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On Randomization versus Synchronization

Hagen Vélzer*

Software Verification Research Centre
The University of Queensland
Australia

Abstract

We expose limitations of randomization in asyn-
chronous distributed systems by presenting two
new impossibility results for paradigmatic problems.
The first result states that mutual exclusion cannot
be solved starvation free with probability 1 in the
absence of (strongly) fair synchronization. That is, for
example, an agent waiting to access a shared variable
eventually accesses the variable. The second result
states that a crash-tolerant version of the dining
philosophers problem cannot be solved starvation
free with probability 1 even if fair synchronization
is assumed. In both cases, randomization does not
(sufficiently) increase the ability of the underlying
model to synchronize independent objects.

1 Introduction

The benefit of randomization in distributed algo-
rithms, i.e., agents flipping coins during the ex-
ecution of their program, is well known. Ran-
domized algorithms are often simpler and more
efficient than their deterministic counterparts and
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+61 7 3365 1533; supported by Deutsche Forschungsge-
meinschaft: Project "Konsensalgorithmen" and funded
in part by Australian Research Council, Large Grant
A49801500, A Unified Formalism for Concurrent Real-
Time Software Development.

they sometimes solve problems deterministic algo-
rithms provably cannot solve. Much less is known
about the limitations of randomization with re-
spect to the solvability of coordination and syn-
chronization problems.

One of the most prominent examples for the
benefit of randomization is symmetry breaking.
There, randomization allows us to construct sym-
metric algorithms that start in a symmetric state
and lead to an asymmetric state with probabil-
ity 1. Examples for symmetry breaking problems
are leader election and mutual exclusion.

Hart, Sharir, and Pnueli [5] show however that
it still depends on the particular problem whether
a symmetric randomized solution exists. While
there is a symmetric solution to the leader elec-
tion problem, they show that every fully sym-
metric mutual exclusion protocol where proces-
sors communicate via a shared variable with sep-
arate read/write operations deadlocks with posi-
tive probability. They conclude: “These phenom-
ena call for further study to understand better the
distinction between those concurrent problems
that admit probabilistic solutions that are better
than deterministic solutions, and those problems
that do not benefit from introduction of random-
ization.”

For some problems and a given model it turns
out that the liveness and the safety specifications
of the problem are incompatible, i.e., the live-
ness specification implies that there are execu-
tions that violate the safety specification. In these
cases there is no hope that the problem can be
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(a) Local change (b) Synchroniza-
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Fig. 1: Two transitions

solved with probability 1 by introducing random-
ization to the model. Examples for impossibilities
of that kind are finding the size of a ring where
agents are indistinguishable [6] and reaching con-
sensus by message passing if as many as half of
the agents may crash [2].

If the safety and liveness specifications are com-
patible then the existence of a solution depends on
the liveness assumption of the model, that is for
example, wait-freedom or other fairness assump-
tions for shared objects, the assumption that each
message will eventually be received, and weak and
strong completeness of failure detectors.

In this paper, we consider problems where the
existence of a solution depends on liveness as-
sumptions, in particular on synchronization as-
sumptions.

We use Petri nets [12, 14] to formalize and vi-
sualize the synchronization assumptions. Fig. la
shows an object x in state A that changes its state
to B by the occurrence of transition ¢ (¢ removes
the token from A and puts a token into B). An
object could be a processor, a shared variable, or
a message. Fig. 1b shows a synchronization of the
objects £ and y. Both objects change their state
simultaneously with the occurrence of t. Object z
changes from state A to B and y changes from C
to D. Object z could be a processor and y could
be a shared variable in this case. If object z is in
state A we also say x is ready for ¢.

Fig. 2 shows a join and a fork, two special cases
of the synchronization in Fig. 1b, which can rep-
resent a processor z receiving and z sending a
message y, respectively.

We distinguish three basic architecture inde-

(a) Join (b) Fork

Fig. 2: Special cases of synchronization
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(b) Fairness

(a) Progress

Fig. 3: Two synchronization assumptions

pendent synchronization assumptions, progress,
fairness, and hyperfairness. We describe the
assumptions here for two-party synchroniza-
tion. Generalization to n-party synchronization
is straight-forward and can be found in the re-
mainder of this paper.

Progress means that both objects eventually
synchronize in t if both wait for each other when
ready for t, i.e., neither object engages in another
transition departing from A and C, respectively.
This is symbolically depicted by the negated arcs
in Fig. 3a. Progress for ¢ is essentially weak fair-
ness! (also justice) for transition t. That is ¢ even-
tually occurs when continuously enabled. If z is
a shared object, it means deadlock freedom of ob-
ject z—as long there is some process that is ready
to access = then some process will access z.

Fairness means that both objects eventually
synchronize in ¢ if one object waits for the other
and the other object is always eventually ready,

'"Depending on the formalization, weak fairness can be
slightly stronger than progress, but, in a faithful mod-
elling of an asynchronous system, both notions coin-
cide.



Fig. 4: Hyperfairness

i.e., it also waits or it always returns to the state
where it is ready for ¢ (Fig. 3b). Fairness is es-
sentially strong fairness® (also compassion) for t,
that is £ occurs when always eventually enabled.
If z is a shared object then fairness means wait-
freedom (also starvation freedom) of z, that is y
will eventually access x when waiting to access
z. In the context of messages it means that each
message that is sent to a process z is eventually re-
ceived by x even if another process independently
sends infinitely many messages to z.

Hyperfairness means that both objects syn-
chronize in ¢ when both objects are always, in-
dependently from each other, eventually ready
(Fig. 4). This is a strong assumption, usually
too strong to postulate as it assumes that both
objects are eventually ready at the same time al-
though they leave and enter their ready state in-
dependently from each other. Hyperfairness was
introduced by Attie, Francez, and Grumberg [1]
and our notion gives a new formalization for their
concept. Lamport’s hyperfairness [10] is a much
stronger notion which we do not consider here.
Elsewhere [16], we have shown that hyperfairness
can be often implemented with the help of partial
synchrony®. Here, hyperfairness occurs only for
completing the picture.

The relative power of the three assumptions is
illustrated by the following example, which is a
three-party synchronization. Consider a pedes-

%In a faithful modelling of an asynchronous system, both
notions coincide.

3That is the assumption that each event consumes a
bounded amount of time, where, however, the bound
is not known.

trian that wants to cross an asynchronous two-
lane road (Fig. 5). To cross, the pedestrian needs
two resources at the same time: a sufficiently
wide space on the left lane and one on the right
lane (assume that he cannot safely wait between
the two lanes). Progress assumes that he will
cross the road if both resources are permanently
available, i.e., if no cars come. Fairness assumes
that he will also eventually cross the road if one
resource is permanently available and the other
always eventually. This includes cases with in-
finitely many cars on one lane. Hyperfairness as-
sumes that the pedestrian also eventually crosses
if both resources are always, independently from
each other, eventually available. This includes
cases with infinitely many cars on both lanes.

A

A

Y

Fig. 5: A pedestrian crossing a two-lane road

Consider now the classical mutual exclusion
problem for two agents: FEach agent cycles
through the three states quiet, hungry, and criti-
cal such that both agents are never critical at the
same time. Fig. 6 shows a simple mutex system
>1 with a central key that is needed for entering
the critical state. Transitions a; and a, are grey
shaded to designate that no liveness is assumed for
them, i.e., an agent may remain quiet forever. For
all other transitions, progress is assumed. This
still does not guarantee starvation freedom of the
mutex system as one agent may remain hungry
forever while the other is using the key infinitely
often.

It is known that starvation-free mutex cannot
be solved if only progress is assumed [7, 15]. All
known mutex-solutions use fairness at one place
or another?*. Note that ¥;in Fig. 6 guarantees

4The fairness assumption is sometimes not explicit. In
Lamport’s bakery algorithm [8], for example, the fair-
ness assumption is that each customer eventually draws



hungry,

Fig. 6: ¥1 — a mutex system

starvation-freedom if fairness is assumed for b; and
by.

As a new result, we show in this paper that mu-
tex cannot be solved starvation-free with proba-
bility 1 by progress and randomization. This im-
plies that fairness cannot be implemented with
probability 1 by progress and randomization.

When we compare mutex with the classical
message-passing consensus problem with crashing
agents (as defined by Fischer et al. [4]) we get the
picture in Fig. 7. While mutex cannot be solved
with progress and randomization, consensus can
(Ben-Or’s algorithm [2] does not need fairness)
and, on the other hand while consensus cannot
be solved with fairness alone, mutex can (fairness
is as strong as the liveness assumed by Fischer
et al. [4], which we proved elsewhere [16]). Hence
fairness and randomization are incomparable with
respect to their expressive power and mutex and
consensus are incomparable with respect to their
solvability.

It is therefore natural to investigate the power
of the combination of fairness and randomization.
Here we can obviously solve mutex as well as con-
sensus. To show the limitation of this model,
we consider a generalization of the mutex prob-
lem known as the dining philosophers problem
[3]. Consider a finite set A of agents and an ir-
reflexive and symmetric relation N C A x A. If
(z,y) € N we call z and y neighbors. We want to
solve the mutex problem for each pair of neigh-
bors simultaneously, i.e., two neighbors are never
critical at the same time. Assume now that agents
may crash. Since an agent may crash while being

a ticket in spite of other customers drawing infinitely
many tickets.

Progress

Progress + Randomization

\

Fairness + Randomization

Fairness

Hyperfairness

Fig. 7: The hierarchy of models

critical and we cannot detect crashes, we have to
weaken the starvation freedom requirement. We
demand that each hungry agent eventually be-
comes critical unless itself or one of its neighbors
crashes. In the case of a crashing agent, this still
requires a hungry agent with at least distance 2
to the crashing agent in the neighborhood graph
to eventually become critical.

Although this seems to be a weak requirement,
we show that this problem cannot be solved by
This problem re-
quires stronger synchronization than is provided
by fairness. It requires synchronization of several
independent objects that cannot wait for synchro-
nization because of the crash-tolerance. Crash-
tolerant generalized mutex can be solved by hy-
perfairness and, as we show elsewhere [16] by fair-
ness, randomization, and partial synchrony.

fairness and randomization.

We use partial-order semantics in this paper,
i.e., an execution represents only the causal order
of events (Lamport’s happens-before relation [9]).
This simplifies the definition of synchronization
assumptions and some proofs. In particular, we



use a recently proposed partial-order semantics
for randomized algorithms [17]. That semantics
models an adversary, called the distributed adver-
sary, that is weaker than the classical adversary,
which strengthens our impossibility results. The
distributed adversary does not know, in contrast
to the classical adversary, any order on causally
independent events and it cannot base a nondeter-
ministic choice on the outcome of coin flips that
are causally independent from that nondetermin-
istic choice.

The remainder of the paper is organized as fol-
lows. In Sect. 2, we introduce our computational
model. In Sect. 3, we define progress and present
our first result. In Sect. 4, we define fairness and
present our second result. Finally, we briefly dis-
cuss hyperfairness in Sect. 5.

2 Computational Model

In this section, we define Petri nets, our compu-
tational model, their partial-order semantics, and
their randomized version.

Systems. A Petri net (or net for short) N =
(P,T,F) consists of two disjoint non-empty,
countable sets P and T and a binary relation
F C(PxT)U(T x P). Elements of P, T, and
F are called places, transitions, and arcs of the
net respectively. We graphically represent a place
by a circle, a transition by a square, and an arc
by an arrow between the corresponding elements.
An element of P UT is also called an element of
N. For each element z, we define the preset of x
by *z = {y | (y,z) € F} and the postset of z by
z* ={y| (z,y) € F}. For a set X of elements, let
*X = Ugex *z and X* = (J,cx 2°. We restrict
our attention to nets in which for each transition
t, the preset *t and the postset ¢* are non-empty
and finite. A set C of transitions of a net such
that |C| > 1is called a conflict if [, *t # @. A
conflict C' is mazimal if there is no conflict that
contains C.

A state, also called a marking, M of a net is
a finite bag (or multiset) over P. A marking
is graphically represented by black tokens in the

places of the net. By +,—, and < we denote
bag addition, subtraction , and inclusion, respec-
tively. A subset of P is treated as a bag over P
by identifying it with its characteristic function.
A transition t is enabled in a given marking M if
*t < M, i.e., if all tokens specified by the preset
of t are present in M. If ¢ is enabled in a mark-
ing M then t may occur, resulting in the follower
marking My = (M7 — *t) + t*. This is denoted
My 5 My,

A pair ¥ = (N, M?) of a net N and a marking
MPO of N is called a system. The marking M? is
called the initial marking of 3. A finite or infi-
nite alternating sequence My, t1, M1, ... of mark-
ings and transitions of ¥ that starts in the initial
marking of ¥ and respects the occurrence relation
Lis called a sequential execution of 3. Similarly,
a computation tree of X is a finite or infinite la-
belled tree where vertices are labelled with mark-
ings and edges are labelled with transitions such
that the root is labelled with the initial marking
and the labelling respects the occurrence relation.
There is a natural prefix order on all computation
trees of ¥ with a maximal computation tree that is
unique up to isomorphism. Note that a sequential
execution is a non-branching computation tree.

Partial-order semantics. Fig. 8 shows a partial-
order execution of 3; from Fig. 6. A square rep-
resents an event, that is an occurrence of a tran-
sition and a circle represents a condition, that is
the occurrence of a token in a place. In contrast
to a sequential execution, a partial-order execu-
tion does not represent a total order on the events
but a partial order, called causal order. While b,
is causally dependent on b;, the events labelled
with & and a, are independent (not ordered). A
partial-order execution p represents a set of se-
quential executions, called sequentializations of p,
which can be derived by arbitrarily increasing the
causal order of p to a total order. The partial-
order counterpart of a computation tree is an un-
folding |11|. Fig. 9 shows an unfolding of ;. A
partial-order execution is a conflict-free unfolding.

Let N be a net. For each element x of N, we
define the set of predecessors of x by | z = {y |
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quiet; 5, hungry, p, critical;
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Fig. 8: A partial-order execution of ¥;
quiet; a; hungry, b; critical; quiet; a;

critical;

hungry; b;

quiet, 3 hungry, b, critical,

quiet, 3 hungry, b, critical,

Fig. 9: An unfolding of ¥,

yFtx} where F* denotes the transitive closure
of F. N is acyclic if for each element z of N,
we have ¢ € |  and N is predecessor-finite if for
each element x of N, the set | x is finite. Let
K = (B,E, <) be an acyclic, predecessor-finite
net. A place b € B is called a condition and a
transition e € F is called an event. Since K is
acyclic, the transitive closure of <, denoted <, is
a partial order, which we call the causal order. If
we have x1 < x5 or z9 < z1 then we say z; and
xo are causally dependent. If we have 1 < x5 or
T1 = T9 then we write 1 < z9. Two elements are
in (extended) conflict, denoted x1 # xo, if there
is a conflict {e1, e2} such that e; < z; for i =1,2.
Two different elements are causally independent
(or concurrent), denoted x1 co x2, if they are nei-
ther causally dependent nor in conflict. A co-set
is a finite set of pairwise concurrent conditions. A
cut is a maximal co-set. A co-set D is reachable
from a cut C if for all ¢ € C and all d € D, we
have ¢ < d or ¢ co d.

A predecessor-finite, acyclic net K is called an
occurrence net, if its set of minimal conditions
°K = {b € B| *b = @} is finite, and for each
condition b of K we have |*b| < 1, and for each
event e of K, its preset e is a co-set. Let X

be a system and let K = (B, FE,<) be an oc-
currence net. Let [ : BUE — PUT be a la-
belling such that [(B) C P and I[(E) C T. For
a co-set D, I(D) denotes a marking defined by
I(D) = > ycpl(b). The pair 7 = (K,I) is an un-
folding of ¥ if I(°K) = M°, and for each event e
of K, we have [(®e) = *l(e) and I(e®) = I(e)®, and
for all events ey, ey of K, we have *e; = ®ey and
l(e1) = l(ez) implies e; = ey. For two conditions
b1 and by of an unfolding, exactly one of the fol-
lowing five relations holds: by = bs or by < by or
by < by or by # by or by co bo.

There is a natural prefix-order on all unfold-
ings of a system with a maximal unfolding, which
is unique up to isomorphism. A conflict-free pre-
fix of an unfolding = is called a partial-order ez-
ecution or run of m. R(7), Rmax(7), and Rean(7)
denote the set of all runs, all maximal runs (with
respect to the prefix order), and the set of all finite
runs of m, respectively. Note that, in contrast to
sequential executions, there are infinite partial-
order executions that can be extended. For ex-
ample, in the run of ¥; where [ becomes critical
infinitely often and r remains quiet, the initial
quiet,-condition has no successor, hence the run
can be extended by an occurrence of transition a,..



We use a simple temporal logic to specify tem-
poral properties containing the operators always
O, eventually <, and leads-to >. If p is a place
then p is also a state formula, which is valid in a
marking that has at least one token on p. State
formulas can also be obtained by combining state
formulas with Boolean connectors with the usual
meaning. A state formula ¢ is also a temporal
formula, which is valid in a cut C if ¢ is valid in
the marking [(C). If ® is a temporal formula, so
is O ®, which is valid in a cut C if ® is valid in all
cuts that are reachable from C. Temporal formu-
las can also be obtained by combining temporal
formulas with Boolean connectors with the usual
meaning. We write O ® for -0 -® and ¢ > ¥ for
0(® = < ). We will also use universal quantifi-
cation over finite sets as an abbreviation for finite
conjunction. A temporal formula ® is valid in a
run p = (K, 1) if it is valid in the initial cut °K of
p. For a given temporal formula @, the set of all
runs p such that ® is valid in p is called temporal-
logical property.

Randomized systems. Fig. 10 shows an object
flipping an n-sided coin. Each outcome of the
coin flip is represented by a transition ¢; which
has a probability p; associated with it such that
Yoripi = 1. We model coin flips as internal
events of objects, i.e., each transition ¢; is free,
that is |*t;| = 1. The t; are called probabilistic
transitions and are graphically distinguished by
the symbol %.

Fig. 10: An object flipping a coin

A randomized system consists of a system, a
set TP C T of free transitions, called probabilis-
tic transitions, and a mapping g : THP — [0,1]
such that: each conflict with C C THP called

probabilistic conflict, is finite, 0 < u(t) < 1 for
all t € THP and for each maximal probabilistic
conflict C, we have ), - u(t) = 1.

In the classical sequential semantics for ran-
domized systems, there is a canonical probability
space associated with each probabilistic computa-
tion tree, that is a computation tree in which each
branching represents a coin flip, i.e., there is no
(pure) nondeterminism in a probabilistic compu-
tation tree. We use the partial-order counterpart
of that semantics [17].

Let ¥ be a randomized system and m = (K, 1)
an unfolding of ¥. Let EfiP = {e € E | I(e) €
THPY be the set of probabilistic events of m and
carry over probabilities by p(e) = u(l(e)) for each
e € E%P_ Call a probabilistic conflict C' of m
complete if Y - u(e) = 1, ie., if it contains
all outcomes of the coin flip. An unfolding 7 of
Y. is called probabilistic if each conflict in 7 is a
complete probabilistic conflict. For each proba-
bilistic unfolding 7, there is a unique probabil-
ity space (Qr, Ay, Pr) such that Q; = Rpax(7),
for each finite run « of m, its cone K(a) =
{p € Rmax(7) | @ is a prefix of p} is in Ay, and
Pr(K(e) = [Legannle) (= 1 i Ea® = 2)
where Egip denotes the set of all probabilistic
events of a.

Temporal-logical properties are measurable in
that probability space and a temporal-logical
property X is said to be I-vwalid in 7 if Pr(X) =1
and I-valid in 3 if it is 1-valid in each admissible
probabilistic unfolding 7 of 3, where admissible
will be defined by the liveness assumption of the
particular model. As explained in the introduc-
tion, this semantics is more liberal than the clas-
sical sequential semantics, i.e., roughly speaking,
if a property is 1-valid in all admissible computa-
tion trees then it is also 1-valid in all admissible
probabilistic unfoldings but not necessarily vice
versa (cf. [17]).

If X is a safety property that is 1-valid in X
then X is satisfied in every run of ¥. (If X is
violated then there is, by definition of a safety
property, a finite run « such that all runs in K(«)
violate X and we have P, (K (a)) > 0).



3 Progress

We present our first impossibility result in this
section. We first formalize progress and define
then which systems constitute a mutex solution.

A progress system consists of a system and a
set of distinguished transitions TP™8 C T, called
progress transitions. A transition ¢ € T\ TP™8 is
graphically distinguished by a grey shade. For
a randomized progress system, we can assume
THiP C TPro8 without loss of generality.

Let @ be a set of places of a system ¥ and
let p = (K,l) be a run of ¥. A co-set D of p
is called a @Q-set if [(D) = Q. Q is persistent in
p if there is a @-set D in p such that D* = &,
i.e., it is a set of tokens that are never consumed
in p. A run p violates progress with respect to
t if *t is persistent in p. A run p is progressive
if there is no transition ¢t € TP™8 such that p
violates progress with respect to t. An unfolding 7
is progressive if each run of 7 is progressive. Every
(finite or infinite) unfolding can be extended to a
progressive unfolding.

Fig. 11: Mutex structure ¥,

We specify mutex in two steps (similar to
Kindler and Walter’s approach [7]). First we de-
fine muter structure and then muter behavior. Al-
though we consider only two agents in this sec-
tion, we define mutex structure for a finite set A
of agents to reuse the definition later. A progress
system Y has mutexr structure for A if for each
agent z € A, (1) there is exactly one progress sys-
tem Y as in Fig. 11 that is a subsystem of X
such that all ¥, are pairwise disjoint and (2) the
connection of ¥, with the rest of X is restricted
as Fig. 11 indicates. The formalization of this
is straight-forward [17]. 3, in Fig. 11 models a

client z of a mutex algorithm. A client can in-
form the mutex algorithm about in which of the
three states it is by outgoing arcs of a;, b, and ¢,.
The mutex algorithm can inform a client when it
is allowed to enter the critical state by an ingoing
arc to by. Note that a critical agent will always
become quiet but a quiet agent may remain quiet
forever. Note also that a critical agent need not
wait for anything to leave the critical state.

A randomized system X has probabilistic mutex
behavior, if the following two properties (1) and
(2) are 1-valid in each progressive probabilistic
unfolding of X:

O —(eritical; A critical,) (1)

Vz € {l,r} : hungry, > critical, (2)

Theorem 1 There is no randomized progress
system with mutex structure for {l,r} and prob-
abilistic mutex behavior.

Proof: To derive a contradiction, let 3 be a ran-
domized progress system with mutex structure
and probabilistic mutex behavior. There is a pro-
gressive probabilistic unfolding 7; where r is never
hungry but [ is always eventually hungry: Start
with the initial marking and let [ become hungry
and extend by progress, i.e., extend to a minimal
progressive probabilistic unfolding. Let | become
hungry everywhere (in every branch) where pos-
sible and repeat infinitely.

There is a progressive probabilistic unfolding
o that extends m in which r becomes hungry:
Let a, occur and extend by progress. Since ¥ has
probabilistic mutex behavior, r becomes critical
with probability 1 in 7. Let b, be a condition
of my such that I(b,) = critical,. We know by
construction that b, does not belong to 7. Let
C be a cut such that b, € C. In C, we have ei-
ther gquiet; or hungry, or critical;, where critical)
can be ruled out because that violates (1). As-
sume hunrgy;. Each hunrgy;-condition belongs to
w1 by construction. Therefore, there is a reach-
able critical;-condition b; that belongs to m1. Ob-
viously, we do not have b, = b, since I(b;) # I(b,).
We also do not have b, co b; because of (1). We



have neither b; # b, nor b; < b, because b; is
reachable from C. Finally, we also do not have
b, < by since b; belongs to m; and b, does not
belong to m;. This contradicts m; being an un-
folding. Therefore, we do not have hungry; but
quiet; in C.

This quiet;-condition has no event consuming
it, because otherwise the subsequent hungry;-
condition would be together with b, in some cut
and we can argue as before. However, every
quiet;-condition is followed by a hunrgy;-condition
with probability 1 by construction—in 7; as well
as in mo. Therefore the situation can only occur
with probability 0 and hence r can be critical with
at most probability 0 in mo.

4 Fairness

In this section, we formalize fairness and present
our second impossibility result.

A fairness system consists of a progress sys-
tem and a set of distinguished transitions 7" C
TP8  called fairness transitions. For a random-
ized fairness system we can assume 7P N 7fair —
@ without loss of generality. Fairness uses a no-
tion of concurrent conditions being available at
the same time. The conditions of a co-set D of a
run are available at the same time if e € D* =
D C ®e,i.e., if D is persistent or the conditions of
D are synchronized by some event e.

A set @ of places of a system X is strongly in-
sistent in a run p if for each cut C of p, there is
a reachable Q-set D such that e € D®* = D C ®e.
A run p violates fairness with respect to ¢ if there
is a set @@ C °t such that @ is persistent in p,
*t\ @ is strongly insistent in p, and ¢ occurs only
finitely many times in p. Fairness requires a set
of objects to wait for the synchronization and the
rest to be always eventually available together at
the same time. If a run p violates fairness with
respect to ¢ then t is enabled infinitely often in
each sequentialization of p. A run is fair if there
is no transition ¢ € T such that p violates fair-
ness with respect to t. A probabilistic unfolding
7 is fair if each run of 7 is fair. Each finite proba-
bilistic unfolding can be extended to a progressive

and fair probabilistic unfolding.

We counsider now the dining philosophers prob-
lem [3], a generalization of Dijkstra’s ring of five
philosophers. Let A be a finite set of agents and
N C A x A be an irreflexive and symmetric rela-
tion, called neighborhood relation. A system 3 has
generalized mutex behavior if mutex is satisfied for
each pair of neighbors and starvation freedom for
each agent, i.e., if the following two formulas are
valid in each admissible run of X:

V(z,y) € N : O—(eriticaly A criticaly)  (3)
Vx € A : hungry, D> critical, (4)

Due to Theorem 1, fairness is needed for this
problem and fairness is also sufficient [3]. How-
ever, consider now that agents may crash perma-
nently. For our purposes, it suffices to allow that
critical agents may crash, i.e., we do not require
the transition ¢; from Fig. 11 to be a progress
transition anymore. We call the resulting notion
of mutex structure a crash-prone mutex structure.
For each agent z € A, we define the predicate
crashed(x) to be valid in a cut C of a run p if there
is a criticaly-condition b € C such that b* = @.
When an agent crashes, we do not require neigh-
boring agents to become critical again, i.e., we
weaken the starvation-freedom (4) to

Vz € A : hungry, > (criticaly V crashed (z)
V (Jy: (z,y) € N A crashed(y))) (5)

where crashed(z) can also be omitted as we al-
low only critical agents to crash. A randomized
fairness system X has probabilistic crash-tolerant
mutez behavior for A and N if (3) and (5) are
1-valid in each progressive and fair probabilistic
unfolding of X.

Theorem 2 Let A be a set of at least three
agents. Then, there is a neighborhood relation
N on A such that there is no randomized fairness
system with a crash-prone mutex structure for A
and probabilistic crash-tolerant mutex behavior
for A and N.
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b

Fig. 12: Three agents in a neighborhood relation

Proof: Let A and N be as in Fig. 12. To derive
a contradiction, let > be a randomized fairness
system with crash-prone mutex structure for A
and probabilistic crash-tolerant mutex behavior
for A and N. We construct a fair and progressive
probabilistic unfolding 7 such that Pr((5)) < 1.
We will use a pattern of behavior that is known as
conspiracy due to race conditions [1] where a and
¢ conspire against b, that is, due to bad timing,
there is always at least one of the two agents a
and c in its critical state, hence b can never enter
the critical state. We now start the construction
of 7 in the initial marking of X.

1. Agent a becomes hungry. There is an exten-
sion 7y where a becomes critical with prob-
ability 1. Then there is, for each p; < 1,
a finite prefix m; of my such that a becomes
critical with at least probability p; in m; and
that all critical,-conditions have no succes-

Note that, in 71, there is no criticaly-

condition.

SOr.

2. Agent b becomes hungry.

3. Agent ¢ becomes hungry. We extend to a
finite probabilistic unfolding my without us-
ing transition ¢, (we pretend that a has
crashed), such that ¢ becomes critical with
at least probability ps in mo and that all
critical .-conditions have no successor. In 7o,
b becomes critical with at most probability
€1 = 1—p; since b cannot, due to (3), be crit-
ical concurrently with a and we extended in
this step concurrently to critical, with prob-
ability pi1, i.e., each condition of the exten-
sion is, with probability p;, concurrent to a
critical ,-condition.

4. Agent a becomes hungry in each run where
it is not yet hungry. We extend to a finite

10

probabilistic unfolding 73 without using tran-
sition ¢, such that hungry, > critical, is
valid with at least p3 and that all maximal
critical -conditions have no successor. In 73,
b is critical with at most probability €; + €2
where e = 1 — py since we extended with
probability po concurrently to critical. in this
step.

5. Repeat the last two steps infinitely often.

We get an infinite progressive probabilistic un-
folding where no agent crashes in any run of m;
7 can be constructed such that it is fair since we
extend sequentially and whenever a fairness tran-
sition is enabled we can let it eventually occur.
If there are conflicts between fairness transitions
we can let the transitions of the conflict occur
in round-robin fashion whenever the conflict is
enabled. Agent b becomes critical with at most
probability € = >°°, ¢ in m and we can choose
the p; such that € becomes arbitrarily small.

5 Hyperfairness

This section briefly introduces hyperfairness as a
way to solve crash-tolerant generalized mutex. In
contrast to fairness, hyperfairness does not require
that all objects of a synchronization have to be
ready at the same time—it assumes that all ob-
jects will eventually be ready at the same time
provided that all objects return to their ready
state independently from each other.

A set @ of places of a system ¥ is insistent in a
run p of ¥ if for each cut of p, there is a reachable
Q@-set. A run violates hyperfairness with respect
to t if *¢ is insistent in p and ¢ occurs only finitely
many times in p. Hyperfairness just excludes the
conspiracies that we used in the proof of Theo-
rem 2.

Crash-tolerant generalized mutex can be solved
by hyperfairness: Place a key between each pair
of neighbors. For the resulting system, hyper-
fairness can be implemented by fairness, ran-
domization, and partial synchrony with probabil-
ity 1 [16]. Also message-passing consensus can be



solved with hyperfairness. We will treat hyper-
fairness in detail elsewhere.

6 Conclusion

It is easy to see that both presented results can
be strengthened in the following way. If we want
the safety specification of the problem to be 1-
valid, which is equivalent to it being valid in all
executions, then the liveness specification cannot
be satisfied with high probability.

As we can see in randomized solutions to the
consensus [2], leader election [6], and choice co-
ordination [13] problems, randomization helps to
coordinate causally independent decisions. That
independence allows crash-tolerance in the case of
the consensus problem.

We presented two examples in this paper where
introduction of randomization did not help to
solve the problems because it did not increase the
ability of the model to synchronize independent
objects. Note that our results establish that all
depicted relationships in Fig. 7 are strict.
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