
SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 02-34

Specification matching of state-based
modular components

David Hemer

September 2002

Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript
files are available via http://svrc.it.uq.edu.au

Specification matching of state-based modular components

David Hemer

Abstract

Retrieval of software components from a library relies on

techniques for matching user requirements against library

component interfaces. In this paper we introduce a num-

ber of techniques for matching formally specified, state-

based modules. These techniques will form the basis for

retrieval tool support. The techniques described in this

paper build on existing specification matching methods,

based on individual functions, specified using pre- and

post-conditions. We begin by defining a basic module

matching technique, based on matching the individual

units within a module. We consider variations of this

technique that take into account two important features

of modules: the visibility of module entities; and the use

of state invariants. An advanced technique, based on data

refinement and the use of coupling invariants, is also de-

scribed.

Keywords: Component-based development, Re-
trieval, Specification matching

1 Introduction

As an answer to the “software crisis” the idea
of component-based development was proposed
[McIlroy, 1969]. The idea is analogous to building
a complex electronic component from a number of
smaller, simpler, well-known components in an elec-
tronic engineering context. The engineer browses a
catalogue of component descriptions for suitable com-
ponents which can be pieced together in some manner
to build a complex component. To build this com-
ponent it may be necessary to modify the catalogue
components in some way.

Given a high-level formal specification of program
requirements, compilable code is generated by match-

ing specification statements against a library of de-
pendable program components [Fidge, 2001]. The
components, referred to as templates, are represented
as refinements between a specification and an imple-
mentation, represented using Dijkstra’s guarded com-
mand language [Dijkstra, 1976].

Templates are defined as modular, state-based
components, containing a number of operations con-
sisting of a specification and an implementation
[Hemer, 2002]. Templates may include higher-order
parameters that can be instantiated to solve a variety
of problems.

One of the main challenges, besides populating the
library, is developing tools for retrieving suitable li-
brary components given a specification of the require-
ments. In this paper we propose using specification
matching [Zaremski and Wing, 1996], a technique for
comparing formal specifications, as a basis for devel-
oping retrieval support. A common specification lan-
guage is used to specify the program requirements
(the query), and library components.

The specification (interface) part of our template
language is very similar to the Sum specification lan-
guage [Traynor et al., 1995] (a modular extension of
the Z specification language [Spivey, 1989]), with the
exception of a couple of advanced features. Given
that Sum should be easy to understand for those
readers familiar with the Z specification language,
we will use it to investigate specification matching
techniques for state-based modules. It is straightfor-
ward to transfer these matching techniques over to
our template language.

In Section 2 we give an overview of specification
matching, describing three matching techniques rel-
evant to this paper. Section 3 describes the Sum
specification language, illustrating the language with
some simple examples. Section 4 defines a technique

1

for matching state-based modules. This section also
defines two extensions to the basic technique; the
matching methods are illustrated with an example.
Section 5 defines an advanced module matching al-
gorithm, based on the ideas of data refinement and
using coupling invariants.

2 Specification matching

Retrieving components that satisfy the requirements
of the engineer from a component library is one of
the challenges of component-based development. In
general retrieval relies on algorithms for matching li-
brary component specifications against user require-
ments. There are many approaches that work with
informal interfaces, such as keyword based retrieval,
and classification based retrieval. However it is diffi-
cult to capture user requirements precisely and in an
unambiguous manner using these approaches.

A promising approach that alleviates some of these
problems is using formal languages to specify the
component interfaces and user requirements. Re-
trieval is based on matching these formal specifica-
tions. We will refer to such approaches broadly as
specification matching, although typically specifica-
tion matching refers to a particular class of spec-
ifications (functions specified using pre- and post-
conditions).

A number of different approaches to
specification matching have been proposed
[Zaremski and Wing, 1996]. Each of these ap-
proaches matches a query Q against a library
component specification S . The query and library
component specification use the same specification
language, specified using a pre-condition and post-
condition. For the query Q the pre-condition is
denoted as Qpre , while the post-condition is denoted
as Qpost . Similar naming conventions are used to
refer to the pre- and post-condition of the library
component.

We will briefly describe three specification match-
ing techniques relevant to this paper: exact matching;
plug-in match; and guarded plug-in match. For more
details on these and other techniques the reader is
referred elsewhere [Zaremski and Wing, 1996].

A query and library component are exact matches
iff their preconditions are logically equivalent, and
their postconditions are logically equivalent.

Definition 2.1 (Exact Pre/Post match) A
query Q and library component S are said to be an
exact match, iff

(Qpre ⇔ Spre) ∧ (Qpost ⇔ Spost)

Plug-in match succeeds when the precondition of the
library component is weaker than that of the query,
and the postcondition of the library component is
stronger than that of the query.

Definition 2.2 (Plug-in match) A query Q and
library component S are said to be a plug-in match
iff

(Qpre ⇒ Spre) ∧ (Spost ⇒ Qpost)

Guarded plug-in match is based on plug-in match, but
adds the precondition of the library component to the
post-condition relation.

Definition 2.3 (Guarded plug-in match) A
query Q and library component S are said to be a
guarded plug-in match iff

(Qpre ⇒ Spre) ∧ ((Spre ∧ Spost)⇒ Qpost)

The above techniques are used to match indi-
vidual units. They can be extended to the mod-
ule level (containing a collection of units) by defin-
ing a query to be a set of user requirements
[Zaremski and Wing, 1996]. Modules are specified
by specifying each of the individual units in the
module. A query matches a module if all query
requirements are matched against a module unit
specification. There are also additional algorithms
for matching some of the query requirements, and
matching exactly one of the query requirements
[Hemer and Lindsay, 2001].

3 Sum modules

For the purpose of illustrating the module matching
techniques described later in this paper we will adopt

2

the Sum specification language [Traynor et al., 1995].
We choose Sum because of its similarity to the Z spec-
ification language [Spivey, 1989] which is fairly widely
known and used. We also choose the Sum language
because it captures most of the specification features
of our template language [Hemer, 2002].

The Sum specification language is similar to the
Z language [Spivey, 1989] with several notable differ-
ences. Most importantly, from the point of view of
this paper, is that Sum allows modules to be spec-
ified, and it allows explicit preconditions to be in-
cluded in operations. Furthermore it syntactically
distinguishes between state schemas, initialisation
schemas and operation schemas.

Consider the Stack module specification given in
Fig. 1. The module is parameterised over the set of
values E that the stack can hold. The state of the
stack, represented by the State schema, consists of
the state variable elements of type sequence of ele-
ments, representing the contents of the stack, as well
as the variable count representing the number of el-
ements in the stack. An invariant is given for the
state indicating that the stack count corresponds to
the number of elements in the stack.

The stack is initialised, within the Init schema, by
setting elements to be the empty sequence and set-
ting the count to zero. Operations are provided for
pushing an element onto the top of the stack, popping
an element off of the stack and retrieving an element
from the top of the stack. The operation Push has
an argument element?, where the “?” indicates that
the argument is an input to the operation. The state
is updated by attaching element? to the front of the
stack and incrementing the count by one. The oper-
ation Pop has an argument element !, where the “!”
indicates that the argument is an output of the oper-
ation. A precondition is given for the Pop operation
stating that the stack cannot be empty. The state is
updated by removing element ! from the front of the
stack and decrementing the count by one. The oper-
ation Top has a precondition stating that the stack
must be non-empty, and returns the element at the
front of the stack. The state remains unchanged by
this operation.

Stack(E)

State
elements : seq E
count : N

count = #elements

Init
elements ′ = 〈 〉

OP Push
element? : E

elements ′ = 〈element?〉a elements

OP Pop
element ! : E

elements 6= 〈 〉

elements = 〈element !〉a elements ′

OP Top
element ! : E

elements 6= 〈 〉

element ! = head elements

Figure 1: Specification module for stacks

3

PriorityQueue(E , ord : E × E → B)

State
elems : seq E

Init
elems ′ = 〈 〉

OP Enqueue
element? : E

∃ sm, gr : seq E •
elems = sm a gr
∀ x : sm • ord(element?, x)
∀ x : gr • ¬ ord(element?, x)
elems ′ = sm a 〈element?〉a gr

OP Serve
element ! : E

elems 6= 〈 〉

elems = elems ′ a 〈element !〉

Figure 2: Library specification module for sorted
queues

3.1 Parameterisation

Modules can be parameterised over a restricted set
of entities. These entities include given sets, opera-
tions and functions (relations are modelled as func-
tions that map to boolean values). For example the
PriorityQueue module specification shown in Fig. 2 is
parameterised over the set of values E that the queue
may hold, as well as a (partial) ordering, ord , over
this set. To use this module, both of these param-
eters must be instantiated. For example we might
instantiate E to the set of natural numbers N and
instantiate ord to the usual ordering < over natural
numbers. Alternatively we could instantiate E to the
set of words, and instantiate ord to the lexicograph-
ical ordering on words.

3.2 Importing modules

To reference a module in a program it must first be
imported. Import brings into scope the entities de-
clared in the referenced module. An import com-
mand specifies the module to be imported, and must
also provide an instantiation for all of the module
parameters (Sum does not allow partial instantiation
of module parameters). The following command im-
ports the Stack module, instantiating the set E to
the set of natural numbers N.

UseStack
import Stack(N)

Import commands can also rename any of the enti-
ties that appear in the module, including state vari-
ables, operations, functions and relations. The fol-
lowing import command has the same effect as the
previous command, except it also renames the state
variable elements to stacknats, the operation Push to
PushNat , and the operation Pop to PopNat .

UseStack
import Stack [stacknats/elements,

PushNat/Push,PopNat/Pop](N)

3.3 Visible entities

In general module entities contained in imported
modules are referenced by means of qualified names.
However Sum provides a mechanism, using the visible
clause, where module entities can be accessed directly
without the need for qualified names. The following
command imports the Stack module and makes all
entities provided by Stack directly accessible without
the need for qualified names.

UseStack
import Stack(N);
visible Stack ;

Sum also allows selective entities within a module
to be made visible, thus providing a mechanism for
narrowing the scope of a module specification. For
example the following command imports the Stack

4

modules as before, but this time only the Pop opera-
tion is directly accessible; the other entities can only
be referenced using qualified names.

UseStack
import Stack(N);
visible Stack [Pop];

4 Module matching

4.1 Unit matching

To match modules, we require methods for matching
the individual units that appear in modules. In this
paper we will restrict our attention to three kinds of
units: state schemas; initialisation schemas; and op-
eration schemas. The notion of units differs slightly
from entities as used in Sum. Entities can have a
smaller level of granularity. For example individual
state variables are regarded as entities, however only
the complete collection of state variables is consid-
ered a unit.

We will define requirements for matching each of
these kinds of units separately; as would be ex-
pected we do not attempt to match units of a dif-
ferent kind. Following previous naming conventions
[Zaremski and Wing, 1996], Q will refer to the query
and S will refer to the library component specifica-
tion.

We assume that for all variables, the function name
returns the name of a variable, and the function type
returns the type of a variable.

State schemas The state schemas Q and S match
iff any state representable by Q can also be rep-
resented by S . More precisely, suppose the state
schema Q defines state variables Qvar and invariant
Qinv , and S defines state variables Svar and invariant
Sinv . Then the state schemas match with respect to
a renaming, σ, of state variables in S and an instan-
tiation, π, of parameters in S iff there is an injective
mapping f : Qvar � Svar such that for all variables
v in the domain of f

1. The names of the correspond state variables are

the same under σ, i.e.,

name(v) = name(f (v)[σ])

2. The type for each state variable in Q is a subtype
of the corresponding state variable in S , i.e.,

type(v) ⊆ type(f (v)(π))

and for invariants Sinv and Qinv of S and Q respec-
tively:

∀Qvar • Qinv ⇒ ∃Svar (π) • Sinv [σ](π).

For example, the query Q and specification S
given below match with respect to the renaming
[nats/ints, lcchars/chars].

QState
nats : {n : N | n ≥ 5}
lcchars : {c : CHAR | islowercase(c)}

SState
chars : CHAR
ints : Z

To achieve the match nats is mapped to ints, observ-
ing that {n : N | n ≥ 5} ⊆ Z. Similarly lcchars is
mapped to chars, observing that the set of lower-case
characters is a subset of all characters. In this case
the invariants for the query and library specification
are both true, so the matching condition is trivial.

Initialisation schemas The initialisation schemas
Q and S match iff there is a renaming, σ, of the
state variables in S and an instantiation, π, of the
parameters in S such that the initialisation condition,
Sinit of S , adapted with respect to σ and π, implies
the initialisation condition, Qinit , of Q , i.e.,

Sinit [σ](π)⇒ Qinit

5

Operation schemas Given the operation Q , with
a local variable set Qlvar , pre-condition Qpre and
post-condition Qpost ; and the operation S , with a
local variable set Slvar , pre-condition Spre and post-
condition Spost ; then Q is said to match S with re-
spect to a renaming, σ, and instantiation, π, iff

1. the name of S is renamed to the name of Q under
σ;

2. there is some renaming ρ of the variables in Slvar ,
and a mapping f : Qlvar �→ Slvar , such that for
all variables v in Qlvar

(a) the names of corresponding local variables
are the same under ρ, i.e., name(v) =
name(f (v)[ρ])

(b) the type of each variable in Q is a subtype
of the corresponding variable from S , with
respect to the instantiation π i.e.,

type(v) ⊆ type(f (v)(π))

3. the pre- and post-conditions Qpre and Qpost ,
match the pre- and post-conditions Spre [ρ∪σ](π)
and Spost [ρ ∪ σ](π), adapted with respect to σ,
ρ and π using either exact match, plug-in match
or guarded plug-in match, as described in Sec-
tion 2.

4.2 Basic module matching

Module matching can be defined by matching individ-
ual module units using the unit matching techniques
described above.

Definition 4.1 (Basic module match) A query
Q matches a library component specification S if
there is a renaming σ of entities from S and an
instantiation, π, of the parameters of S , such that
every unit in Q matches a distinct unit from S [σ](π)
using one of the unit matching strategies described
in Section 4.1.

To illustrate basic module matching, consider the
search query, Query, shown in Fig. 3, which encap-
sulates the user’s requirements for a data structure

Query

State
natlist : seqN

Init
natlist ′ = 〈 〉

OP Add
num? : N

∃ left , right : seqN •
natlist = left a right
natlist ′ = left a 〈num?〉a right

OP Remove
num! : N

natlist 6= 〈 〉

∃ left , right : seqN •
natlist = left a 〈num!〉a right
natlist ′ = left a right

Figure 3: Query specification

representing a sequence of naturals, together with op-
erations for adding a number to the sequence, and
an operation for removing one number from a non-
empty sequence. This can be matched against the
Stack module, shown in Fig. 1, using the basic match-
ing strategy. The match is achieved by renaming
[natlist/elements,Add/Push,Remove/Pop], and in-
stantiating the parameter E to the set N.

It is simple to show that the state schemas match
by observing that the state variable natlist from
Query can be represented by the state variable
elements from Stack; the Stack module also contains
the additional state variable count . The proof obli-
gation for the state invariants is

∀natlist : seqN • true⇒
∃ elements : seqN; count : N •

#natlist = count

6

This condition is simple to prove. To show that the
initialisation schemas match we need to discharge the
following proof obligation:

(natlist ′ = 〈 〉)⇒ natlist ′ = 〈 〉

This is trivial to prove.
The operation Add from the Query module can

be matched against operation Push from the Stack
module by renaming the local variable element? to
num?, and observing that the post-condition of Add
is stronger than the post-condition of Push, i.e.:

(natlist ′ = 〈num?〉a natlist)⇒
∃ left , right : seqN •

natlist = left a right ∧
natlist ′ = left a 〈num?〉a right

The operation Remove can be matched against the
operation Pop by: renaming the local variable num!
to element !; observing that the pre-condition of Re-
move is equivalent to that of Pop, i.e.,

natlist 6= 〈 〉 ⇒ natlist 6= 〈 〉

and observing that the post-condition of Remove is
stronger than that of Pop, i.e.,

(natlist = 〈num!〉a natlist ′)⇒
∃ left , right : seqN •

natlist = left a 〈num!〉a right
natlist ′ = left a right

With this match the following program using the
Query module:

Program
import Query ;
visible Query ;
. . .

can be replaced by a program that uses the stack
module, as follows:

Program
import Stack [natlist/elements,

Add/Push,Remove/Pop](N);
visible Stack ;
. . .

4.3 Entity subset matching

One problem with the basic module matching
method, as the above example illustrates, is that it
makes all entities within the library component mod-
ule visible. In general the library component will con-
tain entities that are surplus to the requirements of
the query and thus is sometimes safer to keep these
operations protected. In the example above, the li-
brary component included the additional state vari-
able count, and the additional operation Top.

Definition 4.2 (Entity subset module match)
A library component S matches a query Q, with
respect to a subset, η, of the entities in S, an entity
renaming σ and an instantiation π iff

1. If Sηvar represents the state variables of S con-
tained in η and Qvar represents the state vari-
ables of Q, then there is a bijection f : Qvar �→
Sηvar such that for all variables v in the domain
of f

(a) name(v) = name(f (v)[σ])

(b) type(v) ⊆ type(f (v)(π))

(c) the invariants match as before

2. The initialisation schemas match as before

3. Each operation of Q matches an operation of S
that is named in η with respect to σ and π, us-
ing either exact matching, plug-in matching or
guarded plug-in matching.

Using this matching strategy to match the search
query, Query, and the stack module, Stack, we would
get the same renaming and instantiation, but would
also get the entity subset {elements,Pop,Push} in-
dicating the entities that should be made visible. In
this case Program would be refined to the following
program:

Program
import Stack [natlist/elements,

Add/Push,Remove/Pop](N);
visible Stack [elements,Pop,Push];
. . .

7

4.4 Using state invariants

Another improvement to module matching is to use
state invariants as contextual information when do-
ing matching. The idea is similar to guarded plug-in
matching, where the pre-condition of the library com-
ponent is assumed to show that the post-condition
of the query and library components match. In this
case the state invariant of the library component is as-
sumed in matching both the pre-conditions and post-
conditions.

Guarded plug-in match can be redefined as follows
to make use of the state invariant, Sinv of the library
component S .

Definition 4.3 (Guarded Inv plug-in match)
A query Q and library component S are said to be
an guarded invariant plug-in match iff

((Qpre ∧ Sinv)⇒ Spre) ∧
((Spre ∧ Spost ∧ Sinv)⇒ Qpost)

This operation matching method could be used in
addition to the other matching methods defined in
Section 2 in the two module matching algorithms de-
scribed earlier.

To illustrate how such a method would be use-
ful, suppose that the Pop operation from the Stack
module, in Fig. 1, used count instead of elements
to ensure that the stack was non-empty in the pre-
condition, i.e.,

OP Pop
element ! : E

count > 0

elements = 〈element !〉a elements ′ ∧
count ′ = count − 1

To match this using plug-in or guarded plug-in match
against the operation Remove from Fig. 3, we would
be required to prove (after renamings), that the pre-
condition of the library operation is weaker than that
of the query, i.e.,

natlist 6= 〈 〉 ⇒ count 6= 0

This is clearly not provable; however using guarded
invariant plug-in match we can also assume the in-
variant, therefore the proof obligation becomes:

(natlist 6= 〈 〉 ∧ count = #natlist)⇒ count > 0

which is straightforward to prove (assuming the
length function, #, maps a sequence of a natural
number, i.e., # : (seq E)→ N).

5 Advanced matching

The module matching strategies de-
scribed to date [Zaremski and Wing, 1996,
Hemer and Lindsay, 2001] have been restricted
to matching data structures with the same underly-
ing type (or a subtype). In this section we propose
an advanced matching technique, where query
modules that define an abstract data structure are
matched against library components that implement
a more concrete data structure, and where the
concrete data structure can be used to represent
the abstract one. The idea is based on data refine-
ment [Morgan, 1994, Back and von Wright, 1998],
where operations on the abstract data structure are
implemented by operations on the concrete data
structure. A simple example is representing a set as
a list, and using the list operations to implement the
set operations.

Like data refinement, the module matching method
described in this section relies on a coupling invariant
that describes the relationship between abstract and
concrete data representations. We begin by defining
methods for matching individual module units, and
then use these methods to define and overall module
matching strategy.

5.1 Operation matching

The following definitions are based on
previous specification matching methods
[Zaremski and Wing, 1996] (repeated in Section 2).
In these definitions Qin (Sin) refers to the initial
(unprimed) state variables of Q (S). Similarly Qout

(Sout) refers to the final (primed) variables of Q (S).
The coupling invariant CI is a relationship between

8

the state variables (either initial or final) of Q and
S .

Definition 5.1 (Exact Pre/Post CI match)
A query Q and library component S are said to be
an exact pre/post match, with respect to a coupling
invariant CI , iff

((CI (Qin ,Sin) ∧ Qpre)⇔ Spre) ∧
((CI (Qin ,Sin) ∧ CI (Qout ,Sout)
∧ Spost)⇔ Qpost)

Definition 5.2 (Plug-in CI match) A query Q
and library component S are said to be a plug-in
match, with respect to a coupling invariant CI , iff

((CI (Qin ,Sin) ∧ Qpre)⇒ Spre) ∧
((CI (Qin ,Sin) ∧ CI (Qout ,Sout)
∧ Spost)⇒ Qpost)

Definition 5.3 (Guarded Plug-in CI match)
A query Q and library component S are said to be
a guarded plug-in match, with respect to a coupling
invariant CI , iff

((CI (Qin ,Sin) ∧ Qpre)⇒ Spre) ∧
((CI (Qin ,Sin) ∧ CI (Qout ,Sout)
∧ Spre ∧ Spost)⇒ Qpost)

5.2 Module matching

Advanced module matching, using coupling invari-
ants, is defined using the operation matching strate-
gies given above.

Definition 5.4 (Advanced module match) A
module query Q is said to match a library module
S, iff there is a coupling invariant CI between the
state variables of Q and S, and an instantiation, π,
of parameters in S such that:

1. If the state variables for Q are Qvar and the state
variables for S are Svar . Then each state repre-
sentable by the query module can be represented
by a state from library module, i.e.,

∀Qvar • Qinv ⇒ ∃Svarπ • Sinv

∧ CI (Qvar ,Svar)

2. The initialisation of S is equivalent with respect
to the coupling invariant to the initialisation of
Q

Sinit(π) ∧ CI (Qvar ,Svar)⇒ Qinit

3. Each operation of Q matches an operation from
S with respect to CI and π using one of the op-
eration matching methods defined in Section 5.1.

5.3 Example

Suppose we want to represent a “collection” of tasks,
represented abstractly as natural numbers, where the
number represents their priority (there may be other
information but we’re not concerned about this here).
Furthermore, suppose we require methods for adding
a task, and another for accessing the highest priority
task. Such a requirement can be encapsulated in a
search query, itself a module specification, as shown
in Fig. 4.

The SearchKey module represents the tasks as a
bag (multiset). For example the bag [[a, a, b, b, b, c]]
contains two occurrences of the element a, three oc-
currences of the element b, and one occurrence of c.
The state is initialised to the empty bag ([[]]). The op-
erations Add and Remove are specified in terms of the
bag union operator]; for example [[a, a, b]]] [[b, b, c]]
corresponds to the bag [[a, a, b, b, b, c]].

The SearchKey module is matched against the Pri-
orityQueue module shown in Fig. 2. We begin by
instantiating the module parameters E and ord to
N and < respectively. Next we need to find a cou-
pling invariant, such that every abstract data struc-
ture (from the query) can be represented by a con-
crete data structure (from the library) with respect to
the invariant. Furthermore the initialisation schemas
must match with respect to the coupling invariant,
and each operation from the query must match an
operation from the library module.

We require a coupling invariant between the state
variable tasks from the (abstract) query module and
elems from the (concrete) library module. We choose
the following coupling invariant:

tasks = items(elems)

9

SearchKey

State
tasks : bagN

Init
tasks ′ = [[]]

OP Add
task? : N

tasks ′ = [[task?]]] tasks

OP Remove
task ! : N

tasks 6= [[]]

tasks = [[task !]]] tasks ′

Figure 4: Search query

where items is defined as follows:

items : seq E → bag E

items(〈 〉) = [[]]
∀ e : E • items(〈e〉) = [[e]]

∀ s, t : seq E • items(s a t) =
items(s)] items(t)

The first matching condition from Definition 5.4 be-
comes

∀ x : bagN • ∃ y : seqN • items(y) = x

The condition for matching the initialisation
schemas becomes:

elems ′ = 〈 〉 ∧ tasks ′ = items(elems ′)⇒
tasks ′ = [[]]

After simplification this becomes

items(〈 〉) = [[]]

The Enqueue and Add operations are matched us-
ing plug-in CI match. We are required to show the

following condition holds:

∃ sm, gr : seqN •
elems = sm a gr ∧
∀ x : sm • task? < x ∧
∀ x : gr • task? ≥ x ∧
elems ′ = sm a 〈element?〉a gr ∧
tasks = items(elems) ∧
tasks ′ = items(elems ′)⇒
tasks ′ = [[task?]]] tasks

This can be simplified to:

items(sm a 〈task?〉a gr)
= [[task?]]] items(sm a gr)

This follows from the definition of items, and the fact
that bag union (]) is associative and commutative.
The operations Serve and Remove can be matched
using Guarded Plug-in CI match. Two conditions re-
sult:

items(elems) = tasks ∧ tasks 6= [[]]
⇒ elems 6= 〈 〉

and

items(elems) = tasks ∧ items(elems ′) = tasks ′ ∧
elems 6= 〈 〉 ∧ elems = elems ′ a 〈task !〉
⇒ task = [[task !]]] tasks ′

The first of these proof obligations is straightforward.
The second can be simplified to the following:

items(elems ′ a 〈task !〉) = [[task !]]] items(elems ′)

which follows from the definition of items and the
fact that “]” is commutative.

6 Related work

There are a number of existing approaches to spec-
ification matching of units. These can be broadly
divided into syntactic-based methods and semantic-
based methods. The syntactic-based methods
[Rollins and Wing, 1991, Hemer and Lindsay, 1997]

10

use pattern matching or unification to perform struc-
tural matching of specifications. Such methods are
automatable, however are generally not as powerful
as semantic-based matching methods. Semantic-
based matching [Zaremski and Wing, 1996,
Perry and Popovich, 1993, Jeng and Cheng, 1995]
relies on theorem prover support to prove that
specifications match. While these methods are more
precise than syntactic matching methods, theorem
proving is generally very difficult to automate, and
therefore becomes a major bottleneck in the retrieval
process.

Module specification matching has been pre-
viously proposed [Zaremski and Wing, 1996,
Hemer and Lindsay, 2001]. However these tech-
nique give very little consideration to state-based
modules; focusing instead on purely function
specification languages.

7 Conclusions

In this paper we describe techniques for matching
state-based modules. These techniques will form
the basis for developing retrieval tools to support
component-based development. The techniques are
illustrated using the Sum specification, a modular ex-
tensions to the widely used Z specification language.
These techniques should be widely applicable to other
formal specified modular components.

The challenge remains to develop suitable im-
plementations of these techniques. A key decision
needs to made to choose between a syntactic-based
matching approach, or a semantic-based matching
approach, or perhaps a hybrid approach.

Acknowledgements

This work was funded by Australian Research Coun-
cil Discovery Grant DP0208046, Compilation of Spec-
ifications.

References

[Back and von Wright, 1998] Back, R. and von
Wright, J. (1998). Refinement Calculus: A Sys-
tematic Introduction. Springer.

[Dijkstra, 1976] Dijkstra, E. (1976). A Discipline of
Programming. Prentice-Hall. In Series in Auto-
matic Computation.

[Fidge, 2001] Fidge, C. (2001). Compilation of speci-
fications. In Proceedings.of the Eighth Asia-Pacific
Software Engineering Conference (APSEC 2001),
pages 355–362. IEEE Computer Society Press.

[Hemer, 2002] Hemer, D. (2002). Computer-aided
programming using formally specified design tem-
plates. In Proceedings of APSEC’2002. to appear.

[Hemer and Lindsay, 1997] Hemer, D. and Lindsay,
P. (1997). Reuse of verified design templates. In
Fitzgerald, J., Jones, C., and Lucas, P., editors,
Formal Methods Europe ’97, number 1313 in Lec-
ture Notes in Computer Science, pages 495–514.
Springer.

[Hemer and Lindsay, 2001] Hemer, D. and Lindsay,
P. (2001). Specification-based retrieval strategies
for module reuse. In Grant, D. and Stirling, L.,
editors, Proc. of Australian Software Engineering
Conference (ASWEC’2001), pages 235–243. IEEE
Computer Society.

[Jeng and Cheng, 1995] Jeng, J.-J. and Cheng, B.
(1995). Specification matching for software reuse:
A foundation. In Proc. of ACM Symposium on
Software Reuse, pages 97–105.

[McIlroy, 1969] McIlroy, M. (1969). Mass produced
software components. Software Engineering Con-
cepts and Techniques, pages 88–98.

[Morgan, 1994] Morgan, C. (1994). Programming
from Specifications. Prentice Hall, second edition.

[Perry and Popovich, 1993] Perry, D. and Popovich,
S. (1993). Inquire: Predicate-based use and reuse.
In Proceedings of the 8th Knowledge-Based Soft-
ware Engineering Conference, pages 144–151.

11

[Rollins and Wing, 1991] Rollins, E. and Wing, J.
(1991). Specifications as search keys for software
libraries. In Furukawa, K., editor, Eighth Inter-
national Conference on Logic Programming, pages
173–187. MIT Press.

[Spivey, 1989] Spivey, J. (1989). The Z Notation: a
Reference Manual. Prentice-Hall, New York.

[Traynor et al., 1995] Traynor, O., Karlsen, E.,
Kazmierczak, E., Kearney, P., and Wang, L.
(1995). Extending Z with modules. In Kotagiri, R.,
editor, Proceedings of the Eighteenth Australasian
Computer Science Conference (ACSC’95), pages
513–522.

[Zaremski and Wing, 1996] Zaremski, A. M. and
Wing, J. (1996). Specification matching of software
components. In Third ACM SIGSOFT Symposium
on the Foundations of Software Engineering.

12

