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Abstract. The relationship between the genotype and phenotype of or-
ganisms plays a key role in the evolutionary process. While Evolutionary
Computation (EC) models have traditionally taken biological inspiration
in the design of many key model components (e.g., genetic mutation and
crossover, populations under natural selection, etc.), there is a need for
more biological input in specifying how a genotype forms a phenotype.
There are two powerful theoretical abstractions used in biology for ex-
plaining the evolutionary basis of phenotypic development. The first is
that there is a sequence of hereditary information (the genotype) passed
from one generation to the next. The second is that genes extracted
from this sequence interact to form networks of regulation that, when
coupled with environmental factors, control the development of an or-
ganism (the phenotype). An abstract model of gene regulation exists in
the form of the Artificial Genome. This model provides a principled ap-
proach to extracting regulatory networks of genes from sequence-level
information. L-systems provide a mature framework for modelling devel-
opmental phenotypes interacting within environments. This paper takes
a step towards integrating these two models, providing a biologically-
inspired modelling framework that bridges the chasm between processes
occurring in evolutionary timescales, and those occurring within individ-
ual lifetimes.

1 Introduction

“Currently many evolutionary studies are carried out at the molecular
and genetic level and also at the population and community level. For
making real progress in understanding evolutionary change it is a requi-
site to integrate these different levels. The current challenge is to link the
genetic and functional/selective scenarios. This requires studies that link
morphogenetic changes with, on the one hand, genetic changes and on
the other hand changes of the form-function relationship of forms and
structures.” Frietson Galis ([1], page 238).
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Artificial life simulations can be used to integrate models of processes that
occur in distinct timescales, allowing greater understanding of the interaction be-
tween these processes. Evolutionary simulations require appropriate models at
two disparate timescales; that of evolution (occurring over many generations),
and that of individual development and interactions (occurring within a lifetime).
Artificial life simulations of evolutionary processes involve models of arbitrarily
complex organisms, specified by a genotype and its corresponding phenotype.
Selective pressures are applied to the phenotype, which is the resulting artifi-
cial organism obtained through an interpretation of the genotype, often as a
collection of features directly specified by “genes”.

Models are necessarily abstractions of the biological phenomena they seek to
emulate. One of the most fundamental abstractions in evolutionary models is the
mapping from the genotype to phenotype. Although evolutionary operators that
work at the genotypic level (such as mutation and crossover) have been largely
inspired by known biological processes, the relationship between genotype and
phenotype has been, by and large, entirely arbitrary, since the details of the
relationship are not yet fully understood in biology.

In real organisms, there is more to specifying a phenotype than genetic in-
formation [2]. The genome interacts with the environment to control a devel-
opmental process, and selection acts on the whole phenotype throughout its
development. Lindenmayer systems, or L-systems (described in Section 2) are
a mature and biologically-inspired framework for modelling such developmental
phenotypes. L-systems are parallel rewrite grammars that can be used to model
organisms with environmental pressures acting on all aspects of the phenotype’s
development. Increasingly realistic entities can be simulated, including abstract
physiologies [3], such as roots, shoots and signalling systems.

In order to evolve L-system models, previous work has used the L-system
grammar itself as the genetic encoding, with the rendered plant the phenotype
[4]. With this genetic encoding, the crossover and mutation operators were mod-
ified so that child grammars were valid L-systems (in particular, the number of
opening brackets needed to be balanced against the number of closing brackets).
Using the basic L-system string as genetic information meant that the standard
crossover operator could swap unrelated parental information (e.g., a segment
encoding leaf growth could be exchanged with a segment encoding root forma-
tion); poor offspring could often result from the combination of two fit parents.
Typed, hierarchical data structures [5] and the use of timed, parametric deter-
ministic, and non-deterministic stochastic L-systems [6] are examples of methods
that successfully address this issue, by allowing sequence operators to alter por-
tions of the L-system in a more controlled manner.

While such mappings between genotype and phenotype allow the evolution of
artificial organisms for given selective pressures, they are limiting when studying
the effects of sequence operators (such as crossover, mutation, etc.) within a
biological context. For example, it may be the case that some biological gene
duplications result in one functional gene, and one equivalent but unnecessary
gene that is free from selective pressure (thus facilitating a random walk of



the phenotypic fitness landscape). Grammar-based genetic encodings cannot be
easily used to model the effects of such a process, since every item in the genome
encodes for a phenotypic trait. For the same reason, neutral mutations (where a
change to the genotype causes no change in the phenotype) are problematic to
model.

Biology provides two key abstract theories for use in understanding ge-
netic systems. The first is that a sequence of information (DNA) is the manner
by which hereditary information is passed between generations. The second is
that regulatory interactions between genes extracted from this sequence control
the growth of an organism. A biologically-inspired genetic model, the Artificial
Genome, has been recently developed [7] (described in Section 3). While still
a very simple model which abstracts away much of the complexity, it encapsu-
lates the notion of regulatory networks of genes being extracted from sequence
information.

In order to understand evolutionary processes that interact across distinct
timescales, methods of integrating biologically-inspired models of genotypes and
phenotypes must be considered. The aim of this study is to explore mappings
between L-system phenotype models and the Artificial Genome, providing L-
systems with a biologically-plausible genetic foundation and giving the Artifi-
cial Genome a functional role that can be placed under selective pressure. By
using regulatory interactions between networks of genes extracted via the Ar-
tificial Genome model to control the development of an L-system phenotype,
we present preliminary findings of the effect sequence-level mutations have on
simple phenotypic development.

2 A Developmental Phenotype: L-Systems

L-systems are parallel rewrite grammars capable of specifying and visualizing the
morphogenesis of organisms; primarily plants [8–10]. L-systems are comprised of
a finite alphabet of values, an axiom (starting condition), production rules for
the replacement of string components, and a derivation process which includes
the parallel rewriting of strings. For example, a simple L-system might be based
on the alphabet a,b. The rule a → ab means that at each derivation step, every
a is to be replaced with ab, while the rule b → a means that every b should be
replaced by an a at each step. If the axiom of this L-system is b, the following
transformations would occur in five derivation steps (example from [8], page 3):



b

↓

a

↓

ab

↓

aba

↓

abaab

↓

abaababa

This parallel development of grammars can be used to visualize the growth
of more complex objects such as plants by using “turtle graphic” commands,
where a line is drawn to follow the path travelled by the turtle (so named for
historical reasons). Simple commands such as ‘move forward’ (F), ‘turn left’
(+), etc., are used to direct the turtle’s path. The symbols [ and ] are included
to allow branching structures. [ pushes the state of the drawing turtle onto a
stack, while ] pops the most recently stacked state and makes it the current
state (the reader is again referred to [8] (page 24), for background on bracketed
L-systems). More complex language constructs, such as parameter definitions
and conditional rewriting, have been built on top of this foundation by tools
such as CPFG [11].

The CPFG model of simple tree growth shown in Figure 1 illustrates the
development of branching structures using a small number of developmental
rules. A distinct advantage of using L-system tools such as CPFG to model
developing phenotypes is versatility; much more complex and realistic artificial
organisms can be modelled this way, allowing a great variety of phenotypes to
be simulated (see Figure 2).

3 A Biologically-Inspired Genotype: The Artificial

Genome

The biologically plausible genetic system developed by Reil [7] extracts a Boolean
regulatory network of interacting genes from a genotypic sequence string of four
bases (implemented as 0, 1, 2, 3). Genes are found by searching the genetic
string for the promoter sequence ‘0101’; once such a sequence is found, the
following 6 digits are defined to be the gene’s value. Regulation between genes is
specified via a form of upstream regulation. The digits in the region between two
given genes are defined to be the regulatory region for the latter gene. A gene
is ‘expressed’ by incrementing each of its digits by 1, modulo 4 (the number
of bases). The regulatory region of each gene is then searched for matches to
any gene products; each match defines a regulatory link between the gene that
produced the gene product and the gene whose regulatory region contained the
match (see Figure 3).
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Fig. 1. A simple tree-shape resulting from an L-System formalism implemented in
CPFG. Note that transformations can be conditionally applied at each step via the
use of parameters. By starting with the axiom A(0) (apex with no growth delay), a
shoot of length 1 is drawn (F(1)), with three apices placed at its top (one ANGLE
degrees to the left, one at ANGLE degrees to the right, and the third facing the same
direction as the stem). The two apices placed at angles to the stem are given shorter
delays to the centre stem. For STEPS iterations, the delay associated with each apex
is decremented until it reaches 0, at which point a new shoot is drawn and three new
apices are placed at its tip. Also at each step, the length of each shoot is extended
proportionally according to GROWTHRATE until it reaches MAXIMUM length.

For evolutionary models, deriving regulatory networks via this approach
presents advantages over the direct specification of network structure, such as
greater freedom in network mutation and a principled approach to mapping
genetic mutation operators to network-level change [12].

4 Mapping from Genotype to Phenotype

In this preliminary study, three parameters controlling phenotypic development
(ANGLE, GROWTHRATE and SIDEDELAY) were specified by the Artificial
Genome. An initial random sequence string of length 60,000 was used as the base
genotype. On average, this genome length generates 225 genes, with an average
gene connectivity of 12.475.

In a random genetic sequence, all possible gene values can occur with equal
probability. In order to define and control phenotypic properties from the in-



Fig. 2. Three snapshots of the growth of a 3D bean plant L-system model (A) illus-
trate the power of the formalism to capture the development of realistic phenotypes.
Developmental modifications, such as favouring the growth of roots over shoots (B),
result in a different path of development.
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Fig. 3. The Artificial Genome model. Genes are defined as the digits following a pro-
moter sequence ‘0101’. A gene is expressed to form a gene product by incrementing
each gene element by 1, modulo 4 (since the genome only consists of the values 0,
1, 2 and 3). If the gene product of gene A matches a region in gene B’s regulatory
region (the region between gene B and its preceding gene), then gene A is defined as
regulating gene B. In this illustration, the gene of value 123123 regulates the gene of
value 221030.

teracting regulations of genes defined by the Artificial Genome, each gene was
grouped into various ‘classes’ according to the sum of its constituent digits. For
example, a gene consisting of the value 123123 would be assigned to group 12.
Using regulation between such classes rather than between actual genes allows
greater flexibility and predictability in the mapping process, since these classes
occur at a predictable frequency for random sequences of a given length, and
this frequency is unique to each class (see Figure 4).

The rules used to define the three key phenotype parameters are summarised
in Table 1. These rules were devised to produce L-System parameter values in
an appropriate range, given the random sequence described above.

Table 1. Rules used to define the three phenotypic traits under genetic control

Parameter Derivation

ANGLE (The number of times class 8 is regulated) / 6

GROWTHRATE ((The number of times class 9 is regulated) / 3400) + 1

SIDEDELAY (The number of times class 10 is regulated) / 100
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Fig. 4. Distribution of the occurrence of gene classes (x-axis) across all possible gene
values in the Artificial Genome, where a gene is comprised of 6 digits.

5 Nature of the Mapping: The Effects of Sequence

Mutation

By mutating the genome level of the model and analysing the resulting pheno-
typic changes, it is possible to study the dynamics of this biologically-inspired
mapping. Three types of mutation were performed; single-point (where a single
genotypic digit was changed), tandem duplication (where a 256-digit portion of
the genotype was copied, and the copy inserted immediately after the original
segment), and transposition (where a 256-digit segment was moved to a random
location on the genome). The duplication and transposition sizes were chosen
so that on average a single gene was affected (genome base of 4 (0,1,2,3) and
promoter size of 4 (‘0101’)).

Any region of the genome that does not encode a promoter, a gene, or a
binding site of gene regulation will not effect the regulatory network extracted
from the sequence. In addition, any mutations not affecting the regulation of
classes 8, 9 or 10 were also neutral. Consequently, a large number of single-point
mutations had no effect on the developing phenotype. Any changes that did occur
were minimal (see Figure 5). Transpositions had a greater effect on phenotype
parameters, as a larger portion of the genome was altered by this operator. By far
the biggest phenotypic alteration was caused by tandem duplication. Although
the same sized segment of the genome was randomly selected for duplication
as for transposition, duplications increased the size of the genome. Accumulated
duplications continually added more genes, thus the rates of regulation for classes
8, 9, and 10 also, on average, increased.

Note that phenotypic development was not under selective pressure in this
study. The competitive benefits of various sequence-level mutations could be



analysed by extending previous studies exploring the fitness landscapes of early
land plants [13–15]. These studies by Niklas investigated the effects of simulta-
neous selective pressures on simple models of early land plants, but the local
search for fit phenotypes was limited to immediately neighbouring morpholo-
gies. Consequently, searches for fit phenotypes were unable to jump over fitness
valleys. Using the Artificial Genome model with an L-systems phenotype would
remove this limitation, and would easily facilitate the study of more complex
phenotypes.

6 Conclusions

As understanding of the mapping from biological genotypes to phenotypes ad-
vances at an ever-increasing rate, appropriate computational frameworks that
can be built upon and improved will be invaluable theoretical tools. The Artifi-
cial Genome provides sufficient flexibility to add additional steps to the network-
extraction process. The arbitrary mapping from regulation network to pheno-
typic model can be easily updated, while the inherent flexibility of the L-systems
formalism provides a very capable developmental phenotypic model for a wide
variety of model organisms.

Artificial life has the potential to provide insights into biological processes
by integrating across levels of abstraction; each level capturing the essence of
one type of biological knowledge. At the level of the genome, the most powerful
metaphors include DNA as a sequence of information, and genetic regulation
as a network of interacting genes. At the level of the phenotype, it is constant
selective forces acting on communities of developing organisms. As mentioned
by Galis [1], a holistic approach is required for advancing our understanding of
evolutionary processes. By linking a genetic model based on current biological
metaphors, and a developmental phenotypic model that can be placed under
simultaneous selective pressures, this work is a step in that direction.
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Fig. 5. Phenotypic effects of various sequence-level mutations. Neutral mutations can
occur in regions of the genome that do not encode for promoters, genes, or binding sites
of gene regulation, or for any portion of the genotype that encodes network components
(links or nodes) unrelated to the regulation of classes 8, 9, or 10. Note the level of
neutrality of the single-point mutations which was not found with the duplications and
transpositions, since those operators affect much larger portions of the genome. One
reason for the significant impact duplications had on phenotypic parameters is that the
genome size increases with each duplication; greater numbers of genes mean greater
rates of regulation as defined by the rules of Table 1.
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