
SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT

No. 02-38

The Variety of Variables in Automated
Real-Time Refinement

L. Wildman, C. J. Fidge and D. Carrington

November 2002

Phone: +61 7 3365 1003
Fax: +61 7 3365 1533

http://www.svrc.uq.edu.au/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Under consideration for publication in Formal Aspects of Computing

The Variety of Variables in
Automated Real-Time Refinement
Luke Wildman1, Colin Fidge1, and David Carrington2

1Software Verification Research Centre
2School of Information Technology and Electrical Engineering

The University of Queensland, Australia

Keywords: Computer-aided programming; Program refinement theory; Real-time programming

Abstract.
The refinement calculus is a well-established theory for deriving program code from specifications. Recent
research has extended the theory to handle timing requirements, as well as functional ones, and we have
developed an interactive programming tool based on these extensions. Through a number of case studies
completed using the tool, this paper explains how the tool helps the programmer by supporting the many
forms of variables needed in the theory. These include simple state variables as in the untimed calculus, trace
variables that model the evolution of properties over time, auxiliary variables that exist only to support formal
reasoning, subroutine parameters, and variables shared between parallel processes.

1. Introduction

The refinement calculus is a formalism for systematically deriving programs from their specifications [Mor90,
BvW98], and is supported by a number of automated programming tools [BGL+97, TM95, Vic90]. Recently,
the calculus was extended to handle timing requirements, as well as functional ones [Hay02, HU01, Hay00,
Hay98]. However, the timing extensions introduce considerable complexity to the theory and cannot be
accommodated by existing tools. We have therefore developed a new version of our Program Refinement
Tool [CHN+98] that supports the ‘timed’ refinement calculus [WFC00, WH98].

Based on our experiences with a number of real-time case studies, this paper explains how the enhance-
ments to the tool handle a particular aspect of the real-time calculus, namely the many different roles played
by ‘variables’. The set of variables currently in scope define the available state space, and their modelling and
maintenance is a central feature of the refinement tool, in the same way that its symbol table is a central
feature of a high-level language compiler. In particular, the timed refinement calculus introduces several
new forms of variables, not found in the standard calculus. In conventional refinement theory only a few

Correspondence and offprint requests to: C. J. Fidge, Software Verification Research Centre, The University of Queensland,
Queensland 4072, Australia. E-mail: cjf@svrc.uq.edu.au

2 Wildman, Fidge and Carrington

forms of variable are used: state variables that will appear in the generated program code; logical variables
(and constants) that appear temporarily to simplify formal proof steps; and named formal parameters to
subroutines [Mor90]. However, the real-time theory complicates the picture by

• introducing a special variable ‘τ ’ to represent the current time [Hay02],

• modelling state variables as timed traces, i.e., functions that record a history of values over time [HU01],

• introducing (non-trace) auxiliary variables to support reasoning about timing properties [Hay00], and

• introducing concurrent variables which are maintained by separate parallel processes [Mah92, MH92].

Our extended refinement tool now recognises all of these forms of variable, and provides appropriate
operators and theories for their manipulation, thereby greatly simplifying the programmer’s task. In this
paper we give an overview of the way the tool exploits the theory by maintaining variable ‘contexts’. This
is illustrated by particular refinement steps from three recently completed case studies, one that generates
sequential code [HU01], one that involves subroutines [HU98], and another involving parallel processes.

Section 2 reviews previous work on refinement tools. Section 3 reviews the roles of variables in the standard
refinement calculus and the original version of the Program Refinement Tool. Section 4 then describes the
basic extensions for supporting variables in the real-time version of the Program Refinement Tool. Section 5
explains how the tool was extended further to allow for subroutine parameters. Finally, Section 6 describes
recent extensions for variables shared between parallel processes.

2. Previous Work on Refinement Tools

Semantically, applying refinement steps involves the same principles as theorem proving. Therefore, a number
of refinement tools have been developed as extensions to automated theorem provers.

For instance, the CADiZ tool [TM95], which comprises formatting and typechecking components for
the Z specification notation, has an associated experimental component called Zeta to perform refinement
steps [JLM+94]. It uses the ProofPower theorem prover to undertake proofs. A disadvantage with this
arrangement is that although Zeta maintains knowledge of variable declarations and types, this information
must be transferred as “an unintelligible stream of text” [Sha93] from Zeta to the prover. A similar approach
appears to have been used by the earlier Refinement Editor [Vic90].

At the other extreme is the Refinement Calculator [BGL+97, Lai00] which is integrated with the HOL
theorem prover. It shares its basic inference mechanism with the Program Refinement Tool, but has a more
elegant Graphical User Interface. Most significantly for our purposes here, however, it identifies types in the
refinement language with types in the prover’s logic, and supports this with a parsing and pretty-printing
layer between the programmer and the proof engine. This means the refinement notation can exploit the
inherent typing of HOL’s higher order logic.

By contrast, our Program Refinement Tool [CHN+98], including its real-time extension [WFC00], takes
an intermediate approach. Like the Refinement Calculator it is built on an existing theorem prover, in
this case Ergo [NTU96]. However, since Ergo uses first order logic, the Program Refinement Tool explicitly
encodes type information as axioms, in a way similar to Zeta. In particular, we maintain knowledge about
variables and their types in a local ‘context’, in the same way that Ergo proofs maintain a set of relevant
hypotheses [WH98]. This approach avoids having a loose coupling between the refinement and proof tools,
and the need for parsing and printing routines.

Most significantly, no refinement tools other than the Program Refinement Tool provide support for a
real-time refinement calculus in the style of Morgan [Mor90] and Back and von Wright’s [BvW98] well-known
calculi. The closest comparable system to ours is Hooman’s implementation of his real-time development
laws [Hoo96] in the PVS theorem prover. Like the timed refinement calculus, Hooman’s formalism includes
a special variable to denote the current time, auxiliary variables which are not affected by the passage of
time, and functions over the time domain to model time-dependent variables and predicates. However, since
Hooman’s formalism is based on temporal and Hoare logic, his development steps are presented in a ‘guess
and verify’ style, rather than the refinement calculus’ more constructive approach.

The Variety of Variables in Automated Real-Time Refinement 3

3. Background: Variables in the Program Refinement Tool

In this section we briefly review the role of variables in the conventional (untimed) refinement calculus, and
relevant features of the original (untimed) Program Refinement Tool.

3.1. Variables in the Refinement Calculus

Refinement is the process of translating requirements into executable programs, in such a way that essen-
tial properties are verifiably preserved. The refinement calculus can be approached either from a theoreti-
cal [BvW98] or programming [Mor90] perspective. Our work here is largely influenced by Morgan’s straight-
forward approach, which provides numerous laws suitable for direct application by programmers [Mor90].

To enable a smooth transition from requirements to programs, the refinement calculus operates on a
‘wide-spectrum’ modelling language in which specification-level constructs and programming language code
may coexist. The modelling language includes familiar structured programming statements for manipulating
program state, including assignment (:=), sequential composition (;), choice (if-then-else), and iteration
(while). It additionally contains a specification statement for expressing requirements to be implemented
[Mor90, §1.4.3]. This is denoted ‘x: [P , Q]’ and consists of a frame x which lists those variables that may
be modified, a precondition predicate P which characterises those initial states in which the statement is
expected to be executed, and a postcondition predicate Q which chararactises those final states in which the
statement must finish. An important special case is an assertion, which is a specification with empty frame
and postcondition ‘true’, and is denoted ‘{P}’ [Mor90, §8.2].

The representation of programming language variables in the refinement calculus is straightforward. A
variable declaration ‘|[var v : T •S]|’ declares a variable v, of type T , whose scope extends over statement S
[Mor90, §3.3]. Within a specification statement x: [P , Q], a declared variable v may be referenced in two
ways. The undecorated form ‘v’ denotes v’s initial value in precondition P and final value in postcondition Q.
The zero-subscripted form ‘v0’ may appear in a postcondition Q only, and denotes v’s initial value [Mor90,
p. 52].

To help express requirements and support proofs, logical constant declarations ‘|[con c : T • S]|’ make a
constant c, of type T , available for use in specification statement predicates [Mor90, §6.1]. Logical constants
are not intended to remain in the final refined code. Programming language constants are also allowed in
the calculus, and are distinguished by the keyword ‘const’—they can be modelled as a degenerate form of
variable that never changes value [Mor90, p. 34].

In particular, notice that whereas executable statements, such as assignments, provide a way of updating
the current system state, variable (and constant) declarations provide the means of updating the state
space itself. The refinement calculus is then completed by a set of formally-verified refinement rules which
allow specification statements and logical constant declarations to be eliminated and replaced by executable
program code [Mor90, App. C].

3.2. The Program Refinement Tool

The Program Refinement Tool [CHN+98] is a research prototype for experimenting with interactive program
refinement. It consists of extensions to the Ergo theorem prover [MNU97, NU95, UNT96]. In particular, it
is based on the Program Window Inference paradigm [NH97], which allows refinement steps and proofs of
side conditions to be performed in a similar manner.

At any time the tool presents the programmer with a window consisting of a current focus F , which nor-
mally consists of a specification in need of refinement, and a context C, which comprises known information
about the state of the system at the point where the focus occurs. The programmer’s task is to transform the
focus F into program code, via the refinement relation ‘v’. To do this, the tool offers two forms of program
development step, refinement and window-opening, both of which are controlled by rules stored in the tool’s
theory base.

A refinement rule has the following form.

C

F v G

4 Wildman, Fidge and Carrington

In context C, it transforms the current focus F into a goal G, in a way that maintains the refinement rela-
tion ‘v’. Refinement rules are used to introduce declarative and executable programming language statements
into the program under construction.

An opening rule has the following form.

D ⇒ (X v Y)

C ⇒ (F [X] v F [Y])

It states that the compound focus F [X] may be transformed by refining one of its components X. This is
done by ‘opening’ a new window, with X as the new focus, which is then refined to goal Y in new context D.
Window opening rules allow the programmer to navigate through the program under construction.

The tool allows the programmer to select applicable refinement or opening rules at each step. Depending
on the particular rule chosen, it either automatically calculates new contexts and goals, or prompts the
programmer for them in those cases where they cannot be determined automatically. Most side conditions
associated with the rules are discharged automatically, although some may require theorem-proving assistance
from the programmer.

In particular, the tool automatically maintains the current window’s context. The context consists of a
list of hypotheses, divided into three groups.

• The pre context maintains knowledge about the program state at the beginning of the current focus.
• The inv context maintains information which is invariant with respect to the current focus, especially

the types of variables currently in scope.
• The lval context maintains information about the state space, especially the names of variables currently

in scope.

A reference to some variable ‘v’ appearing in a modelling language statement is thus fully defined by v’s
definition in the surrounding context. Zero-subscripted references ‘v0’ are implemented in the tool as abbre-
viations for logical constants that capture the corresponding variable’s initial value [Mor90, Abbrev. 6.1].

Significantly, both the pre and inv contexts refer to the values of variables, whereas the lval context
refers to the names of variables. (The context’s name means ‘left value’, which derives from the appearance
of a variable identifier on the left-hand side of an assignment to denote the variable’s name, rather than its
value.) This information is clearly critical to the applicability of both refinement and opening rules and its
maintenance is a central aspect of the tool. (Again, an analogy can be drawn between the data stored in a
compiler’s symbol table and the variable typing and scoping information maintained by the pre and lval
contexts, respectively.) Indeed, this is one of the primary advantages of tool support. Handcrafted refinements
can rarely afford to perform this tedious bookkeeping explicitly, except in the most trivial cases.

4. Variables in Sequential Real-Time Refinement

In this section we use some extracts from a case study to introduce the way the timed refinement calculus uses
variables during development of sequential real-time program code [HU01], and the corresponding extensions
made to the Program Refinement Tool [WFC00].

4.1. The Receiver Case Study

The case study involves development of a ‘receiver’ program which must read a sequence of characters from
an asynchronous data stream into a character array. The requirement is heavily time-dependent because
each character is visible in a memory-mapped input register for only a limited duration. Fig. 1 shows the
assumed behaviour of the incoming data stream in. Each character is separated from its successor by chsep
seconds and remains defined in the input register for at least chdef seconds. The first character appears
chsep seconds after a specific starting time start . The last character in the sequence is the special end-of-text
character ‘etx’.

Hayes and Utting present a refinement of this time-dependent requirement in their timed version of the
refinement calculus [HU01]. This was a non-trivial exercise—their refinement occupies several pages despite

The Variety of Variables in Automated Real-Time Refinement 5

(etx)in
char Mchar 2char 1

chdef

start

chsepchsep

Fig. 1. Behaviour of the incoming data stream for the receiver case study.

omitting much detail. Our real-time extensions to the Program Refinement Tool allowed us to duplicate their
refinement with all steps completed and all proof obligations fully discharged. Below we use some extracts
from this exercise to explain how the tool’s handling of variables was extended to implement significant
features of the real-time calculus.

4.2. Declaring Real-Time Variables

An obvious feature of the timed calculus from the programmer’s perspective is that it allows explicit references
to the time domain ‘Time’, both via the current-time variable τ and by the ability to index variables with
times. Predicates in the timed calculus can thus express not only simple state transition behaviour, but
also the history of interactions between the program and its environment. To model the way that program
variables evolve over time, they are represented in the real-time calculus not as simple values, but as timed
traces. These are functions from times to values, and can thus capture the variable’s entire history [UF96].
Consequently, the timed calculus distinguishes several classes of variable, each of which satisfies a particular
role and has different characteristics [Hay98].

• An input variable, declared with keyword ‘input’, is a timed trace that can be accessed by the program,
but not changed by it.

• An output variable, declared with keyword ‘output’, is a timed trace that is constructed by the program
and is visible externally.

• A local variable, declared with keyword ‘var’, is a timed trace that is constructed by the program but
cannot be seen by the environment.

• The current time variable ‘τ ’ is a non-trace variable of type Time [UF96]. It may not appear in program-
ming language code.

• An auxiliary variable, declared with keyword ‘aux’, is a non-trace variable used to support formal proof.
Like logical constants, such variables may not appear in programming language code [Hay00].

The timed calculus also supports logical constants, declared with keyword ‘con’, like those in the standard
calculus [HU01]. Unlike auxiliary variables, they cannot change value and therefore never appear in decorated
form. They are treated as simple values (rather than interpreting them as trace functions with a single-
valued range). Most importantly, they may be of absolute-time type Time, so that they can be used to
record significant times. The timed calculus also allows a const declaration for constants that appear in the
executable program [HU98].

The Program Refinement Tool implements all of these different variable declarations through extensions
to its context mechanism [WH98]. For instance, the programmer begins the ‘receiver’ case study by declaring
variables and constants that are global to the code fragment to be developed. These include the various time-
valued constants, such as the separation between characters, chsep. The programmer declares ‘con chsep:
Time’ to the tool, which causes it to add the following hypotheses to the context.

lval chsep ∈ Constants
inv chsep : Time

6 Wildman, Fidge and Carrington

More interestingly, when the programmer declares the incoming stream of characters as ‘input in : Char’,
the tool adds the following hypotheses.

lval in ∈ Inputs
inv in : Time→ Char

The invariant reminds us that, in the timed calculus, trace variables are represented as total functions from
the Time domain. They have a value at every point in time, rather than just an initial and a final value
with respect to each statement. In effect, a timed-trace variable is a constant function which models all past
and future values [UF96]. This also applies to output (output) and local (var) variables. For instance, the
receiver program is required to store the message received in a local array, modelled here as a function over
the natural numbers. The programmer’s declaration of ‘var msg : Nat → Char’ causes the tool to add the
following information to the context.

lval msg ∈ Locals
inv msg : Time→ (Nat→ Char)

The special ‘now’ variable, τ , is implicitly declared by the tool in every context, in both undecorated and
zero-subscripted forms.

lval τ ∈ Variables
lval τ0 ∈ Constants
inv τ : Time
inv τ0 : Time

In this case, τ appears to the tool as a conventional (non-trace) variable which has an initial and final value
in the usual way. Auxiliary variables are represented similarly. For instance, mid-way through the receiver’s
refinement, it becomes convenient to temporarily introduce a loop counter variable n, to make it easier
to express the timing constraints defining the earliest and latest times at which the nth character may be
sampled (start + n ∗ chsep and start + n ∗ chsep + chdef , respectively). This is declared as ‘aux n : Nat’ and
adds the following information to the context.

lval n ∈ Variables
inv n : Nat

The tool does not declare zero-subscripted versions of auxiliary variables by default. If needed, they may be
introduced as explicitly-declared constants. (In fact, initial value ‘n0’ is needed later during the receiver’s
refinement, and is introduced in this way.)

4.3. Expressing Real-Time Requirements

Once declared, variables may appear within the program code under construction. Input, output and local
variables may be used in programming language statements, while specification statements may additionally
refer to auxiliary variables and the special ‘now’ variable. For instance, the top-level requirements specifica-
tion of the receiver is preceded by the following assertion.

{τ 6 start}
This states that the current time, when the receiver program begins, is assumed to be no later than absolute
time start . This is essential because if the receiver program is activated too late, it will not be able to read
the whole message.

More generally, ‘timed’ variables may be used in several different ways by predicates within timed refine-
ment calculus specification statements [Hay98]. The non-trace variables, i.e., τ and the auxiliary variables,
can appear in undecorated (final value) and zero-subscripted (initial value) forms as in the standard calculus.
However, the timed-trace input, output and local variables are fundamentally different. Although complex
mechanisms have been suggested for ‘lifting’ predicates so that the correct usage of such variables can be
determined automatically [MF01], the Program Refinement Tool instead avoids potential ambiguities by
having the programmer make the intended usage of each variable clear. Thus, a timed-trace variable v in a
predicate may

The Variety of Variables in Automated Real-Time Refinement 7

• appear undecorated as ‘v’, in which case it is treated as a function,

• be indexed by an absolute time t as ‘v(t)’ to refer to its value at that specific time,

• be decorated as ‘8v’, to denote its value when the enclosing statement began, i.e., v(τ0), and

• be decorated as ‘v′’, to denote its value when the enclosing statement ends, i.e., v(τ).

These decorations are recognised by the tool as syntactic abbreviations.
For example, after the assertion above, (part of) the receiver program’s basic requirement is expressed

as the following specification statement. (The precondition is merely ‘true’ and is omitted.) Let constant M
be the number of characters in the message. (In the full case study this value is derived from the location of
the ‘etx’ character in the data stream [HU01].)

msg : [msg ′ = {i : 1 .. M • (i 7→ in(start + i ∗ chsep))}]

The frame tells us that the requirement is to update msg in such a way that the predicate inside the square
brackets is satisfied. The predicate itself shows two different uses of timed variables. On the left, ‘msg ′’ denotes
the required final value of function (array) msg when the statement terminates. The set comprehension on
the right constructs this required final value using an index i which ranges over the number of characters in
the message. For each index value i, msg(i)’s final value is required to map to the specific character appearing
in the incoming data stream in at absolute time start + i ∗ chsep. These times denote the earliest moments
at which each character is known to be available. (Fortunately, the program is not required to sample the
values at exactly these times—Fig. 1 reminds us that the program has up to chdef seconds to read each
character from data stream in.)

However, this timed specification statement is defined semantically in quite a different way from specifi-
cation statements in the standard refinement calculus [HU01]. To account for the fact that (most) variables
in the timed calculus actually denote traces, and to support the implicit ‘now’ variable, the underlying mean-
ing of the above statement is actually as follows, expressed as a standard refinement calculus specification
statement.

msg : [msg(τ) = {i : 1 .. M • (i 7→ in(start + i ∗ chsep))} ∧
τ0 6 τ ∧
stable((Outputs ∪ Locals) \ {msg}, τ0 .. τ)]

Here the reference to the final value of trace variable msg has been replaced by the expression ‘msg(τ)’ it
denotes. However, no such ‘lifting’ was required for the reference to trace variable in because it was already
explicitly indexed. Also two additional conjuncts have been added to the predicate. The first tells us that the
finishing time τ of the statement can be no earlier than its starting time τ0. This is an implicit property of
any statement. The second says that all output and local trace variables, less the variable msg in the frame,
remain ‘stable’ for the interval from times τ0 to τ , inclusive. This ensures that all trace variables under
control of this program fragment are well-defined for the interval during which this statement executes, even
those that are not explicitly changed by the statement. Stability of a trace variable means that it has the
same value at every moment in the interval of interest [UF96].

The Program Refinement Tool supports all these additional features of timed specification statements
through appropriate abbreviations, thus making the timed calculus appear similar to the standard one from
the programmer’s perspective. The tool also includes appropriate theories for reasoning about the ‘stability’
of variables over specific time intervals.

As well as changing the meaning of specification statements, the timed calculus also extends the seman-
tics of executable programming language constructs [HU01]. For instance, a typical conditional statement,
‘if B then S1 else S2’, is defined to allow an ‘idle delay’ before and after the execution of statements S1

and S2. These delays model the run-time overheads of evaluating expression B, jumping to the appropriate
choice, and exiting the entire compound statement. It is important to account for these delays because,
although output and local variables remain stable during these intervals, input variables may change value
while, for instance, expression B is being evaluated. Again, the Program Refinement Tool hides these com-
plexities from the programmer by providing appropriate definitions and abbreviations, thus allowing the
timed calculus to be used in a manner as close as possible to that of the familiar untimed one.

8 Wildman, Fidge and Carrington

4.4. Real-Time Refinement and Opening Rules

Most importantly, the timed calculus provides numerous refinement rules for translating specifications such
as that above into executable program code [HU01]. The Program Refinement Tool therefore implements
corresponding timed refinement and opening rules, and automatically maintains and applies appropriate
contexts [WFC00].

For instance, a timed refinement rule with significant consequences for the maintenance of contexts in
the tool is the following [HU01].

Refinement Rule 1 (Introduce variable declaration).

lval v 6∈ w
lval v not-free-in P
lval v not-free-in Q
inv non-empty(T)
inv idle-invariant(P)
inv pre-idle-invariant(Q)
inv post-idle-invariant(Q)

w: [P , Q] v |[var v : T • v, w: [P , Q]]|
Given a specification statement w: [P , Q], this rule allows the programmer to declare a new variable v, of
type T , which is then made available to the specification by adding it to the frame. This refinement step is
allowed provided the list of conditions above the line can be satisfied. The first four provisos are conventional
and are found in the corresponding rule in the standard refinement calculus [Mor90, §3.3]. They tell us that
the new variable v must not already be listed in the specification’s frame w, that v may not occur free in
predicates P and Q, and that type T must contain at least one value.

However, the final three provisos in Refinement Rule 1 are peculiar to the timed calculus. They all stem
from the possibility that the precondition P and postcondition Q predicates in the specification statement
may be time-sensitive, i.e., their truth may be altered by the passage of time. If this were so, it would not
be safe to introduce the declaration, because this may involve run-time overheads associated with allocat-
ing and deallocating memory space. The three additional provisos therefore ensure that the predicates in
the specification are not affected by such overheads. Recall that a precondition predicate P refers to the
initial state only, whereas a postcondition predicate Q may refer to both initial and final states [Mor90,
Ch. 6]. The ‘idle-invariant’ property therefore checks that the truth of a simple state predicate is unaf-
fected by an arbitrary idle delay which does not change the values of output or local variables [HU01]. The
‘pre-idle-invariant’ and ‘post-idle-invariant’ properties check that the truth of a relation between initial and
final values is unaffected by a preceding or succeeding delay, respectively [Hay98].

In general, proving idle-invariance of a predicate can be a significant theorem proving problem. Fortu-
nately, there are syntactic checks that can be applied in most cases [HU01], and the Program Refinement
Tool discharges these automatically, in much the same way that it automatically discharges most type obli-
gations [WFC00].

In the receiver case study, for instance, the programmer applies this rule to the timed specification
statement from Section 4.3 above to introduce a local variable ch that will be used to hold the character
most recently sampled from in.

msg : [msg ′ = {i : 1 .. M • (i 7→ in(start + i ∗ chsep))}]
v ‘by Refinement Rule 1’
|[var ch : Char •

ch,msg : [msg ′ = {i : 1 .. M • (i 7→ in(start + i ∗ chsep))}]
]|

The Program Refinement Tool proves the rule’s first four provisos trivially in this case and the fifth is
not relevant since the specification statement has no explicit precondition. That the complex postcondition
above is both pre and post-idle-invariant is less obvious, however. Fortunately, the tool takes advantage of
the context and relevant syntactic checks to prove this. In particular, a predicate is pre-idle-invariant if it
contains no free references to the starting time τ0 [HU01, Law 45], which is true of the predicate above. To

The Variety of Variables in Automated Real-Time Refinement 9

show post-idle-invariance, the tool exploits the context in which this refinement was performed. Thanks to
the ‘lval’ properties start ∈ Constants and chsep ∈ Constants, we know that expression ‘start + i ∗ chsep’
above is also constant and denotes a specific absolute time, which is enough to tell us that the reference to
in above is unaffected by the passage of time. Also, since the context tells us that msg ∈ Locals, we know
that the (implicit) reference to msg(τ) is post-idle-invariant because local variables are under the control of
the current statement and do not change value merely due to the passage of time.

Having performed this refinement step, the programmer would naturally like to focus on the specification
statement within the declarative block, in order to make use of the new variable. To support this, the
Program Refinement Tool implements opening rules such as the following [WH98]. Let S be a statement in
our modelling language, P be a set of precondition hypotheses, I be a set of invariant hypotheses, and L be
a set of l-value hypotheses. Let ‘idle’ be a statement which takes an arbitrary amount of time but does not
change output, local or auxiliary variables [HU01]. Let ‘hide(x,H)’ be an operator that returns hypothesis
list H less any hypotheses that refer to term x. Finally, let ‘sp.S.P ’ be the strongest postcondition resulting
from starting statement S in a state satisfying precondition predicate P [NH97].

Opening Rule 1 (Enter variable block).

(inv hide(v, I)
lval hide(v, L)
pre sp.idle.(hide(v, P))
lval v ∈ Locals
inv v : Time→ T) ⇒ S1 v S2

(pre P, inv I, lval L) ⇒ |[var v : T • S1]| v |[var v : T • S2]|

This rule allows the programmer to focus on statement S1 (by opening a window), refine it to statement S2

(using some refinement rules), and then substitute S2 for S1 in the variable block (by closing the window).
The overall effect of these steps is shown by the contextualised refinement below the line. The context above
the line defines the hypotheses under which the refinement from S1 to S2 may be performed. It tells us that
focusing on statement S1 maintains invariant hypotheses I and l-value hypotheses L. However, it also says
that the precondition within the declarative block is the result of following the original precondition P with
an idle delay. This accounts for the possible run-time overheads of allocating memory space for variable v.
A time-sensitive property that held when the variable block was reached may no longer be true when the
statement inside the block begins. Furthermore, in each of these new contexts, already-existing occurrences of
variable v are removed by the ‘hide’ function. This avoids conflicts between a previously-declared variable v,
if any, and the one introduced by this declaration. Finally, the new context also contains the additional
information that ‘v’ is now visible as a local timed-trace variable of range type T .

For instance, the next step in the receiver example is to focus on the specification statement within the
declaration of variable ch above. When the programmer tells the Program Refinement Tool to do this, using
Opening Rule 1, the tool automatically adds the following data to the context (as well as calculating the
new precondition, which is merely ‘true’ in this case).

lval ch ∈ Locals
inv ch : Time→ Char

The programmer can then continue applying refinement rules to transform the specification statement to
executable code in this updated context. More significantly, at each step the tool makes use of the accumu-
lated information in the context to automatically discharge proof obligations associated with the typing of
variables and expressions, the stability of real-time variables, and the invariance of time-sensitive predicates.

By continuing in this way, the Program Refinement Tool was used to successfully duplicate Hayes and
Utting’s receiver case study [HU01] all the way down to executable program code. Unlike their handcrafted
version, however, every refinement step was completed in detail and all proof obligations were fully discharged,
thanks to the way the tool automatically maintains and exploits variable contexts.

10 Wildman, Fidge and Carrington

conveyor belt

light source

light sensor

objects

Fig. 2. Assumed operating environment for the object-sizer program.

5. Parameter Passing in Refinement of Real-Time Subroutines

Section 4 explained how real-time variables (and constants) are implemented in the Program Refinement
Tool. In this section we explain how the tool supports subroutine parameter passing. This is illustrated by
extracts from another significant case study [HU98].

5.1. The Object-Sizer Case Study

The ‘object-sizer’ case study is another example of real-time program refinement from the literature [HU98].
As shown in Fig. 2, it assumes that objects move along a conveyor belt and pass through a light beam. The
program is required to use the signal produced by a light sensor to determine the size of each object. This
is done by polling the signal’s value and using the observed duration for which the light beam is blocked,
plus the known speed of the conveyor belt, to calculate the object’s size. Clearly, the problem is heavily
time-dependent—correct results rely on sampling the sensor frequently and accurately enough.

Hayes and Utting’s refinement of this problem is notable for its introduction of a parameterised subroutine
to avoid duplicated code. For each object, the program needs to recognise changes in the sensor signal that
mark the passing of an object. Their refinement introduces a subroutine detect chng which recognises a
change in the signal’s value, and is parameterised by whether the change of interest is a rising or falling
edge. However, this introduces the issue of how to represent procedure declarations and calls, and parameter
passing, in the timed refinement calculus. The description of these mechanisms in the published object-sizer
case study was sketchy, and insufficient for implementation in the Program Refinement Tool. Indeed, as
explained in the next section, the handling of subroutines in the refinement calculus generally is rather
unclear.

5.2. Previous Work on Procedures in the Refinement Calculus

There have been a number of approaches to adding procedures to the (untimed) refinement calculus. We
briefly survey these approaches here, to set the scene for the Program Refinement Tool’s solution.

Morgan introduced procedures using a substitution-based semantics [Mor90, Ch. 12]. He allowed scoped
procedure declarations to associate a name with a parameterised segment of modelling language code. Within
this scope, procedure calls are effectively replaced in-line by the corresponding procedure body. Parameter
passing was also achieved by syntactic substitution of actual parameters for formal ones.

Groves subsequently criticised this substitution-based approach by noting that the order in which the
procedure body and the calling code is refined can be significant [Gro96]. Cavalcanti et al. also noted
that the substitution-based approach creates problems due to the way variables local to the procedure
body are semantically ‘free’ [CSW99]. This causes, for instance, subtle differences between performing the
substitutions at the point of call versus the point of definition. Cavalcanti et al. also observed that Back’s
earlier, more complicated approach, which allowed parameterised higher-order ‘statements’ that are not
executable until instantiated, does not suffer from the same problems [CSW99]. This approach uses separate
forms of parameterisation to model calls by value, result and reference.

In a different setting, Back and von Wright aimed to avoid any distinction between the programming

The Variety of Variables in Automated Real-Time Refinement 11

language and its semantics [BvW98, p. 229]. They used higher-order logic lambda expressions to represent
procedures, with the lambda arguments providing a call-by-reference parameter passing mechanism [BvW98,
§5.5]. They also gave a semantics-level model of recursive procedures using least fixed points [BvW98, §20.3].

The complexities of handling variable scoping in the presence of recursive procedures inspired Hesselink
to take a more fundamental approach [Hes99]. To accommodate procedures, he chose to extend the predicate
transformer semantics underlying the refinement calculus. Once again the issue of how to appropriately bind
variables local to the procedure body was a major concern. Rather than ‘stacking’ local variables at each
call, his solution was to introduce pairs of variable frames to the semantics. These explicitly distinguish those
variables that are merely ‘accessible’ from those that are ‘modifiable’ in the current scope, and serve to bind
local declarations to the corresponding predicate transformer.

Sampaio investigated the use of the refinement calculus to model the way procedures are compiled to
assembler code [Sam97]. His weakest-precondition semantics for parameter passing uses explicit assignments
to local variables before and/or after the call [Sam97, §5.4]. He takes a simple approach and declares fresh
variables for each procedure call, although this introduces a subtle need for ‘dynamic’ declarations [Sam97,
p. 102].

The most recent work in the area is that of Naumann [Nau01]. To define a predicate-transformer semantics
for procedures he takes a particularly elegant view by defining a ‘higher order’ modelling language in which
language statements are part of the state space. Thus there is a higher-order type for declared procedures, and
procedure-valued variables can be assigned constants of procedure type. This allows declared procedures to be
freely passed around the program code to the point at which they are called. For instance, a conventional ‘let’
abbreviation can be used to bind a procedure-valued constant to a name which can appear in a procedure
call [Nau01, §2]. Furthermore, recursive procedures can be created explicitly by using the existing ‘rec’
statement.

Indeed, an approach similar to this was used by Laibinis in extending the Higher Order Logic-based
Refinement Calculator for procedures [Lai00]. In parallel with our work, his research also used Staples’
technique of separating a procedure’s specification from its body [Sta99]. However, we could not directly use
a higher-order model in our first-order Program Refinement Tool.

5.3. Declaring Procedures and Parameters

In the light of the various approaches described in Section 5.2, we developed our own solution to implementing
‘timed’ procedures and parameters in the Program Refinement Tool. In doing so, we devised several new
refinement and opening rules.

A procedure declaration in a programming language associates the procedure’s name p with a statement S
that implements its body. During program development by refinement, however, statement S will initially
be a specification of the procedure’s functionality, which is subsequently refined to executable statements. In
practice, it is helpful to retain the original specification of the procedure because this tells us whether calling
this procedure will satisfy some requirement encountered later during the development [Sta99]. Therefore,
the Program Refinement Tool uses a multi-part procedure block.

|[proc p(F) is v: [P , Q] v S1 • S2]|

This statement declares a procedure named p which is visible to statement S2. Here F is an optional formal
parameter profile, v: [P ,Q] is the specification statement defining the procedure’s behaviour, and statement S1

is the procedure body, which must be a refinement of the specification. The parameter profile is a list of
parameter names and their associated modes. Available parameter passing modes include the usual ‘val’
(value), ‘res’ (result), and ‘valres’ (value-result). An additional mode, peculiar to the timed calculus, is
‘con’ [HU98]. This allows logical constants, especially those of type Time, to be passed to procedures—these
parameters do not appear in the final, executable program.

For example, mid-way through the object-sizer case study [HU98], the Program Refinement Tool’s context

12 Wildman, Fidge and Carrington

includes the following information.

lval size ∈ Outputs
inv size : Nat
lval {falls, rises, error} ⊆ Constants
inv falls, rises, error : Time
lval {speed , delta} ⊆ ProgConsts
inv speed , delta : Nat
pre error ∗ speed 6 delta
pre signal changes

Output variable size is intended to receive the computed size of the next object. Logical constants rises and
falls model the times at which the passage of this particular object causes the sensor signal to rise and fall,
respectively—the signal is high while an object is blocking the light beam. (In practice, no program could
determine these times with absolute precision, so these specification-level constants cannot appear in the
final program.) Logical constant error is an acceptable timing error in the detection of changes to the sensor
signal. Programming language constant speed defines the assumed speed of the conveyor belt (in units of
distance over time) and delta defines an acceptable tolerance on the measured object size (in units of length).
Tolerance delta is related by the ‘pre’ condition to constant error . Finally, the signal changes condition (not
shown here) is an assumed property of the signal produced by the light sensor. It states that at any point
in time there is a (rising or falling) edge in the future trace of the signal, capable of being detected by the
program [HU98]. If this were not true a requirement to detect a change may not be satisfiable. This condition
is invariant with respect to idle delays. It holds in practice if there is no limit on the number of objects which
may appear on the conveyor belt.

Within this context, the requirement to be satisfied is expressed by the following specification statement.

size: [size ′ ∈ (speed ∗ (falls − rises))± delta]

In other words, the final value of size must equal the object’s actual measured size, calculated as speed ∗
(falls − rises), but may vary from this by up to delta to allow for practical implementation limitations.
Recognising that this requirement relies on identifying two changes in the sensor signal, the programmer
then decides to introduce a reusable subroutine for this purpose.

The following refinement rule allows parameterised procedure declarations to be introduced to a program.
Let S be a statement in our modelling language; p be a procedure name; vf be a formal value-parameter
list of type T1; rf be a formal result-parameter list of type T2; vrf be a formal value-result-parameter list of
type T3; cf be a formal logical-constant-parameter list of type T4; and v: [P ,Q] be a specification statement.
The rule can be modified easily for different parameter profiles.

Refinement Rule 2 (Introduce procedure declaration).

lval p not-free-in S
lval vf ∩ v = ∅
lval cf ∩ v = ∅
lval {rf , vrf } ⊆ v
lval rf not-free-in P

S v |[proc p(val vf : T1, res rf : T2,valres vrf : T3, con cf : T4) is
v: [P , Q] v (v: [P , Q] in-context C) •
S]|

where C
def= (lval {vf , rf , vrf } ⊆ Locals

lval cf ⊆ Constants
inv vf : Time→ T1

inv rf : Time→ T2

inv vrf : Time→ T3

inv cf : T4)

The refinement rule below the line allows statement S to be enclosed within a procedure declaration. On
the right of the refinement relation is the procedure block with its name p and formal parameter list. This

The Variety of Variables in Automated Real-Time Refinement 13

is followed by a programmer-supplied specification statement v: [P , Q] which defines the required behaviour
of the procedure’s body. The default procedure body is then the same specification statement, but this time
with its own context C. The Program Refinement Tool’s ‘S in-context C’ construct allows a statement S to
be bound to its own particular context C (which extends the context in which the overall construct resides).
In this case it is used to associate the procedure body with the particular context of formal parameters
it may access. Abbreviation C tells us that formal parameters vf , rf and vrf appear as local timed-trace
variables to the procedure body, and cf as a logical constant. The contextualised specification statement will
be refined later to produce the executable procedure body.

Above the line in Refinement Rule 2, the first ‘lval’ proviso tells us that new procedure name p may
not already appear free in statement S. The next two provisos ensure that the value vf and constant cf
parameters do not appear in the procedure body’s frame v, because these parameters cannot be changed
by the procedure. The fourth proviso states that the result rf and value-result vrf parameters are included
in the specification statement’s frame, because the procedure body may update these variables. Any other
variables listed in v denote global variables updated by the procedure (also see Section 5.5). The final proviso
checks that the formal result parameters rf are not used in precondition P . This would be unhelpful because
they have not been initialised at that point.

This rule can be used to introduce procedure detect chng to the object-sizer program [HU98]. When the
rule is invoked, the Program Refinement Tool prompts the programmer to enter the formal parameter list
and the specification of the procedure body, and then checks the necessary provisos. For clarity we omit the
contextualised procedure body below.

size: [size ′ ∈ (speed ∗ (falls − rises))± delta]
v ‘by Refinement Rule 2’

|[proc detect chng(con chngs : Time,val srqd : Bool, res chngt : Time) is
chngt : [signal changes , chngs 6 chngt ′ 6 (chngs + error) ∧ chngs < τ] v · · · •
size: [size ′ ∈ (speed ∗ (falls − rises))± delta]

]|
Here the programmer has introduced formal parameter chngs which represents the time at which the sensor
signal change to be detected actually occurs. Since the final program cannot directly access this information,
it is a logical constant parameter which may not appear in the executable code. A Boolean value parameter
srqd defines the ‘signal required’—it is true if a rising edge is to be detected, otherwise a falling one is sought.
Result parameter chngt returns the time at which the signal’s change was actually detected.

The specification statement defining procedure detect chng ’s behaviour has a frame which tells us that it
updates formal parameter chngt . Its precondition, signal changes, requires that there is indeed a detectable
change in the signal’s trace after the time at which the procedure is called [HU98]. The postcondition
requirement contains two conjuncts. The first says the final value of parameter chngt should be within error
seconds of the time chngs, when the change actually occurred. The second says that the finishing time τ of the
procedure body must exceed the time at which the signal changed. This ensures that the same change to the
signal cannot be read twice—the executable code could never do this anyway, but the abstract specification
still needs to exclude the possibility explicitly.

5.4. Refining Real-Time Procedures and Calls

Having declared such a procedure, we can now refine its body to executable code. To do this the tool provides
two simple opening rules that allow the programmer to focus on the procedure body within the declarative
block. The first rule is trivial and merely opens on the ‘in-context’ statement within the block. The second
is the general rule for opening a ‘S in-context C’ construct—it changes the focus to statement S and adds
the local context C to the current one (also see Opening Rule 3 in Section 6.3 below). This makes the
formal parameters part of the context while the programmer is refining the procedure body. From this point,
refinement of the body to executable code proceeds by application of (timed) refinement rules [HU98].

More interesting are the rules for focussing on the statement within the scope of a procedure declaration
and for introducing procedure calls. The following opening rule allows the programmer to focus on and refine
a statement S2 which is within the scope of a procedure p with formal parameter profile F .

14 Wildman, Fidge and Carrington

Opening Rule 2 (Enter procedure block).

(inv hide(p, I)
lval hide(p, L)
pre hide(p, P)
lval p(F) ∈ Procedures
inv p(F) def= v: [P , Q]) ⇒ S2 v S3

(pre P, inv I, lval L) ⇒ |[proc p(F) is v: [P , Q] v S1 • S2]| v |[proc p(F) is v: [P , Q] v S1 • S3]|
The rule is similar to Opening Rule 1. It adds the procedure’s signature p(F) to the context, and hides
any global occurrences of name ‘p’. Entering the procedure block is assumed not to involve any run-time
overheads—these are incurred when the procedure is called. Importantly, the final ‘inv’ hypothesis associates
procedure p with its specification v: [P , Q]. This specification provides a ‘contract’ between the procedure
and its caller, regardless of any subsequent refinements performed on the procedure body S1 [Sta99]. Also
note that variables free in the specification statement will typically include formal parameter names from F ,
so it is important to associate procedure name p with its parameter passing profile F in the new ‘lval’ and
‘inv’ hypotheses.

In the object-sizer case study, Opening Rule 2 is used to focus on the specification statement from
Section 5.3. Doing so makes the definition of procedure detect chng available in the context. To prepare
for introduction of calls to this procedure, a series of refinement steps then introduces two local Time-
valued variables, riset and fallt , which approximate the actual time at which the sensor signal rises and falls,
respectively. The specification is then broken up into three statements, the first two of which are requirements
to find these times, and the final statement is an assignment which performs the necessary arithmetic [HU98].

size: [size ′ ∈ (speed ∗ (falls − rises))± delta]
v |[var riset , fallt : Time •

riset : [rises 6 riset ′ 6 (rises + error)] ;
fallt : [falls 6 fallt ′ 6 (falls + error)] ;
size := speed ∗ (fallt − riset)

]|
Clearly the two specification statements above have almost the same form as the specification of procedure
detect chng . The procedure’s postcondition is stronger because it has an additional constraint on its fin-
ishing time τ , but this is an acceptable strengthening of the predicates above. Also the procedure requires
precondition signal changes, but this property is in the global ‘pre’ context, so it is available to both of the
specification statements above. Therefore, it just remains to replace the specification statements with calls
to the procedure itself.

This is supported by a refinement rule for replacing a specification with a procedure call. The general
form of the rule is given below, assuming the same parameter profile as used for Refinement Rule 2 above.
Let va, ra, vra and ca be actual value, result, value-result and logical-constant parameter lists, respectively.

Refinement Rule 3 (Introduce procedure call).

lval p(val vf : T1, res rf : T2,valres vrf : T3, con cf : T4) ∈ Procedures
inv p(val vf : T1, res rf : T2,valres vrf : T3, con cf : T4)

def= v: [P , Q]
lval distinct-names(ra, vra)
inv idle-invariant(U)
inv pre-idle-invariant(V)
inv post-idle-invariant(V)
lval {ra, vra} ⊆ w
lval v[ra, vra/rf , vrf] ⊆ w
inv rtproc-pre-ob(U,P)
inv rtproc-call-ob(U,Q, (w \ {ra, vra}), V)

w: [U , V] v call p(va, ra, vra, ca)

The refinement below the line simply replaces a specification statement w: [U , V] with a call to procedure p.

The Variety of Variables in Automated Real-Time Refinement 15

The numerous provisos above the line ensure that this is done in an appropriate environment, especially with
respect to parameter passing. The first two provisos require that a procedure p with an appropriate formal
parameter profile is in the context. Procedure p’s behaviour is defined by specification statement v: [P , Q].
The third proviso requires that the actual result ra and value-result vra parameter lists contain distinct
identifiers, so that there is no aliasing. The next three provisos require idle invariance of the precondition U
and postcondition V predicates in the specification statement being refined. This ensures that they allow
for any run-time overheads associated with calling procedures, such as allocating and deallocating stack
space and copying parameters. The seventh proviso ensures that the actual result ra and value-result vra
parameter lists are in the frame w of the statement being refined, because the variables in these lists may
be changed by the procedure.

Ideally, this rule would be completed by simply introducing the usual three provisos needed for a spec-
ification statement w: [U , V] to be refined by a specification statement v: [P , Q]. These are that frame v
is contained within frame w, that precondition U implies precondition P , and that postcondition Q implies
postcondition V . However, we must take account of the fact that the procedure’s specification v: [P , Q] is
expressed in terms of the formal parameters, whereas the specification w: [U , V] representing the procedure
call is expressed in terms of the actual parameters. Therefore, the remainder of the provisos in Refinement
Rule 3 must be stated with respect to appropriate substitutions of actual parameters for formal ones.

The eighth proviso in Refinement Rule 3 therefore states that the frame v of the procedure’s specification,
with appropriate substitutions of result and value-result parameters, is a subset of the variables in the frame w
of the statement being refined. This checks that the procedure will not change any variables not changed by
the original requirement.

The final two provisos relate to the behavioural correctness of the refinement. Predicate ‘rtproc-pre-ob’
checks that the precondition of the procedure’s body is not stronger than that of the requirement being
refined. In essence, the condition to be proven is U ⇒ P . However, this must be done with appropriate
substitutions of actual for formal parameters. The full definition of this predicate therefore includes dec-
larations to make the values of actual value va, value-result vra and constant ca parameters visible, but
makes no assumptions about actual result parameters ra since these are undefined in the procedure body’s
precondition P . The ‘rtproc-pre-ob’ predicate is also careful to ensure that ‘τ ’ is defined to be the time at
which the procedure body begins execution, rather than the time at which the call is made.

The ‘rtproc-call-ob’ predicate is similar but both initial and final values of variables and parameters must
be considered. It aims to check that the procedure body’s postcondition Q achieves the desired effect V , in
situations where precondition U held initially. In essence, it proves condition (U ∧Q) ⇒ V . Again, however,
appropriate parameter substitutions and assumptions must be introduced. In particular, ‘stable’ conditions
must be included for those variables w \ {ra, vra} that cannot be changed by the procedure, but which were
listed in the frame w of the calling statement.

Using this rule, in the context of procedure detect chng ’s declaration, we can now replace the requirements
to detect changes in the light sensor’s signal with calls to the procedure.

riset : [rises 6 riset ′ 6 (rises + error)]
v ‘by Refinement Rule 3’

call detect chng(rises, true, riset)

Similarly for the requirement to update fallt .
Thus, with the definition and implementation of these refinement and opening rules for procedures, we

were able to successfully complete the object-sizer case study [HU98] using the Program Refinement Tool.
Although our rules for manipulating procedures appear intimidating, due to their long lists of provisos, most
of the conditions are trivial and the tool discharges them automatically, so the programmer can still apply
the rules with ease. Also, our discovery of several minor errors in the published version of the object-sizer
case study [HU98] bears out the benefit of tool support.

5.5. Discussion on Procedure Scoping

Introducing procedures to the Program Refinement Tool raised a number of interesting issues with respect
to its handling of variables. Consider the following program fragment [Mac83, p. 114] which could occur

16 Wildman, Fidge and Carrington

during refinement of a specification ‘v: [Q]’ to a procedure call ‘call p’.

|[var v : T • -- global declaration of variable ‘v’
|[proc p is v: [Q] v · · · v := E · · · • -- procedure body which updates variable v
|[var v : T • -- local declaration of variable ‘v’

call p -- procedure call (which is a refinement of specification v: [Q])
...

Variable v occurs ‘free’ in the body of procedure p, i.e., the variable is global to the procedure. Traditionally,
this raises the issue of which variable v is modified by the call to procedure p. Good programming language
design favours binding of free identifiers in procedure bodies at the point of declaration (static binding),
rather than at the point of call (dynamic binding), as this is easier to understand, and means that the effect
of calling a procedure is independent of the point at which it is called [Mac83, §3.3]. Unfortunately, the
scoping rules of the standard refinement calculus’ modelling language mean that procedure calls are assessed
in the scope in which they occur, rather than the scope in which the procedure was declared, thus resulting
in dynamic binding [Sam97]. Programmers using some refinement formalisms are therefore warned that they
must apply appropriate renaming to achieve the right effect [Nau01].

The Program Refinement Tool avoids this problem altogether, thanks to its maintenance of unambiguous
variable contexts. Refinement of procedure p’s body occurs in the context of the global declaration of v, thus
supporting static binding, as desired. Furthermore, to develop the above code fragment, the programmer
needs to focus the tool on specification ‘v: [Q]’, which occurs in the context of the local declaration of v, with
the intention of refining it to ‘call p’. This is done using Opening Rule 1 from Section 4.4. In the situation
shown above, the ‘hide’ operations in that rule remove all hypotheses that refer to the global variable v,
including the ‘lval’ hypothesis that defines ‘p’ as a procedure whose body contains a free reference to ‘v’. In
effect, this makes the procedure declaration inaccessible, and prevents the programmer from performing the
ambiguous refinement step. (More generally, this also avoids the danger of procedures having unanticipated
side effects on global variables—a refinement step to introduce a call to a procedure with side effects is
precluded unless the global variables are listed in the frame of the specification statement being refined.)

As well as ambiguous updates to multiply-declared variables, a similar problem for block-structured
programming languages is ambiguous calls to multiply-declared procedures.

|[proc p is · · · • -- global declaration of procedure ‘p’
|[proc q is · · · v · · · call p · · · • -- declaration of procedure q which calls procedure p
|[proc p is · · · • -- local declaration of procedure ‘p’

call q
...

When the call is made to procedure q, it is not obvious which procedure p is subsequently invoked, the
one visible at the point where procedure q was declared, or the one visible where q was called. Once again,
conventional programming wisdom says that static binding is the best alternative, so the call should be to
the ‘global’ version of p, and the Program Refinement Tool’s opening rule for procedure blocks achieves this
through manipulation of procedure declarations in contexts in the same way as for variables above.

Recursive procedures are rarely used in embedded, real-time programs due to the difficulties in estab-
lishing their timing characteristics and their unpredictable memory requirements. We have therefore ignored
recursively defined procedures so far. However, we note that the scoping mechanism presented above is ad-
equate for the definition of recursive procedures even in the face of nested redeclaration. Since the ‘lval’
context stores procedure specifications, introduction of a recursive call can be achieved by the development
of a matching specification within the procedure body.

Finally, we note that procedure specifications are stored as constants (they are referentially transparent)
in the Program Refinement Tool’s context. However, in contrast to Naumann’s model of procedures [Nau01],
neither assignment to procedure-valued variables nor passing of procedures as parameters is supported by the
tool. The main benefit of storing procedure specifications is their use as semantic targets for the introduction
of procedure calls. In particular, the frame of the procedure’s specification is useful in determining the validity
of the call with respect to the scope of the effect of the call. Thus our approach achieves the goal of static
binding without the additional complexity of being truly higher-order.

The Variety of Variables in Automated Real-Time Refinement 17

DAC

s

mue

CalcAreaSampler

ControllerIntegratorADC

Fig. 3. Assumed environment for the integrator process’s refinement.

6. Concurrent Variables in Parallel Real-Time Refinement

So far we have concentrated on refinement to sequential and modular program code. Recent research on the
Program Refinement Tool has also explored its extension to handle parallel programs. In this section we use
another case study to explain how this is handled.

6.1. The Integrator Case Study

To experiment with parallel processes with timing constraints, we chose a case study from the domain of
discrete real-time control theory [FP80, p. 14]. As shown in Fig. 3, the aim is to refine one component of a
closed-loop (feedback-driven) control system. On the left, an analogue-to-digital converter, ADC , produces
a signal e that represents the measured error between the desired and actual system output. The Integrator
component calculates a trapezoidal approximation u to the integral of this error. Control engineers use
approximations to the integral to eliminate steady-state error [Bis94, p. 185]. This information is then used
by the Controller to calculate the manipulated control signal m. This exits on the right through a digital-
to-analogue converter, DAC , and into the plant to be controlled, from which sensors will return the new
measured error via a feedback loop (not shown).

Each of the components is assumed to be iterative, with a common period of duration D. The signals
are modelled as vectors, one element for each period, where vk denotes vector v’s kth value. The Integrator
component is required to produce a signal that satisfies the following control equation [FP80, p. 14].

uk = uk−1 +
D

2
(ek + ek−1)

The specific refinement to be performed is to split this requirement into two parallel processes. The Sampler
process reads the error input e and stores the sample in a vector s. The CalcArea process uses this to
calculate the area under function s, and puts the result in output vector u. A shared-memory multi-processor
architecture is assumed—while the Sampler process is reading and storing the kth sample, the CalcArea
process is simultaneously accessing the (k − 1)th sample. Mutual exclusion is enforced by correct timing
behaviour only.

6.2. Refining Parallel Components

Each of the components in Fig. 3 represents a parallel process, with its own thread of control and its own
state space. Introducing parallel processes to the timed refinement calculus is still a research topic [PH02]. It
has proven difficult to find a definition of parallel composition, in the predicate-transformer semantics used
by refinement calculi, that is well behaved with respect to extreme processes such as those that perform
‘aborting’ computations [Smi01]. Nevertheless, definitions that are satisfactory for the majority of process
specifications have been available for some time [Mah92, Mah95, Mah94], so we used these to implement
corresponding rules in the Program Refinement Tool.

At the beginning of the integrator case study, the following context for the Integrator component is

18 Wildman, Fidge and Carrington

created.

lval e ∈ Inputs
inv e : Time→ Int
lval u ∈ Outputs
inv u : Time→ (Nat→ Real)
pre τ 6 −D

Here error input e is modelled as a timed trace of integers. The calculated integral is modelled as a timed-
trace consisting of a vector of real values. Using a vector allows one value to be written while its predecessor
is being read. (In the final implementation a small circular buffer would be sufficient for this purpose, but
using the unbounded vector above simplifies the top-level specifications.) The ‘pre’ predicate tells us that
the whole system starts a full period before time 0, which gives enough time for the pipeline of processes to
be properly ‘primed’.

Within this context, the integrator’s requirement is given by the following specification statement.

u: [ADC , Integrator]

The ADC predicate defines the assumed behaviour of the error input e. For some number r, let brc be the
largest integer no greater than r, i.e., r rounded down to the nearest integer.

ADC def= ∀t : Time • e(t) = e(bt/Dc ∗D)

In other words, the output from the analogue-to-digital converter is modelled by an arbitrary signal which
is stable throughout each period of duration D, i.e., it is a step function [FP80, p. 3]. The integrator’s
requirement is then to produce the area under this function. To allow for the time needed to sample values
and perform the necessary arithmetic, the requirement states that the nth value of vector u does not need
to be made available to the Controller process until time (n + 2) ∗D.

Integrator def= ∀n : Nat, t : Time •
(n + 2) ∗D 6 t ⇒

(u(t))(n) =
∑

16i6n
D
2 ∗ (e(i ∗D) + e((i− 1) ∗D))

For brevity, we have expressed the Integrator predicate over all natural numbers n above. In fact, the actual
case study performed in the Program Refinement Tool was slightly more complicated and placed an upper
bound on the number of periods. (Technically, the predicate above prevents the specification statement
from ever terminating, which is handled in the timed refinement calculus by a distinguished specification
statement [Hay02], but we ignore this complication here.) As is typical for high-level specifications of whole
process behaviours, all references to timed-trace variables such as u and e in both of the above predicates are
explicitly indexed with absolute times—there are no free references to starting time τ0 or finishing time τ .

To partition such a specification into parallel components, a refinement rule for introducing parallel
composition is needed. The situation illustrated in Fig. 3 is a special case where all information flow is from
left to right. Therefore, the rule needed is one which introduces an asymmetric piping operator, denoted ‘À’,
which is formally defined as functional composition of predicate transformers [Mah92, §4.2].

The Variety of Variables in Automated Real-Time Refinement 19

Refinement Rule 4 (Introduce pipe).

lval v1 ⊆ Locals
inv v1 : Time→ T
lval v2 ⊆ (Locals ∪Outputs)
lval v1 ∩ v2 = ∅
lval v2 not-free-in Q1

lval τ not-free-in Q1

lval τ0 not-free-in Q1

v1, v2: [P , Q1 ∧Q2] v ((v1: [P , Q1] in-context C1) À (v2: [Q1 , Q2] in-context C2))

where C1
def= (lval v1 ⊆ Outputs

inv v1 : Time→ T)
and C2

def= (lval v1 ⊆ Inputs
inv v1 : Time→ T)

The refinement below the line allows a specification statement to be split into two statements connected by
the piping operator. The list of variables ‘v1, v2’ to be updated is divided among the parallel components,
as are the two conjuncts Q1 and Q2 that define the overall desired effect. The precondition P of the whole
system is assumed to define the environment of the left-hand component, whereas the effect Q1 of the
left-hand component becomes the precondition of the right-hand one. Most importantly, the two parallel
processes each carry their own context. The left-hand component constructs variables in list v1, so these are
outputs in its context C1, whereas the right-hand component views these variables as inputs.

The first two provisos say that the variables in list v1 are expected to be local timed-traces of type T . The
third proviso requires the variables v2 updated by the second parallel component to be either local or output
variables. The fourth proviso merely requires lists v1 and v2 to be distinct. The fifth proviso requires that
postcondition predicate Q1, belonging to the left-hand component, does not rely on variables v2, constructed
by the right-hand component, in keeping with the asymmetry of the piping operator. The final provisos
ensure that predicate Q1, which must be suitable for use as both a precondition and a postcondition, does
not rely on the current time variable τ , which has a different meaning in these different situations.

This rule is used in the integrator case study as part of a sequence of refinement steps that first introduces
the new variable s that connects the two parallel components, and then splits the requirement in half. Firstly,
let Sampler be a predicate defining the intended behaviour of the process that samples and stores values
from the analogue-to-digital converter.

Sampler def= ∀n : Nat, t : Time •
((n + 1) ∗D 6 t) ⇒ (s(t))(n) = e(n ∗D)

In other words, the sampling component is required to have stored the nth sample by time (n + 1) ∗D. The
overall refinement then proceeds as follows.

u: [ADC , Integrator]
v ‘By Refinement Rule 1’
|[var s : Nat→ Int •

s, u: [ADC , Integrator]
]|

v ‘By strengthening the postcondition [HU01, Law 7]’
|[var s : Nat→ Int •

s, u: [ADC , Sampler ∧ Integrator]
]|

v ‘By Refinement Rule 4’
|[var s : Nat→ Int •

(s: [ADC , Sampler] in-context C1) À (u: [Sampler , Integrator] in-context C2)
]|

20 Wildman, Fidge and Carrington

where C1
def= (lval s ∈ Outputs

inv s : Time→ (Nat→ Int))

and C2
def= (lval s ∈ Inputs

inv s : Time→ (Nat→ Int))

Each of the two parallel processes thus created carries its own view of local timed-trace variable s. The
left-hand one considers it to be an output, while the right-hand one views it as an input.

6.3. Opening on Parallel Processes

The case study continues by refining the two individual processes. In particular, the right-hand process
has yet to make any profitable use of variable s. Its postcondition predicate, Integrator , does not even
mention s—it defines output u directly in terms of input e. However, given that the Sampler precondition
tells us that local variable s is defined in terms of e, it is now possible to strengthen the Integrator predicate
to a ‘CalcArea’ one that redefines u in terms of s, and does not mention e at all.

To do this, the programmer needs to focus on the right-hand process. Firstly, Opening Rule 1 from
Section 4.4 allows the programmer to open a window within the declaration of s. A trivial opening rule then
allows us to focus on the second component in a ‘À’ construct—the rule makes no changes to the context
because each parallel processes is assumed to carry its own context. Next, the following simple rule is used
to focus within the specific ‘in-context’ construct of interest.

Opening Rule 3 (Enter input context).

(inv I
lval hide(v, L)
pre P
lval v ∈ Inputs) ⇒ S1 v S2

(pre P, inv I, lval L) ⇒ ((S1 in-context (lval v ∈ Inputs, inv v : Time→ T)) v
(S2 in-context (lval v ∈ Inputs, inv v : Time→ T)))

In effect, the context above the line changes any existing classification of variable v to ‘input’, by hiding
its occurrences in hypothesis list L and adding a new ‘lval’ hypothesis. However, existing ‘inv’ and ‘pre’
hypotheses concerning v are left unchanged because these may contain useful information about the variable’s
behaviour.

Via this rule it is thus possible to focus on the right-hand process in the integrator case study, and perform
the necessary strengthening of the Integrator predicate to a CalcArea one that uses vector s. The remainder
of the case study then consists of (timed) refinement steps to derive executable statements from the Sampler
and CalcArea components. While intricate, due to the need to keep track of which values must be accessible
in particular periods, these steps are relatively straightforward applications of the timed refinement calculus
rules [HU01].

7. Conclusion

We have described recent extensions to the way an automated programming tool manages and manipulates
a wide variety of ‘variables’, including constants, procedure parameters, and input/output streams, during
formal development of real-time programs. By automatically maintaining a context of which variables are
in scope, and their types, the tool removes much of the tedium of rigorously applying refinement steps. Its
automatic tactics allow proof obligations concerning type compatibility of real-time variables and expres-
sions, stability of real-time variables, and invariance of real-time predicates, to be discharged without user
intervention. The tool thus allows each refinement step to be fully verified, whereas the equivalent ‘paper’
proofs must inevitably skip much of this fine detail, and therefore risk overlooking errors.

The computer-aided refinements mentioned above differ in some technical details from the handcrafted
versions that inspired them. An obvious difference is that the tool uses a machine-readable ASCII repre-
sentation of specifications, rather than the usual mathematical symbols. This makes the tool’s refinements

The Variety of Variables in Automated Real-Time Refinement 21

appear much clumsier. (For readability, we have used mathematical notation throughout this paper.) Also,
some refinement laws are implemented differently in the tool. Most notable is the way that zero-subscripted
constants must be introduced by an explicit step, whereas the conventional refinement calculus [Mor90]
assumes that this is done implicitly.

Ongoing enhancements to the real-time refinement calculus have addressed reasoning about non-term-
inating loops [Hay02] and improved the modelling of parallel processes [PH02], and it is fully expected that
corresponding extensions can also be made to our real-time Program Refinement Tool.

Finally, the Program Refinement Tool, like all theorem prover-based software, remains complex and
intimidating to use. Even with tool support, rigorously performing refinements is currently practical for
small fragments of highly critical code only. However, future research aims to simplify the tool further, by
improving the user interface and increasing the degree of automation through additional theories and tactics.

Acknowledgements

We wish to thank Geoffrey Watson for correcting errors in a draft of this article. An earlier version of
Sections 2 to 4 of this paper was presented at the REFINE 2002 workshop in Copenhagen [WF02]. Prepa-
ration of this paper was funded in part by Australian Research Council Large Grant A00104650, Verified
Compilation Strategies for Critical Computer Systems.

References

[BGL+97] M. Butler, J. Grundy, T. L̊angbacka, R. Ruks̆ėnas, and J. von Wright. The refinement calculator: Proof support
for program refinement. In L. Groves and S. Reeves, editors, Formal Methods Pacific ’97, pages 40–61. Springer,
1997.

[Bis94] C. C. Bissell. Control Engineering, volume 15 of Tutorial Guides in Electronic Enginering. Chapman and Hall,
1994. Second edition.

[BvW98] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Springer-Verlag, 1998.
[CHN+98] D. Carrington, I. Hayes, R. Nickson, G. Watson, and J. Welsh. A program refinement tool. Formal Aspects of

Computing, 10(2):97–124, 1998.
[CSW99] A. Cavalcanti, A. Sampio, and J. Woodcock. An inconsistency in procedures, parameters, and substitution in the

refinement calculus. Science of Computer Programming, 33(1):87–96, January 1999.
[FP80] G. F. Franklin and J. D. Powell. Digital Control of Dynamic Systems. Addison-Wesley, 1980.
[Gro96] L. Groves. Procedures in the refinement calculus: A new approach? In He Jifeng, John Cooke, and Peter Wallis,

editors, BCS-FACS Seventh Refinement Workshop, Electronic Workshops in Computing. Springer-Verlag, 1996.
http://www.ewic.org.uk/ewic/.

[Hay98] I. J. Hayes. Separating timing and calculation in real-time refinement. In J. Grundy, M. Schwenke, and T. Vickers,
editors, International Refinement Workshop & Formal Methods Pacific ’98, Discrete Mathematics and Theoretical
Computer Science, pages 1–16. Springer-Verlag, 1998. Invited paper.

[Hay00] I. J. Hayes. Real-time program refinement using auxiliary variables. In M. Joseph, editor, Sixth International
School and Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT 2000), volume
1926 of Lecture Notes in Computer Science, pages 170–184. Springer-Verlag, 2000.

[Hay02] I. J. Hayes. Reasoning about real-time repetitions: Terminating and nonterminating. Science of Computer Pro-
gramming, 43(2–3):161–192, May/June 2002.

[Hes99] W. H. Hesselink. Predicate transformers for recursive procedures with local variables. Formal Aspects of Computing,
11(6):616–636, 1999.

[Hoo96] J. Hooman. Assertional specification and verification. In M. Joseph, editor, Real-Time Systems: Specification,
Verification and Analysis, chapter 5, pages 97–146. Prentice-Hall, 1996.

[HU98] I. J. Hayes and M. Utting. Deadlines are termination. In D. Gries and W.-P. de Roever, editors, IFIP International
Conference on Programming Concepts and Methods (PROCOMET ’98), pages 186–204. Chapman and Hall, 1998.

[HU01] I. J. Hayes and M. Utting. A sequential real-time refinement calculus. Acta Informatica, 37(6):385–448, 2001.
[JLM+94] D. T. Jordan, C. J. Locke, J. A. McDermid, C. E. Parker, B. A. P. Sharp, and I. Toyn. Literate formal development

of Ada from Z for safety critical applications. In Proc. SafeComp’94. ISA, 1994.
[Lai00] L. Laibinis. Mechanised Formal Reasoning About Modular Programs. PhD thesis, Department of Computer

Science, Åbo Akademi University, 2000.
[Mac83] B. J. MacLennan. Principles of Programming Languages: Design, Evaluation, and Implementation. Holt, Rinehart

and Winston, 1983.
[Mah92] B. P. Mahony. The Specification and Refinement of Timed Processes. PhD thesis, Department of Computer

Science, University of Queensland, 1992.
[Mah94] B. Mahony. Using the refinement calculus for dataflow processes. Technical Report 94-32, Software Verification

Research Centre, October 1994.
[Mah95] B. Mahony. Networks of predicate transformers. Technical Report 95-5, Software Verification Research Centre,

February 1995.

22 Wildman, Fidge and Carrington

[MF01] A. P. Martin and C. J. Fidge. Lifting in Z. In C. J. Fidge, editor, Computing: The Australasian Theory Symposium
2001, volume 42 of Electronic Notes in Theoretical Computer Science. Elsevier, 2001. http://www.elsevier.nl/
locate/entcs.

[MH92] B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A mine pump. IEEE Transactions on Software
Engineering, 18(9):817–826, September 1992.

[MNU97] A. Martin, R. Nickson, and M. Utting. A tactic language for Ergo. In L. Groves and S. Reeves, editors, Formal
Methods Pacific ’97, pages 186–207. Springer, 1997.

[Mor90] C. Morgan. Programming from Specifications. Prentice-Hall, 1990.
[Nau01] D. A. Naumann. Predicate transformer semantics of a higher order imperative language with record subtyping.

Science of Computer Programming, 41(1):1–51, September 2001.
[NH97] R. Nickson and I. J. Hayes. Supporting contexts in program refinement. Science of Computer Programming,

29(3):279–302, 1997.
[NTU96] R. Nickson, O. Traynor, and M. Utting. Cogito Ergo Sum: Providing structured theorem prover support for

specification formalisms. Australian Computer Science Communications, 18(1):149–158, February 1996.
[NU95] R. Nickson and M. Utting. A new face for Ergo: Adding a user interface to a programmable theorem prover.

In H. Hasan and C. Nicastri, editors, HCI, A Light into the Future: Proceedings of OZCHI’95, pages 204–209.
Ergonomics Society of Australia Inc., November 1995.

[PH02] S. Peuker and I. Hayes. Towards a refinement calculus for concurrent real-time programs. In C. George and H. Miao,
editors, Formal Methods and Software Engineering (ICFEM’02), volume 2495 of Lecture Notes in Computer
Science, pages 335–346. Springer-Verlag, 2002.

[Sam97] A. Sampaio. An Algebraic Approach to Compiler Design, volume 4 of AMAST Series in Computing. World
Scientific, 1997.

[Sha93] B. Sharp. A basic guide to Zeta. Draft, York Software Engineering Ltd, December 1993.
[Smi01] G. Smith. Introducing parallel composition to the timed refinement calculus. In H. El Gindy and C. J. Fidge,

editors, PART 2000: Proceedings of the 7th Australasian Conference on Parallel and Real-Time Systems, pages
139–148. Springer-Verlag, 2001.

[Sta99] M. Staples. A Mechanised Theory of Refinement. PhD thesis, Cambridge University, 1999.
[TM95] I. Toyn and J. A. McDermid. CADiZ: An architecture for Z tools and its implementation. Software—Practice &

Experience, 25(3):305–330, March 1995.
[UF96] M. Utting and C. J. Fidge. A real-time refinement calculus that changes only time. In He Jifeng, John Cooke, and

Peter Wallis, editors, BCS-FACS Seventh Refinement Workshop, Electronic Workshops in Computing. Springer-
Verlag, 1996. http://www.ewic.org.uk/ewic/.

[UNT96] M. Utting, R. Nickson, and O. Traynor. Theory structuring in Ergo 4.1. In M. E. Houle and P. Eades, editors,
Proc. Computing: The Australasian Theory Symposium (CATS’96), pages 137–146, Melbourne, January 1996.

[Vic90] T. Vickers. An overview of a refinement editor. In Proceedings of the Fifth Australian Software Engineering
Conference (ASWEC’90), pages 39–44. IREE, 1990.

[WF02] L. Wildman and C. J. Fidge. The variety of variables in computer-aided real-time programming. In J. Derrick,
E. Boiten, J. Woodcock, and J. von Wright, editors, Refine 2002: Proceedings of the BCS/FACS Refinement
Workshop, volume 70(3) of Electronic Notes in Theoretical Computer Science. Elsevier, 2002. Invited paper.

[WFC00] L. Wildman, C. J. Fidge, and D. A. Carrington. Computer-aided development of a real-time program. Software—
Concepts & Tools, 19(4):190–202, August 2000.

[WH98] L. Wildman and I. Hayes. Supporting contexts in the sequential real-time refinement calculus. In J. Grundy,
M. Schwenke, and T. Vickers, editors, International Refinement Workshop & Formal Methods Pacific ’98, Discrete
Mathematics and Theoretical Computer Science, pages 352–369. Springer-Verlag, 1998.

