scenario. The
simulator animates (in real-time) the flight of the aircraft according to their scripted details,
and according to any operator instructions from the UI.

Each script typically presents the air-traffic controller with a number of conflicts to be resolved
at different times throughout the scenario and includes both the aircraft involved in those
scripted conflicts and additional aircraft which are not involved in these conflicts.

2.6 Differences from real ATC

For the purposes of developing the methodology, the case study simplifies a number of aspects
of Air Traffic Control. These simplifications include the following:

e Aircraft altitude is ignored. Consequently the sector is two dimensional and not three
dimensional.

e The aircraft fly only on flight paths. The aircraft cannot diverge from flight paths.

e The only Ul functions provided are selecting an aircraft and changing the aircraft speed.
For example, aircraft flight routes cannot be modified and only a limited set of speeds is
available.

e Aircraft respond to instructions instantly: there is no period of acceleration or deceleration
involved when an aircraft changes speed.

e (Collisions are not simulated. Two aircraft passing the same point, at the same time, will
fly right through each other.

e Flight plans would be much more detailed and would contain, for example, estimates of
waypoint passing times.

3 Underlying memory mechanisms

The cognitive model is memory-based, and involves a number of different hypothetical mecha-
nisms, including episodic and short-term memories. These mechanisms are used to ensure that
the model is able to simulate a number of well-known empirical phenomena within the memory
literature (e.g., the use of cues, and the effect of the number of rehearsals, recency of occur-
rence and capacity of memory); they are not however intended as psychological or physiological
hypotheses about the fundamental structure of human memory.

3.1 Episodic memory

The operator’s episodic memory is used for recording the episodes that the operator experiences.
The details stored in memory for a particular problem, at a particular time, are represented by a
cognitive data relation: see Section 3.3 below. The memory for a particular problem is cued by
the information presented on the screen, such as the aircraft type, call sign, location, position
in relation to other aircraft, etc. Depending on the way in which the information in memory is
accessed and used, it is possible to retrieve a number of different types of knowledge from this
memory system. These include so called “semantic knowledge”, which is accessed by abstracting
information from a potentially large number of similar episodes which occurred previously, and
so-called “episodic knowledge”, which involves the retrieval of information specific to individual
episodes. These types of access and decision processes are assumed to be influenced by a range
of factors, including the cues that are used for retrieval, and the frequency and recency with
which specific data relations have been retrieved and stored.

3.2 Short-term memory

The operator’s short-term memory is used to temporarily record information regarding current
problems, including the active problem (if any). We assume that the operator’s short term
memory contains a collection of truncated versions of the data relations that describe the prob-
lem more fully in episodic memory, together with information about the priority of problems.
There is no specific cue for these data relations so recall is determined by recency. Short-term
memory has a very limited capacity.

3.3 Cognitive data relation

The data relation underlying the operator’s episodic memory, for a particular problem at a
particular time, is modelled here as a tuple of the following form:

(aircraft attributes, context, classification, time of violation, priority,
decision, decision stored?, windows of opportunity, behaving as expected?)

Not all of the data relation is necessarily known at one time, nor are all the known parts
necessarily retrieved from memory at any given time. We do not model all the details that
may be stored in memory, but simply those that are key to the choices made by the operator.
The model uses abstract values and abstract predicates (classes of values) for simplicity and
in order to highlight the main aspects of the cognitive processes. There is no implication that
operators use these actual values or think in terms of these predicates; in practice operators’
thoughts are unlikely to be structured as suggested here — the model captures behaviour in a
general rather than specific detail. In what follows, the symbol 7 means the value is not known
or not certain.

The various elements of the data relation are as follows:

atrcraft attributes: The attributes of each of the aircraft involved in the problem including,
for example, call sign, aircraft type, speed, flight route, etc. 3

3Typically exactly two aircraft will be involved in any one problem, but the model allows for more than two
if necessary.

context: The context of the problem. This may be one or more of: the time of day, the position
of the problem in the sector, etc.

classification: The classification of the problem. When known, the value is one of the following:

conflict: The problem is expected to end in a violation of separation if corrective action
is not taken

non-conflict: The aircraft are not expected to violate separation

time of wviolation: The projected time of separation violation. This is represented as the time
delay from the time at which they were classified as being in conflict until the violation
will occur. Time is represented in the model as time since the beginning of the simulation.
This time shown to the operators in a clock in the top right hand corner of the screen.

priority: This is a measure of the problem’s relative priority. For the purposes of our model,
we abstract away from values and simply use the following abstract predicate to indicate
the operator’s belief.

Is Highest: This conflict should have the highest priority. (The negation of this predicate
is used when the problem is not the highest priority problem.)

decision: The corrective action(s) to resolve the problem. Individual corrective actions are
represented below in the format (callsign, newSpeed, position, time) where position and
time refer to the position or time at which the action will be taken. — indicates no action
required (meaning ‘do nothing’ on the given aircraft).

deciston stored?: Whether the operator has determined the corrective actions and deferred
taking taking them until later. The following predicate is used:

decision Stored: The corrective actions have been decided and stored in memory

windows of opportunity: The time periods within which it is safe for the operator to take the
planned corrective action(s). The following abstract predicates are used to indicate the
operator’s belief:

Inside Window: Currently safe to take corrective action
Outside Window: Currently unsafe to take corrective action

Must Act Now: The violation is about to occur and corrective action should be taken
immediately

(Note that Must Act Now is a special case of Inside Window.)

behaving as expected?: Whether the aircraft are behaving as the operator expects. We do
not model the cognitive mechanisms involved, but simply note here that expectations are
based on things like aircraft position, problem classification, and whether the operator
thinks that corrective actions have already been taken. The following predicate is used:

As Expected: The problem is behaving as the operator expects. (The negation of this
predicate is used when the problem is not behaving as expected.)

At any one time the data relation may contain incomplete information: e.g., the operator may
have classified the problem as a conflict but may not have projected forward to estimate the
time of violation. Real air traffic controllers would have much more sector-specific knowledge
from experience, such as hot spots, etc.

3.4 Example data relation

JDA&
/ 360
BE0 kmh

® Ut RO B

/ 7
334 kmdh

€& SASNBOEX

Figure 4: A partial screenshot showing two aircraft in conflict.

As an example consider the problem presented in the partial screenshot in Figure 4. The
following describes a possible data relation for the problem just before the operator takes
corrective action:

(({JDA, 360,660km/h},{DJE,747,334km/h}),

“Approaching Borrow Island en-route to Exmouth airport”, conflict, 5:584-10, Is Highest,
((JDA, 330km/h,?, now), (DJE,860km/h,?, now)),

decisionStored, Inside Window, AsExpected)

The two aircraft involved in the problem are DJE (a Boeing 747 travelling at 334km/h) and
JDA (a Airbus 360 travelling at 660k /h) as they approach the ‘Borrow Island’ waypoint en-
route to ‘Exmouth airport’. The problem has been classified as a conflict because the controller
thinks that they will pass within 5000m of each other as they approach Borrow Island. (In fact,
this is probably not true.) The controller estimates that the conflict will occur at approximately
6:08 (10 seconds after 5:58 on the simulator clock). The controller intends to give this problem
the highest priority, thus ignoring the active separation violation in the lower right-hand corner
of Figure 1. They have decided to slow JDA down to 330km/h and speed DJE up to 860km/h
immediately(“now”). They have taken mental note of the actions planned. They have noted
that it is safe to act now, but there is still time left before it is absolutely necessary. The
aircraft are behaving as expected from when the operator identified the problem and projected
forward.

4 The cognitive processes and flow of control

The control-flow model is given in Figure 5. It identifies the main cognitive processes used by
operators of the ATC simulator, and describes the “flow of control” through these processes:
that is, the possible sequencing of processes, under different conditions.

The model uses the UML statechart notation [1, 5] which is based on Harel’s state chart
notation [2]. A brief description of the notation used in the model is given in Table 1. In

*$0859001d 9ATHTUS0D §,109e10d0 I0YR[NUIIS-0) TV 97} JO [PPOUL MO[-[0IIUO)) :C oINJI]

Control Airspace

n " Ve

|

Perform Actions

ChangeAircraftSpeed

alam z[Scanning

"matched F /Store Actions ®
primitive /OpenSpeedM enu
geometry /RetrieveActions penSp

e

N/ Monitor Problem

Review Actions} " "
~— aoort | .
abort {NawgateSpeedM enu }

[MoNIOWISNIAl 1O MOpPUIA BpsU]

. class. =7 -
Perceive Problem [bedted] 5 [aircraff
o Details g selected] /Sel ectSpeed
[class. = 2or S/ /SelectAircraft
not AsExpected] L ;%’ -
(Classify problem) _9%
e - -
o - — N Decide Action
! Prioritisation
K | Project Q/
Lookup l Forward , p
Memory | Assign Priority p . N
@ @) 5 l
Q o }
(9] 8 I
2 2 :
/CollateExperience S & | Rule
< € Decision | based
N Y i | Decision
. c g | e | %
ompare Priorities Q. |
/Store Episode P) ':781 [not %
o< = contlict - Z - 3 DecisionFound] 3% |
[class. = conflict or 7] A O/@ 3 L y)
[class. = nonconflict] ﬁ % %[Validate Decision /Store Decision
2
"memory cued problem monitoring” -
"defer” [not MustActNow]

Notation Meaning

A solid circle represents the start of a process or branch (choice) point.
A solid circle inside alarger empty circle denotes the termination of a state.

Used to denote atransition from one state to another

This notation is used when there are two possible paths from the one
state, the path to be taken is usually governed by preconditions.
(Notation added to UML for convenience)

BN

Descriptions can be added to transitions to clarify their purpose. An

"Description of transition”) -
event is something that triggers the transition. A guard isacondition

event governing whether atransition can be taken. An actionisan
[Guard] uninteruptable, brief process that takes place when the transition is taken.
/action (In the preconditions the term !=is equivalent to "is not equal to").

A basic state that the system may bein. Inthismodel, basic states are

stat cognitive processes that are not analysed further.

Sat Some states may contain substates, which are shown by drawing them inside
the ‘ superstate’

® '
=0

An example of two processes being run in paralel. The system can bein
the following states: (A,C) (A,D), B (in which case the 2nd process has
been aborted) or E once both A and D are finished.

Ex
Al

o<

m |

T
@

N

T

Table 1: State-chart notation

the statechart model, each state represents an abstract cognitive process (such as monitoring
a conflict), which in some cases is further subdivided into component cognitive tasks. The
terms state and (cognitive) process will be used interchangeably within this section. Brief,
uninterruptable processes will be written as “actions” as in UML notation (see Table 1); these
should not be confused with the domain-specific term “corrective actions” also used below.

For the most part, the predicates from the data relation of Section 3.3 above are used to
constrain flow of control. In some cases however “local” predicates are used, for data which
is computed in the given state but not explicitly stored in memory. The User Interface also
constrains some choices, as explained in Section 2.3 above.

In the remainder of this section each of the cognitive tasks in the control-flow model is briefly
described, together with a brief indication of how the cognitive data relation is built up.

10

4.1 Scanning

The aim of the Scanning process is to identify problems to which the operator will need to
attend. The operator systematically scans the display looking for specific patterns (“primitive
geometries”) that characterise potential conflicts. Such patterns are the basic combinations of
positions, speeds and flight paths which lead to conflicts. For example operators might attend
to a pair of aircraft if:

e The aircraft are travelling at similar speeds and are approximately the same distance
away from a point where their flight paths converge or intersect; or

e The aircraft are travelling at different speeds, and are at different distances from a point
of convergence, and the slower aircraft is closer to the point than the faster aircraft; or

e The aircraft are flying on the same route, and the faster aircraft is behind the slower
aircraft.

It is likely that there will be large differences between operators in their approach to scanning,
which are at least partly attributable to their experience with the sector. Given the differences
between operators, it is likely that a random scanning function will provide a relatively good
good fit to group data. Specifically the model randomly selects pairs of aircraft. If the pair
does not match a known geometry that characterises potential conflicts, then the model will
return to scanning and select another pair. In this manner the model cycles through pairs of
aircraft, until it finds a pair that needs monitoring.

4.2 Monitoring

The MonitorProblem state is used to gather information about the problem being attended to
and to classify whether it is a conflict or not. Monitoring a pair of aircraft has the following
substates:

e Perceive problem details
e Lookup memory

e Project forward

The operator begins by encoding information from the display and checking episodic memory
to see if this problem has been monitored previously (the PerceiveProblemDetails state): if so,
certain parts of the data relation are retrieved from memory, as described below: Information
encoded into the data relation from the display may include aircraft details and the context.
This information is then used as a cue to retrieve any prior records of the current problem and
records of previously seen problems that closely match. The records retrieved from memory (if
any) may contain information about the problem type, relevant aircraft attributes (e.g. callsign,
abridged flight path), context, any windows of opportunity and any corrective actions that the
operator has decided upon (either taken or planned). The information encoded from the display
and the information retrieved from memory is then used to create a new record.

The weighting of information encoded from the display and information retrieved from memory
will vary across situations. Under some circumstances, prior records of the current problem

11

can be retrieved very quickly, with a high degree of confidence. The major factors influencing
the speed and confidence of retrieval are recency and frequency?. If this is the case, then
the operator does not need to encode very much information from the display. For example,
retrieval might occur as soon as the operator encodes the position of the aircraft involved, if
the operator has a high degree of confidence in the retrieved information. In this case, the
new record would contain information that is predominantly derived from the prior records.
If the operator does not have a high degree of confidence in the retrieved information, or if
the information that has been encoded from the display is inconsistent with what they have
retrieved from memory (i.e., the problem is not proceeding as expected), or if the retrieval
does not occur, then the operator will continue to encode information from the display. Each
additional piece of information from the display can act as a retrieval cue as above. °

If the operator has previously classified the pair, and has retrieved the classification from
memory, then s\he will store the updated record in memory. If the classification is unknown
then the operator will classify the pair (via the Classifyproblem state). Two processes are used
to classify the pair LookupMemory and ProjectForward. These processes are assumed to run
in parallel. Classification is terminated when either process returns a result. LookupMemory
involves matching the current episode to all previous episodes that have been retrieved from
memory and draw a classification from the results. At the same time, the operator will also
engage in projection.

Projection is used to estimate the time and/or position of conflict (i.e. when or where the
separation violation is likely to occur), and the windows of opportunity. We assume that
projection is slow and difficult, as it imposes a high level of workload on controllers. When
controllers are novices at the task, they have relatively few prior episodes stored in memory.
Novices, therefore, should tend to rely on ProjectForward to classify problems, as it will return
a result before LookupMemory. With practice however, controllers will have access to a larger
number of episodes in memory, and the speed of retrieval will increase. As a result there is a shift
away from the use of ProjectForward towards the use of LookupMemory with practice. Experts
should only use ProjectForward when they are confronted with problems that do not match
any prior episodes. Once the operator has matched the pair to existing patterns or projected
forward, they will collate the information to make their final decision (CollateExperience).

Once the operator has identified whether the problem is a conflict or not, they are assumed to
store the current record in episodic memory (the StoreEpisode action).

After the episode has been stored in episodic memory, the operator returns to Scanning or
proceeds to Prioritisation. The operator may return to Scanning if the aircraft are not in conflict
or they do not need to be acted upon immediately. The operator proceeds to Prioritisation if
the aircraft are in conflict, or if the operator is still uncertain as to whether or not they are in
conflict.

4.3 Prioritisation

The operator uses priorities to manage the order in which problems are dealt with (the Priori-
tisation state). In this process the active problem is first assigned a priority (the AssignPriority

4Records that have been encoded recently or frequently are likely to be retrieved faster and with greater
confidence

5We assume that there is a monotonically decreasing probability of retrieval occurring as additional infor-
mation is encoded, due to the limited capacity of Short-Term Memory.

12

state) which is associated with the data relation in short-term memory (the StorePriority action).
Short-term memory is checked for priorities associated with any other current problems (the
Compare Priorities state). If a higher priority problem is found, the operator will go directly to
MonitorProblem for the highest priority problem (the “memory-cued problem monitoring” tran-
sition). If the current problem has the highest priority, the operator proceeds to determining
corrective actions. If the problem time is anything other than MustActNow, the operator may
defer deciding on the corrective action until a later time (the “defer” transition); if so, the
operator returns to Scanning.

4.4 Decision

Next, the operator decides what corrective actions to take, if any (the Decision state). If the
operator has previously made a decision (as indicated by the decisionStored predicate in the
data relation) they are not required to make it again. They will merely retrieve the stored
decision (FetchDecision), revalidate it against the current situation, and either defer or take
action.

Two processes are used concurrently to generate corrective actions: one memory-based and
the other rule-based [4]. The Memory-basedDecision process works by retrieving all previous
episodes that closely match the current episode (FetchEpisodes) and selecting the most successful
solution that the operator has previously used. A confidence level is associated with the selected
solution: if it is high, the operator will use the solution to resolve the current problem. The
Eurocontrol task analysis [3] showed that experienced controllers were likely to have developed
a “conflict resolution library”, from which they draw solutions for the problem at hand.

If the operator cannot retrieve any solutions, or the confidence in the retrieved solution is
low, the operator uses the rule-based decision process to deduce the actions to take (the Rule-
basedDecision state). The Decision Found local predicate is used to show whether the operator
has found a solution that they are confident in.

Once a decision has been made, the operator must then check that the actions would not lead
to a conflict with other aircraft (the ValidateDecision state). Performing this validation is very
similar to the ClassifyProblem process; the operator will project forward the action that they
wish to take, and then perform a brief classification of each pair that the action might affect;
if the actions would not lead to conflict then the operator is confident that the selected actions
will solve the given problem and not produce any new conflicts. This process will probably not
be as thorough as the classification process performed on single pairs. Through this validation
it is also possible that the operator will formulate “windows of opportunity” for the chosen
actions. The data relation is updated with the decided actions and stored in memory (the
StoreDecision action). If validation reveals that the corrective actions may be undesirable, the
operator formulates a new plan.

4.5 Perform Actions

Performing corrective actions is a multi-step process represented by the PerformActions state.
First the actions are retrieved from the operator’s memory and the plan is reviewed (the Re-
viewActions state). The plan is reviewed after each attempted corrective action; this may result
in return to the Decision state (via the “revise decision” transition).

It may be necessary to change which aircraft is currently selected (SelectAircraft) in order to

13

carry out the planned action. Once an aircraft is selected the speed menu is operated (the
ChangeAircraftSpeed state). The speed menu can only be opened if an aircraft is selected (a
UI constraint). To change an aircraft’s speed the menu is opened and the cursor is moved
within the menu, and finally a speed is selected (OpenSpeedMenu, NavigateSpeedMenu and
SelectSpeed respectively). If the operator makes an error during the ChangeAircraftSpeed state
(e.g. by selecting the wrong speed) they can abort the process and return to the ReviewAction
state.

When all the corrective actions have be taken, the data relation in memory is updated with a
record of the actions taken, together with the expected outcomes — in terms of how the conflict
will proceed from here on — (StoreActions) and the operator returns to Scanning.

4.6 Other transitions

The alarm transition can occur anywhere within the control flow; it is triggered by the alarm
event. This is shown in the model as returning directly to the MonitorProblem state. This
means that the user, if interrupted by an alarm, may jump straight to monitoring the indicated
problem. This does not mean that the operator must stop what they are doing immediately;
they may continue through the normal flow until they are ready to deal with the alarm.

There is another transition that can occur anywhere in the cognitive flow; when the operator
“forgets what they are doing”. This behaviour is possible during most of the cognitive tasks in
the model, and relates to those error modes in which the input data relation is lost during the
task (“forgotten”), and thus not output to the next task in the cognitive process. When this
occurs, the operator returns to Scanning via the “Interrupted Awareness” transition.

Memory-cued transitions back to Monitor Problem are also possible from processes in addition
to Prioritisation (e.g. from ReviewActions when considering the effect of actions on other pairs)
— but these are not modelled here for simplicity.

5 Acknowledgements

The authors gratefully acknowledge the collaboration of the Key Centre’s Shayne Loft for de-
signing and supervising the experiments that are being used to validate the cognitive model and
to calibrate the error model. The Key Centre developed the simulator used in the experiments.
Finally, the ARC’s support for the research reported here — by way of a Small Grant in 2000
and a Large Grant in 2001-3 — is gratefully acknowledged.

References

[1] M. Fowler. Applying the Standard Object Modeling Language. Addison Wesley, 1997.

[2] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231-274, 1987.

[3] K. Kallus, D. van Damme, and A. Dittmann. Integrated task and job analysis of air
traffic controllers — phase 2: task analysis of en-route controllers. Technical Report

14

HUM.ET1.ST01.1000-REP-04, European Organisation for the Safety of Air Navigation
(Eurocontrol), October 1999.

[4] G. Logan. Toward an instance theory of automization. Psychological Review, 95:492-527,
1988.

[5] B. Oestereich. Developing Software with UML. Addison Wesley, 1999.

15

