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Abstract 
 

The estimated parameters of output distance functions frequently violate the monotonicity, quasi-
convexity and convexity constraints implied by economic theory, leading to estimated elasticities and 
shadow prices that are incorrectly signed, and ultimately to perverse conclusions concerning the effects 
of input and output changes on productivity growth and relative efficiency levels.  We show how a 
Bayesian approach can be used to impose these constraints on the parameters of a translog output 
distance function.  Implementing the approach involves the use of a Gibbs sampler with data 
augmentation.  A Metropolis-Hastings algorithm is also used within the Gibbs to simulate observations 
from truncated pdfs.  Our methods are developed for the case where panel data is available and 
technical inefficiency effects are assumed to be time-invariant.  Two models – a fixed effects model 
and a random effects model – are developed and applied to panel data on 17 European railways.  We 
observe significant changes in estimated elasticities and shadow price ratios when regularity 
restrictions are imposed.   

 
Keywords:   Markov chain Monte Carlo, inequality constraints, output distance function, European 

railways 
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1.  INTRODUCTION 
 
Multi-input multi-output production technologies that satisfy weak disposability can be described using distance 
functions.  Shephard (1970) and Fare and Primont (1995) discuss both input and output distance functions.  An 
input distance function describes the degree to which a firm can contract its input vector without changing its 
output vector.  An output distance function describes the degree to which a firm can expand its output vector, 
given an input vector.    
 
The estimation of distance functions has been attracting increasing attention in the efficiency and productivity 
literature.  This interest is most likely due to the fact that distance functions can be used to model multi-input 
multi-output production technologies without having to aggregate outputs (or inputs), and without having to 
make behavioural assumptions such as cost-minimisation or profit-maximisation.  This is particularly attractive 
to researchers analysing industries in which public ownership or regulation may make such behavioural 
assumptions inappropriate. 
 
Distance functions can be estimated using several techniques.  Fare, Grosskopf and Lovell (1994) provide a 
comprehensive discussion of data envelopment analysis (DEA), a technique that has the advantage that there is 
no need to specify a functional form for the boundary of the production technology.  Rather, the boundary is 
constructed using a number of connected hyperplanes, identified by solving a sequence of linear programming 
problems.  However, a downside of DEA is that estimated shadow prices are indeterminate at the intersections of 
the hyperplanes (though a range of values can be reported), and some may collapse to zero at extreme data points 
due to the existence of “slack regions”.   
 
One way to address this problem is to specify a functional form for the production surface.  For example, Fare, 
Grosskopf, Lovell and Yaisawarng (1993) specify a translog output distance function and estimate it parameters 
using a generalisation of the linear programming technique proposed by Aigner and Chu (1968).  This 
parametric linear programming (PLP) approach identifies a smooth production surface and therefore lends itself 
to the calculation of shadow prices.  However, a drawback of the approach (and also DEA) is that it estimates a 
deterministic frontier where all deviations from the frontier are implicitly assumed to be due to inefficiency.  
This means the method is particularly susceptible to the effects of data noise (eg., measurement error), which can 
lead to biased estimates of the shape and position of the frontier surface. 
 
The issue of data noise was addressed by Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck 
(1977) for the case of single-output production frontiers.  They proposed the estimation of a stochastic 
production frontier with two error components – a one-sided error term to accommodate inefficiency, and a 
symmetric error term to accommodate noise.  Given the specification of a suitable functional form for the 
deterministic part of the frontier (eg., translog) and suitable distributional forms for the two error terms (eg., half-
normal and normal, respectively), the unknown parameters of the frontier can be estimated using maximum 
likelihood methods.  This stochastic frontier analysis (SFA) approach can also be used for distance function 
estimation – see Coelli and Perelman (1996).   
 
Estimated parametric distance functions have been used for many purposes.  For example, they have allowed 
researchers to measure firm-level technical efficiency by measuring the distance that each firm lies below the 
production technology – see the analyses of European railways in Coelli and Perelman (1999, 2000).  They have 
also been used to measure and decompose productivity growth through time – see the analysis of Spanish 
insurance companies by Fuentes, Grifell-Tatjé and Perelman (2001), the analysis of Spanish savings banks by 
Orea (2002), and the study by Brummer, Glauben and Thijssen (2002) which measures and decomposes 
productivity growth in dairy farms in Germany, the Netherlands and Poland.   
 
In addition to performance measurement applications, the estimated parameters of distance functions have been 
used to investigate, for example, the shadow prices of pollutants in electricity generation (Fare, Grosskopf, 
Lovell and Yaisawarng, 1993; Swinton, 1998), the substitutability of outputs in hospitals (Grosskopf, Margaritis 
and Valdmanis, 1995), the substitutability of civilian and uniformed personnel in police services (Grosskopf, 
Hayes and Hirschberg, 1995), and the shadow price of nitrogen pollution in Dutch dairy farms (Reinhard and 
Thijssen, 1998). 
 
These latter papers extract information on the shadow prices of inputs and/or outputs from the estimated distance 
functions by exploiting various duality theorems (see Fare and Primont, 1995).  This issue is of particular 
interest to us in this paper because these duality results rely on particular theoretical properties of distance 
functions.  Specifically, they rely on the fact that the output distance function is non-decreasing, convex and 
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homogenous of degree one in outputs, and non-increasing and quasi-convex in inputs1; the input distance 
function is non-increasing, concave and homogenous of degree one in inputs, and non-decreasing and quasi-
concave in outputs.  We are unaware of any empirical studies in which all these properties have been imposed on 
parametric (input or output) distance functions.  Furthermore, few studies even report the degree to which their 
estimated functions satisfy these properties.  One exception is Reinhard and Thijssen (1998) who report that their 
estimated output distance function violated convexity in outputs when evaluated at 20.1% of observations, and 
violated monotonicity (due to an incorrectly signed labour elasticity) when evaluated at 8.6 % of observations. 
 
From a brief survey of distance function applications, all of which involved the use of the translog functional 
form (or some restricted version of the translog), we observed that all papers had imposed homogeneity, all the 
PLP papers had imposed monotonicity (ie., the non-increasing/decreasing properties), but no papers had 
attempted to impose the curvature conditions (ie., the convexity/quasi-convexity and concavity/quasi-concavity 
properties).  This pattern can be explained by the relative ease with which these constraints can be imposed.  The 
homogeneity constraints can be written as linear equality constraints on the parameters and can be easily 
imposed using either linear programming or econometric methods.  The monotonicity constraints are linear 
inequality constraints which are easy to impose using linear programming, but difficult to impose using 
traditional econometric approaches, especially since they need to be imposed at each data point.  Finally, the 
curvature constraints are non-linear inequality constraints that also need to be imposed at each data point.  This 
cannot be done using linear programming (the problem must be converted to a non-linear programming problem) 
and is very difficult using traditional sampling theory econometric methods.  While sampling theorists have 
developed methods for imposing convexity and concavity constraints2, extension of the methods to deal with 
quasi-convexity and quasi-concavity is not straightforward – see the discussion in Lau (1978).  In theory, Gallant 
and Gollub's (1984) frequentist method for imposing non-linear constraints can be used, but empirical 
implementation of the method is complex.  In this paper we use a simpler and more intuitively-appealing 
Bayesian approach. 
 
The relative merits of the Bayesian and sampling theory approaches to inference have been well-articulated by 
Geweke (1986) and Poirier (1995).  For this paper, one of the important advantages of Bayesian methdology is 
that it allows us to provide exact finite sample results for nonlinear functions of the unknown distance function 
parameters, including shadow prices and measures of relative technical efficiency.  It is also convenient for 
imposing concavity and convexity constraints, as illustrated by Terrell (1996) and Griffiths, O'Donnell and Tan 
Cruz (2000) in the context of cost functions.  In this paper we extend the Bayesian approach to the imposition of 
quasi-convexity and quasi-concavity constraints on the parameters of distance functions.   
 
The outline of the paper is as follows.  In Section 2 we introduce the output distance function and explain how it 
can be used to obtain shadow prices.  In Section 3 we present the translog output distance function and detail the 
homogeneity, monotonicity and curvature constraints implied by economic theory.  In Section 4 we discuss 
Bayesian methodology for imposing these constraints on the parameters of the distance function.   In Section 5 
we apply the methodology to panel data on 17 European railways, and report characteristics of estimated 
marginal posterior distributions of interest.  Section 6 summarises and concludes the paper. 
 
 
2.  OUTPUT DISTANCE FUNCTIONS 
 
We consider the case of a multi-input multi-output production technology where a firm uses the P × 1 input 
vector x = (x1, ..., xP)' to produce the M × 1 output vector q = (q1, ..., qM)'.  Following Fare and Primont (1995, p. 
8), the production technology can be described by the technology set 
 
(2.1) S = {(x, q) : x can produce q}. 
 
We assume the production technology satisfies a standard set of axioms (Fare and Primont, 1995 p. 27) 
including convexity, strong disposability,4 closedness and boundedness. 
 
                                                           
1 Fare and Primont (1995, p. 152) state that the output distance function is quasi-concave in inputs and that the input distance 
function is quasi-convex in outputs.  These are typographical errors (personal communication with Dan Primont, 30/9/2002).   
2 These include the Cholesky factorisation approaches discussed in Diewert and Wales (1997) and Ryan and Wales (2000) 
4 Fare and Primont (1995, p. 16) note that an assumption of weak disposability is sufficient for the technology to be fully 
characterised by the output distance function. 
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Fare and Primont show that this technology can also be described using an output distance function:5 
 
(2.2) D(x, q) = min{δ : δ > 0, (x, q/δ) ∈ S}. 
 
Our assumptions on the technology set imply that the output distance function is non-decreasing, linearly 
homogeneous and convex in q, and non-increasing and quasi-convex in x.  If (x, q) belongs to the production set 
S, then D(x, q) ≤ 1.  Moreover, D(x, q) = 1 if (x, q) belongs to the “frontier” of the production set.  The distance 
measure D(x, q) is the inverse of the factor by which the production of all output quantities could be increased 
while still remaining within the feasible production set, for the given input level.  It is equivalent to a Farrell-type 
output-orientated measure of technical efficiency.  See, for example, Fare and Primont (1995, p. 29).   
 
As we have already noted, distance functions are not only used to estimate efficiency levels and productivity 
change, but are also used to measure shadow prices and the substitution properties of the technology.  For 
example, Grosskopf, Margaritis and Valdmanis (1995) observe that, if the output sets are convex, the duality 
between the output distance function and the revenue function can be exploited to retrieve information on output 
shadow prices.  Specifically, the partial derivative of the output distance function with respect to the m-th output 
is a revenue-delated shadow price: 
 

(2.3) 
∂D
∂qm

 = 
p*

m
R  

 
where p*

m is the shadow price of the m-th output and R is total revenue.  The ratio of the revenue-deflated shadow 
prices of two outputs, qm and qn,  
 

(2.4) 
∂D/∂qm

∂D/∂qn
 = 

p*
m

p*
n
 

 
will reflect the slope of the production possibility curve (ie., the marginal rate of transformation).  This ratio can 
be normalised by the output quantity ratio to obtain a unitless measure of output substitutability. 
 
Similar methods have been employed by Fare et al (1993) and Swinton (1998) to calculate shadow prices of 
pollutants in electricity generation.  They use the partial derivatives of the output distance function to construct a 
ratio as in equation (2.4), and then calculate the shadow price of the pollutant under the assumption that the 
shadow price of the good output (electricity) equals its observed (market) price. 
 
A similar procedure can be used to extract information on the shadow prices of inputs.  Fare and Grosskopf 
(1994, p. 100) show that the partial derivative of the output distance function with respect to the p-th input 
provides a measure of the shadow price of the p-th input deflated by total cost (along with a factor reflecting 
scale economies).  Ratios of these partial derivatives (ie. shadow prices) reflect the slope of the isoquant (ie. the 
marginal rate of technical substitution).  
 
The availability of information on observed prices means that shadow price ratios can be compared with 
observed price ratios to investigate questions regarding allocative efficiency (in input mix and in output mix).  
Shadow price information is also utilised in methods that decompose productivity growth into its components.  
For example, Bremmer et al (2000) estimate an output distance function, and then use total differential methods 
to decompose productivity change into various components, including two allocative-efficiency-related terms 
that involve differences between shadow shares and observed shares.  The shadow share information is obtained 
by taking derivatives of the estimated (logarithm of the) distance function.   
 
Researchers who derive elasticities and shadow price (or shadow share) information from an estimated distance 
function need to be confident that the estimated distance function satisfies prescribed monotonicity and curvature 
properties at each data point in the sample.  Monotonicity violations will, for example, give rise to incorrectly-
signed elasticities, with the perverse implication that productivity can be improved by increasing inputs while 
holding outputs fixed.  Curvature violations will, for example, give rise to production possibilities frontiers that 
are convex to the origin, implying the solutions to first-order conditions for revenue maximisation will not be 
points of maximum revenue.  Moreover, shadow prices may be incorrectly signed and may not be unique.  These 
types of results are clearly unsatisfactory.  Hence, we seek a method to impose the required regularity conditions 
on the parameters of an estimated translog distance function. 
                                                           
5 A more rigorous definition of the output distance function is D(x, q) = inf{δ : δ > 0, (x, q/δ) ∈ S}. 
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3.  THE TRANSLOG OUTPUT DISTANCE FUNCTION 
 
The translog is a flexible functional form in the sense that it can provide a second-order approximation to an 
arbitrary functional form.  Authors who have used a translog distance function in empirical work include Fare et 
al (1993) (to study electricity generation), Grosskopf, Margaritis and Valdmanis (1995) (hospitals) and Coelli 
and Perelman (1999) (railways).  The translog output distance function defined over M outputs and P inputs can 
be written as: 
 

(3.1) lnD = a0 + 
m=1

M
Σ amlnqm + 0.5

m=1

M
Σ

n=1

M
Σ amnlnqmlnqn + 

p=1

P
Σ bplnxp + 0.5

p=1

P
Σ

j=1

P
Σ bpjlnxplnxj + 

p=1

P
Σ

m=1

M
Σ gpmlnxplnqm  

 
where a0 and the am, amn, bp, bpj, and gpm are unknown parameters that satisfy the identifying restrictions amn = anm 
and bpj = bjp for all m, n, j and p.  To obtain an empirical version of (3.1) we impose homogeneity constraints and 
introduce an error term representing statistical noise. 
 
From Euler's Theorem, homogeneity of degree one in outputs implies: 
 

 (3.2) 
m=1

M
Σ am + 

m=1

M
Σ

n=1

M
Σ amnlnqn + 

m=1

M
Σ

p=1

P
Σ gpmlnxp  = 1 

 
which will be satisfied if6 
 

(3.3) 
m=1

M
Σ am = 1,  

m=1

M
Σ amn = 0  for all n,  and    

m=1

M
Σ gpm  = 0  for all p. 

 
Substituting these constraints into the distance function is equivalent to normalising by one of the outputs.  If we 
choose the M-th output, equation (3.1) becomes: 
 

(3.4) ln(D/qM) = a0 + 
m=1

M-1
Σ amln(qm/qM) + 0.5

m=1

M-1
Σ

n=1

M-1
Σ amnln(qm/qM)ln(qn/qM) + 

p=1

P
Σ bplnxp  

 

               + 0.5
p=1

P
Σ

j=1

P
Σ bpjlnxplnxj + 

p=1

P
Σ

m=1

M-1
Σ gpmlnxpln(qm/qM)   

 
which we write more compactly as: 
 
(3.5) ln(D/qM) = TL(x, q/qM, β) 
 
where TL(.) refers to the translog function and β refers to the vector of a, b and g parameters.  An equivalent 
form of (3.5) is: 
  
(3.6) -lnqM = TL(x, q/qM, β) + u 
 
where u = -lnD is a non-negative term that captures the effects of inefficiency.  If we assume the distance a firm 
lies from the frontier may be due to either inefficiency or noise, we can follow the stochastic frontier approach 
proposed by Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977) and add a symmetric 
error term, v, to capture the effects of data noise.  The resulting empirical output distance function is 
 
(3.7) -lnqM = TL(x, q/qM, β) + v + u. 
 
which is in the form of a standard stochastic frontier model.  In Section 4 we describe how to use panel data, and 
the assumption that the u terms are invariant across time, to estimate the parameters of this model under both 
fixed and random effects assumptions.  Our objective will be to estimate the parameters of the models in such a 
way that the estimated functions satisfy the following monotonicity (ie. non-increasing in x and non-decreasing 
in q) and curvature (ie. quasi-convex in x and convex in q) properties implied by production theory. 
 

                                                           
6 Although these conditions are both necessary and sufficient for global homogneity of the distance function (3.1), they are 
sufficient but not necessary for global homogeneity of the true (unknown) distance function.  This implies the parameters of 
our flexible functional form may be overconstrained.  This issue is addressed in a broader context by O'Donnell (1999).    
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Monotonicity and Curvature Constraints 
 
Monotonicity and curvature conditions involve constraints on functions of the partial derivatives of the distance 
function.  Key derivatives are the elasticities of distance with respect to inputs and outputs: 
 

(3.8) sp ≡ 
∂lnD
∂lnxp

 = bp + 
j=1

P
Σ bpjlnxj + 

m=1

M
Σ gpmlnqm 

 
and 
 

 (3.9) rm ≡ 
∂lnD
∂lnqm

 = am + 
n=1

M
Σ amnlnqn + 

p=1

P
Σ gpmlnxp. 

 
 
For D to be non-increasing in x we require: 

 

(3.10) fp ≡ 
∂D
∂xp

 = 
∂lnD
∂lnxp

 
D
xp

 = spD/xp  ≤ 0  ⇔  sp ≤ 0 

 
while for D to be non-decreasing in q we require: 
 

(3.11) hm ≡ 
∂D
∂qm

 = 
∂lnD
∂lnqm

 
D
qm

 = rmD/qm ≥ 0  ⇔  rm ≥ 0. 

 
For quasi-convexity in x, we arrange the first- and second-order derivatives of D to form the bordered Hessian 
matrix: 
 

(3.12) F = 









0 f1 ... fP

f1 f11 ... f1P

: : ... :

fP f1P ... fPP

 

 
where 

 

(3.13) fpj ≡ 
∂2D

∂xp∂xj
 = 

∂fp

∂xj
 = 

∂(spD/xp)
∂xj

 = (bpj + spsj - δpjsp)(D/xpxj)   

 
and δpj = 1 if p = j and 0 otherwise.  For D to be quasi-convex in x over the nonnegative orthant it is sufficient7 
that all the principal minors of F be negative (Chiang, 1984, p.394).  
 
Finally, for convexity in q we form the Hessian matrix 
 

(3.14) H = 









h11 h12 ... h1M

h12 h22 ... h2M

: : ... :

h1M h2M ... hMM

 

 
where 
 

(3.15) hmn ≡ 
∂2D

∂qm∂qn
 = 

∂hm

∂qn
 = 

∂(rmD/qm)
∂qn

 = (amn + rmrn - δmnrm)(D/qmqn). 

 

                                                           
7 This sufficient condition will be used to impose quasi-convexity in our empirical work.  To check for quasi-convexity 
violations in unconstrained models, we check a necessary condition for quasi-convexity, namely that all the principal minors 
of F be non-positive.  
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The function D will be convex in q over the nonnegative orthant if and only if H is positive semidefinite (Lau, 
p.414).  Thus, D will be convex in q if and only if all the principal minors of H are non-negative (Rao and 
Bhimasankaram, 1992, p.344).  In the application to European railways discussed below we have M = 2 outputs.  
In this special case, the Hessian matrix will be positive semidefinite if and only if a11 ≥ r1r2 (≤ 0.25)8.   
 
 
4.  BAYESIAN ESTIMATION WITH PANEL DATA  
 
This section draws on the discussions of Bayesian stochastic frontier models found in the papers by Koop, 
Osiewalski and Steel (1997) and Koop and Steel (2001).  We introduce some slightly different notation to avoid 
confusion with the notation we have already used to describe distance functions in Sections 2 and 3, and to avoid 
having to redefine variables when we switch the discussion from the fixed effects model to the random effects 
model.   
 
We assume data is available for i = 1, .., N firms for t = 1, ..., T time periods and write the stochastic output 
distance function model from equation (3.7) as:  
 
(4.1) yit = a0 + zit'φ + vit + ui 
 
where yit = -lnqMit, zit is a K × 1 vector comprising functions of the logarithms of the input variables and the 
output ratios, φ is a K × 1 vector of parameters, and a0 is the intercept parameter in (3.1) and (3.4).  The set of T 
observations on firm i can be written: 
 
(4.2) yi = a0jT + Ziφ + vi + uijT 
 
where jT is a T × 1 unit vector, both yi = (yi1, ..., yiT)' and vi = (vi1, ..., viT)' are T × 1, and Zi is T × K.  For 
estimation purposes we assume the elements of the vis are independent normal random variables with zero 
means and constant variance, h-1.  The probability density function (pdf) of vi is written9 p(vi | h) = fN(vi | 0T,  
h-1IT).   
 
We can estimate the model assuming the time-invariant ui terms are either fixed parameters or random variables.  
In either case, the technical efficiency of firm i is 
 
(4.3) Di = TEi = exp(-ui) 
 
For small ui, ui ≈ 1 – exp(-ui) = 1 – Di, so ui can sometimes be used as a measure of technical inefficiency (Kim 
and Schmidt, 2000, p.93).  
 
The Fixed Effects Model 
 
If the ui terms in (4.1) and (4.2) are treated as fixed parameters then the so-called fixed effects model can be 
written: 
 
(4.4) yi = αi jT + Ziφ + vi 
 
where αi = a0 + ui is the i-th individual effect.  This is the form of a standard panel data model (eg. Judge et al, 
1985, p.519).  The vector of individual effects is α = (α1, ..., αN)', and the complete set of NT observations can be 
written compactly in the form 
 
(4.5) y = (IN⊗jT)α + Zφ + v = Wθ + v 
 
where y = (y1', ..., yN')' and v = (v1', ..., vN')' are NT × 1, Z = (Z1', ..., ZN')' is NT × K, W = (IN⊗jT, Z) is NT × (N + 
K) and θ = (α', φ')' is (N + K) × 1. 
                                                           
8 Homogeneity requires a11 = -a12 = -a21 = a22  and r1 + r2 = 1, and these constraints can be used to show that |H| = 0.  Then H 
will be psd if and only if (a11 + r1r1 - r1)(D/q1q1) ≥ 0, or a11 ≥ r1r2.  Monotonicity and homogeneity together imply r1r2 ≤ 
0.25. 
9 The notation fN(a | b, C) is used to indicate that a is a multivariate normal random vector with mean vector b and covariance 
matrix C.  The notation fG(a | b, c) will be used to indicate that a has a Gamma distribution with shape parameter b and scale 
parameter c (so a has mean b/c and variance b/c2). 
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For Bayesian inference we adopt the following independent priors for the unknown h and θ: 
 
(4.6) p(h) ∝ h-1 
  
and 
 
(4.7) p(θ) ∝ I(θ∈Rj) 
 
where I(.) is an indicator function which takes the value one if the argument is true and zero otherwise, and Rj is 
the set of permissible parameter values when no constraints (j = 0), monotonicity constraints (j = 1) and both 
monotonicity and curvature constraints (j = 2) must be satisfied.  The joint prior pdf is therefore 
 
(4.8) p(θ, h) ∝ h-1  × I(θ∈Rj). 
 
The likelihood function is 
 
(4.9) p(y | θ, h) = fN(y | Wθ, h-1INT)  ∝  hNT/2  × exp{-0.5h [y – Wθ]'[y – Wθ]} 
 
and, using Bayes's Theorem, the posterior pdf is  
 
(4.10) p(θ, h | y)  ∝  p(y | θ, h) p(θ, h) ∝  hNT/2  - 1  × exp{-0.5h [y – Wθ]'[y – Wθ]} ×  I(θ∈Rj). 
 
We are primarily interested in θ so we integrate h out of this pdf to obtain 
 
(4.11) p(θ | y) ∝ {(y – Wθ)'(y – Wθ)}-NT/2  ×  I(θ∈Rj). 
 
When j = 0 the prior (4.7) is an unconstrained uniform prior and the posterior (4.11) is in the form of a 
multivariate-t distribution.  In this case, characteristics of the marginal posterior densities of elements of θ can be 
obtained using standard Bayesian results (eg.  Zellner, 1971, pp.66-70).  However, when j > 0 the vector θ will 
have a truncated joint posterior and MCMC simulation methods are required to estimate characteristics of the 
marginal posteriors.  Indeed, irrespective of the value of j (ie. whether or not θ is constrained), MCMC methods 
are required to estimate characteristics of the marginal posteriors of shadow price ratios and other economic 
quantities of interest, denoted g(θ).  Accordingly, for both unconstrained and constrained models, we use 
MCMC methods to draw sample observations {θj: j = 1, ..., J} from the posterior p(θ | y).  Integrals of the form  
 
(4.12) E{g(θ) | y} = ⌡⌠ g(θ) p(θ | y)dθ  

 
are then estimated by simply averaging g(θ) over these J draws. 

 
Simulating from the unconstrained (ie., j = 0) version of the posterior (4.11) is possible using a basic Gibbs 
sampler.  The Gibbs sampling algorithm draws from the joint posterior density by sampling from a series of 
conditional posteriors.  Details of the algorithm are available in the seminal paper by Gelfand and Smith (1990).  
However, to impose monotonicity and curvature restrictions the basic Gibbs sampler needs to be supplemented 
with an accept-reject algorithm.  Terrell (1996) used this approach to impose monotonicity and concavity 
constraints on the parameters of a cost function.  A disadvantage of the Terrell approach is that it may be 
necessary to generate an extremely large number of candidate draws before finding one that is permissible.  In 
many situations, a more efficient alternative is to simulate from the constrained posterior using a Metropolis-
Hastings (M-H) algorithm.  Details of the M-H algorithm can be found in, for example, Chen, Shao and Ibrahim 
(2000, p.23-24).  Random-walk M-H algorithms have been used by O'Donnell, Shumway and Ball (1999) and 
Griffiths, O'Donnell and Tan Cruz (2000) to impose curvature constraints on the parameters of systems of cost 
and/or conditional input demand functions. 
 
Implementation of the random-walk M-H algorithm involves chooosing an arbitrary proposal density to generate 
candidates for inclusion in the MCMC sequence.  In our empirical application we use a multivariate normal 
proposal density, with covariance matrix equal to a tuning scalar multiplied by the maximum likelihood estimate 
of the covariance matrix of the parameters.  The tuning scalar is used to manipulate the acceptance rate (ie., the 
rate at which candidate draws are included in the MCMC sample).  Roberts, Gelman and Gilks (1997) show that 
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if the target and proposal densities are normal pdfs, the optimal acceptance rate (ie., the one which minimises the 
autocorrelations across the sample values) is between 0.45 (in one-dimensional problems) and approximately 
0.23 (as the number of dimensions becomes infinitely large).  In our empirical work we choose the tuning scalar 
so that the acceptance rate lies within this range.  
 
Our simulated draws from the constrained and unconstrained posteriors are used to estimate characteristics of the 
marginal pdfs of functions of the parameters, including measures of relative technical efficiency.  The fixed 
effects model cannot generally be used to estimate the technical efficiency scores given by (4.3).  However, it 
can be used to estimate relative technical efficiencies given by 
 
(4.13) RTEi = exp(minj(αj) – αi) = exp(minj(uj) – ui). 
   
These RTEi will lie between zero and one, with a value of one indicating the firm is the "best" firm in the sample.  
If both N and T are large, they can be regarded as absolute technical efficiency scores (Kim and Schmidt, 2000, 
p.96).   
 
The Random Effects Model 
 
Rather than assume the ui's in (4.1) and (4.2) are fixed, we now assume they are independent random variables.  
The so-called random effects model can be written: 
 
(4.14) yi = Xiβ + vi + uijT 
 
where Xi = (jT, Zi) is T × (K + 1) and β = (a0, φ')' is (K + 1) × 1.  The complete set of NT observations can be 
compactly written: 
 
(4.15) y = Xβ + v + (IN⊗jT)u 
 
where X = (X1', ..., XN')' is NT × (K + 1) and u = (u1, ..., uN)' is N × 1.  In this paper we assume the elements of u 
are independent random variables drawn from exponential distributions that share a common unknown 
parameter, λ.  Specifically, we assume p(ui | λ-1) = fG(ui | 1, λ-1).  More flexible distributions (eg. gamma with 
fixed shape parameter greater than one) can be easily handled in the Bayesian framework (for examples, see van 
den Broeck et al, 1994; Koop et al, 1995) but they make the inefficiency errors more difficult to distinguish from 
the normally distributed errors representing noise (see Ritter and Simar, 1997).  Another reason for choosing the 
exponential distribution is that van den Broeck et al (1994) find that models based on this distribution are 
reasonably robust to changes in priors. 
 
We adopt the independent prior (4.6) for h and the following prior for β: 
 
(4.16) p(β) ∝ I(β∈Rj) 
 
Fernandez, Osiewalski and Steel (1997) show that we need a proper prior for the remaining parameter, λ, in 
order to obtain a proper posterior.   Accordingly, we use the proper prior 
  
(4.17) p(λ-1) = fG(λ-1 | 1, -ln(τ*)) 
 
where τ* is the prior median of the efficiency distribution. Our joint prior pdf is therefore 
 

(4.18) p(β, h, u, λ-1)  =  p(β) p(h) p(u |λ-1) p(λ-1)  ∝ h-1 × I(β∈Rj) fG(λ-1 | 1, -ln(τ*)) × 
i=1

N

Π fG(ui | 1, λ-1) 

 
Koop, Steel and Osiewalski (1995) set τ* = 0.875 in their study of efficiency in the US electric utility industry.  
By coincidence, our best prior knowledge of the efficiency of European railways in this study is the mean 
efficiency value of 0.878 reported by Coelli and Perelman (2000).  Koop et al (1997) find their results for US 
hospitals are extremely robust to enormous changes in τ*, so we are comfortable setting τ* = 0.878.   
 
The likelihood function is 
 
(4.19) p(y | β, h, u, λ-1) ∝  hNT/2exp{-(h/2)[y – Xβ – (IN⊗jT)u]'[y – Xβ – (IN⊗jT)u]}   
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and the posterior p(β, h, u, λ-1| y) is proportional to the product of (4.18) and (4.19).   
 
To draw observations from the posterior it is convenient to use a Gibbs sampler with data augmentation.  The 
term "data augmentation" derives from the fact that it is convenient to augment the observed data by drawing 
observations on u.  Such an algorithm has been used to estimate unconstrained stochastic frontier models by 
several authors including Koop, Steel and Osiewalski (1995).     
 
The Gibbs sampler with data augmentation involves drawing sequentially from the following conditional 
posteriors:  
 
(4.20)  p(λ-1 | y, β, h, u) ∝ fG(λ-1 | N+1, u'jN  – ln(τ*)) 
 
(4.21) p(h | y, β, u, λ-1) ∝ fG(h | NT/2, 0.5[y – Xβ – (IN⊗jT)u]'[y – Xβ – (IN⊗jT)u]) 
 
(4.22) p(β | y,  h, u, λ-1) ∝ fN(β | b, h-1(X'X)-1) ×  I(β∈Rj) 
 

and 

(4.23) p(u | y, β, h, λ-1) ∝ fN(u | y–   − X–β − (Thλ)-1jN, (Th)-1IN)  ×  
i=1

N

Π I(ui ≥ 0) 

 
where  b = (X'X)-1X'[y – (IN⊗jT)u] is (K + 1) × 1,  

X–  = (x–1', ..., x–N')' is N × (K + 1),  

x– i =  (1/T)jT'Xi is 1 × (K + 1),  

y–  = (y–1, ..., y–N)' is N × 1,  

and  y– i =  (1/T)jT'yi is a scalar. 

 
Draws from these conditional posteriors will converge to draws from the posterior p(β, h, u, λ-1| y).  In practice, 
sampling from the gamma distributions (4.20) and (4.21) is straightforward.  Sampling from the truncated 
multivariate normal distribution (4.22) can be accomplished using a simple accept-reject algorithm, but in our 
empirical application we found it was more efficient to use the M-H algorithm discussed earlier in the context of 
the fixed effects model.  In the case of a (non-truncated) tri-variate normal distribution, Gelfand and Lee (1993) 
find that an appropriate number of M-H sub-iterations at each stage of an outer MCMC algorithm is 4 or 8.  In 
this paper we use 10 M-H sub-iterations at each stage of the outer Gibbs algorithm..   
 
Finally, sampling from the conditional density (4.23) is simplified by noting that the covariance matrix is a 
scalar times an identity matrix, and the truncations are independent.  Thus, we sample from this multi-
dimensional conditional posterior using N univariate truncated normal distributions, using results that can be 
found in Albert and Chib (1996). 
 
Once again, we are interested in characteristics of the marginal pdfs of (functions of) θ, including the measure of 
absolute technical efficiency given by (4.3).  Again, MCMC draws from the posterior p(β, h, u, λ-1| y) can be 
used to compute corresponding draws on these quantities of interest. 
 
 
5.  APPLICATION TO EUROPEAN RAILWAYS 
 
Data 
 
Our data are observations on 17 European railways over the six-year period from 1988 to 1993.  The data are 
derived from data published by the International Union of Railways (UIC, 1988-1993).  Our model is defined 
with two output variables (passengers and freight) and three input variables (labour, rolling stock and lines)10.  

                                                           
10 Information on energy use was not available.  It is expected that energy use would be closely correlated with rolling stock 
and hence its omission is unlikely to introduce serious bias. 
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The passenger service output and freight service output variables are measured using the sum of distances 
travelled by each passenger and the sum of distances travelled by each tonne of freight, respectively. 
 
The labour input variable is measured by the annual mean of monthly data on staff levels.  These staff levels 
only relate to those staff involved in train services and station services.  Staff involved in the maintenance of 
rolling stock and lines are not included given that some companies subcontract these activities.11  Rolling stock 
is measured by the sum of available freight wagons and coach transport capacities in tonnes and seats, 
respectively.  The third input used is measured using the total length of lines.12  More details concerning the 
construction of the data are provided in the Appendix. 
 
Empirical results 
 
The first step in our empirical analysis was to estimate the fixed-effects model using least squares methods.  
Following estimation, we checked the monotonicity and curvature conditions described in Section 3 at each data 
point in the sample of 102 observations.  We found the monotonicity constraints were violated at 67 data points 
(8, 37 and 29 violations in the cases of inputs 1, 2 and 3; no violations for output 1; 5 violations for output 2) and 
the curvature constraints were violated at every data point (quasi-convexity in inputs was not satisfied at any data 
point; convexity in outputs was satisfied everywhere).  Thus, the unrestricted estimated output distance function 
fails to satisfy the properties prescribed by production theory, and any measures derived from this estimated 
function, such as elasticities or shadow prices, are likely to be unreliable. 
 
The next step was to estimate the model using the fixed effects and random effects Bayesian methods described 
in the previous section.  These models were estimated under three different levels of constraints: no constraints (j 
= 0); monotonicity only (j = 1); and monotonicity and curvature (j = 2).  In each case we generated a total of 
60,000 observations, and then discarded the first 10,000 as a 'burn-in'.  The means of our six MCMC samples are 
estimates of the means of the marginal posterior distributions of the parameters and are reported in Tables 1 and 
2.  These tables also report  95% posterior coverage regions calculated as the fifth and ninety-fifth percentiles of 
the MCMC sample observations13.  There is broad similarity between the estimates obtained from the fixed and 
random effects models – the fixed effects point estimates are contained within the random effects coverage 
regions and vice versa; if anything, the fixed effects coverage regions tend to be slightly wider than those 
obtained using the random effects model.   
 
Prior to estimation the sample data was deflated so that each variable had a sample mean of one.  The derivatives 
(3.8) and (3.9) collapse to bp and am when evaluated at these (unit) variable means, and the monotonicity 
conditions can therefore be expressed as bp ≤ 0 and am ≥ 0.  The point estimate of b2 reported in the first column 
of Table 2 (the unconstrained fixed effects model) is positive, implying the theoretical monotonicity constraints 
are not satisfied.  The estimates of the first-order coefficients reported in the fourth column of Table 2 (the 
unconstrained random effects model) are correctly signed.14 
 
Further insights into regularity violations can be gained by examining the coverage regions and (estimated) 
marginal posterior pdfs.  For example, even though the point estimate of b2 reported in the fourth column of 
Table 2 is correctly signed, the associated coverage region spans zero, meaning there is positive probability that 
monotonicity is violated.  The associated unconstrained marginal posterior pdf is depicted in Figure 1 and 
reveals that b2 is incorrectly signed with estimated probability 0.42 (the estimated area under the pdf and to the 
right of zero).  Further analysis of the estimated unconstrained marginal posterior pdfs of the sp and rm and the 
principal minors of F and H at points other than the variable means reveals that there is positive probability that 
monotonicity is violated at every data point in the sample15 (47, 67 and 56 data points in the cases of inputs 1, 2 
and 3; 16 and 15 in the cases of outputs 1 and 2).  Moreover, there is positive probability that curvature is also 
violated at every data point, all due to failure of the unconstrained estimated distance function to satisfy the 
property of quasi-convexity in inputs. 
 

                                                           
11 For instance, the Swedish railways infrastructure is an independent company (BV). 
12 For a discussion of alternative railways technology specifications, see Cowie and Riddington (1996). 
13 These coverage regions are analogous to the 95% confidence intervals used by frequentists.  We report coverage regions 
instead of estimated standard deviations because they provide a better indication of likely and unlikely values of the 
parameters in cases like ours where many of the marginal posterior distributions are asymmetric.   
14 Our use of a noninformative joint prior means the unconstrained Bayesian fixed-effects results are quite similar to those 
obtained using least squares.  Hence we have not reported the least squares results here. 
15 Using results from the fixed effects model. 
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It is apparent from Table 2 and Figure 1 that incorporating monotonicity information into the estimation process 
has had the effect of dramatically reducing the variances of the estimated marginal pdfs.  This is intuitively 
plausible, and consistent with the Monte Carlo finding of Dorfman and McIntosh (2001) that imposing 
inequality restrictions on systems of demand equations can improve the mean squared errors (MSEs) on 
estimated elasticities by up to 50 percent.  However, monotonicity constraints alone are not enough to ensure the 
estimated distance function is regular.  Monotonicity-constrained point estimates of the sp and rm and the 
principal minors of F and H reveal that curvature is still violated at every data point in the sample, although 
quasi-convexity in inputs is now violated at only 30 data points (instead of 102 using the unconstrained 
estimates), and convexity in outputs is violated at 100 data points (instead of none).  When we focus on the 
estimated posterior pdfs, we find there is positive probability that quasi-convexity in inputs is violated at 98 data 
points (instead of 102 using the unconstrained estimates), and convexity in outputs is violated at 100 data points 
(instead of none)16.  Imposing quasi-convexity and convexity has had relatively little impact on the signs and 
magnitudes of our estimates of the first-order coefficients and their standard errors.  However, imposing these 
properties has had a relatively large impact on some of  the second-order coefficients – point estimates of b13 and 
b23 undergo sign reversals, and we observe a ten-fold decrease in the width of some coverage regions (eg., that  
for of a11). 
 
Point estimates of (time-invariant) relative technical efficiencies are reported in Table 3.  The unconstrained 
estimates obtained using the fixed effects model are generally lower than the random effects estimates, reflecting 
our use of the uniform prior (4.7).  This prior implies a noninformative prior for minj(uj) – ui on the interval [0, 
∞), and in turn this implies an informative prior on RTEi = exp(minj(uj) – ui) of the form p(RTEi) ∝ 1/RTEi (Kim 
and Schmidt, p. 103).  This is an L-shaped prior which is strongly biased in favour of low efficiency, and since 
we have only T = 6 observations per firm, it is a prior that is unlikely to be dominated by the data17.  Kim and 
Schmidt (2000) observe a similar phenomenon in the case of Indonesian rice farms and Texas utilities.  A second 
noteworthy feature of Table 3 is that the random effects estimates tend to exhibit less variation across firms than 
the fixed effects estimates.  This reflects our assumption that the random inefficiency effects are drawn from a 
common distribution, ie. fG(ui | 1, λ-1).  The fixed effects estimates of technical efficiencies tend to fall as we 
impose monotonicity and curvature constraints, whereas the random effects estimates are relatively robust to the 
imposition of these regularity conditions. 
 
Estimated distance functions are not just used to estimate efficiency effects – they are also used to obtain shadow 
price information and to calculate and decompose productivity growth measures.  Such work utilises estimates of 
the partial derivatives of the estimated distance function.  In order to illustrate the effects of imposing 
monotonicity and curvature constraints on (functions of) these partial derivatives, we have reported a selection of 
estimates in Tables 4 to 7 and Figures 2 to 9.  In Tables 4 to 6 we report information on input elasticities (sp) 
evaluated at the input and output levels of each firm in the final year of the sample period (1993).  In Table 7 we 
report corresponding information on the output shadow price ratios (passengers over freight) given by (2.4).  
Figures 2 to 9 present corresponding estimated marginal pdfs for firm i = 3 only (Swiss Federal Railways). 
 
It is apparent from Tables 4 to 6 that several (estimated) unconstrained elasticities are incorrectly signed (ie. are 
positive) – two incorrectly-signed estimates in the case of input 1, eight in the case of input 2, and five in the 
case of input 3.  The larger number of violations in the case of the elasticity for input 2 is largely due to the fact 
that the estimated unconstrained marginal pdf of b2 extends a long way into the positive domain (see Table 2 and 
Figure 1).  Incorrectly-signed elasticity estimates imply (implausible) negative shadow price estimates.  They 
also lead to perverse conclusions concerning productivity growth – a positive elasticity implies that an increase 
in the use of that input (with all other variables, including output, held constant) will increase the (measured) 
productivity of that firm. 
 
Further inspection of Tables 4 to 6 reveals that all the monotonicity-constrained estimates are correctly signed 
(by construction).  The effects on the elasticity estimates of subsequently imposing curvature constraints are also 
quite noticeable.  This is clearly illustrated in Figures 2 to 7 in the case of firm 3 – the curvature constraints 
cause rightward and leftward shifts in the estimated pdfs for the elasticities of inputs 1 and 3; the variances of the 
estimated pdfs become smaller as more inequality information is incorporated into the estimation process, in line 
with our findings concerning the estimated pdfs of individual coefficients (see Figure 1). 
 
Our final comments concern the estimated (distributions of the) output shadow price ratios presented in Table 7 
and Figures 8 and 9.  Monotonicity violations are evident among the unconstrained estimates – the first and 

                                                           
16 Again, using results from the fixed effects model. 
17 By implication, our results may not be robust to our choice of prior. 
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fourth columns of Table 7 contain negative point estimates of shadow price ratios for a couple of firms, and a 
small number of coverage regions span zero18; Figures 8 and 9 depict estimated unconstrained marginal pdfs that 
extend into the negative domain.  The monotonicity-constrained estimates are correctly signed by construction 
and, once again, the estimated variances of the marginal posterior pdfs decrease with the imposition of (more) 
regularity constraints.   The estimated shadow price ratios reported in Table 7 can be used for several purposes.  
For example, they could be compared with observed price ratios to investigate the degree of cross-subsidisation 
between freight and passenger services in this industry.  It is clear that findings from these types of 
investigations will be sensitive to the imposition of monotonicity and curvature constraints. 
 
 
5.  SUMMARY AND CONCLUSION 
 
The estimation of output distance functions is popular among applied microeconomists, partly because distance 
functions obviate the need to make behavioural assumptions (eg., cost minimisation) in order to estimate 
interesting characteristics of multi-input multi-output technologies.  Characteristics of particular interest to 
economists include elasticities which measure the effects on efficiency of changes in inputs, and shadow price 
ratios which measure marginal rates of transformation between outputs, or marginal rates of technical 
substitution between inputs.  To recover reliable estimates of these characteristics, it is important to estimate 
distance functions in a manner consistent with the regularity (eg., homogeneity , quasi-convexity and convexity) 
properties implied by economic theory.  Failure to impose these regularity constraints on the parameters of 
distance functions may give rise to estimated elasticities and shadow price ratios that are unreliable, if not 
implausible. 
 
Sampling theorists seem to have little difficulty imposing monotonicity and convexity constraints19 on the 
parameters of distance functions, but imposing quasi-convexity constraints appears difficult.  This paper handles 
the problem in a Bayesian framework.  Imposition of monotonicity and curvature constraints is straightforward 
in a Bayesian framework, but involves the use of Markov chain Monte Carlo (MCMC) simulation techniques.  
This paper uses two common MCMC algorithms to estimate the parameters of a translog output distance 
function under two different assumptions concerning  inefficiency effects.  We use a Metropolis-Hastings 
algorithm to estimate the distance function under a fixed effects assumption.  We use a Gibbs sampler with data 
augmentation and Metropolis-Hastings sub-chains to estimate the distance function under a random effects 
assumption.  By imposing monotonicity, quasi-convexity and convexity constraints on the parameters of an 
output distance function, we extend earlier work by Koop, Steel and Osiewalski (1995) and Koop, Osiewalski 
and Steel (1997) on Bayesian estimation of unconstrained stochastic production frontiers. 
 
In our empirical application to 17 European railways, our estimates of (relative) technical efficiency seem more 
sensitive to the random versus fixed effects assumptions than to the imposition of regularity constraints.  
However, the imposition of these constraints gives rise to significant changes in the signs and magnitudes of 
other estimated functions of the parameters.  Point estimates of elasticities and shadow price ratios undergo sign 
reversals, and the variances of estimated marginal pdfs become much smaller as more inequality information is 
incorporated into the estimation process.  The estimates obtained from the regularity-constrained models are the 
only estimates that are theoretically plausible. 
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DATA APPENDIX  

 
The data were assembled from International Railways Statistics, published each year, since1925, by the 
International Union of Railways (Union International de Chemins de fer, UIC). For each input and output 
variable discussed below, we indicate the corresponding table containing the annual statistics of individual 
railways. We also give a summary of the UIC description for each of the selected statistics (UIC, 1988-1993)20. 
 
Inputs 
 
Staff Operating and traffic staff  (Table 31) 
 Corresponds to the annual mean staff bound to the railway by an employment contract and 

working in the following activities : 
 -  central and regional operating and traffic departments; 
 -  stations, halts, stopping points, town offices and signaling installations; 
 - train-accompanying and inspection. 
 
Rolling  Passenger transport stock (Table 22) and Freight transport stock (Table 23) 
stock The available annual mean fleet of coaches multiplied by the average seats and sleep 

accommodation, and the available annual mean fleet of railway-owned wagons multiplied by the 
average capacity in tonnes. 

 
Lines Lines (Table 11) 
 Total length (in km) of lines worked, including electrified and non-electrified lines and broad and 

narrow gauge lines. Sections permanently out of use are excluded. 
 
Outputs 

 
Passengers Revenue-earning passenger traffic (Table 51) 
 Number of passenger-kilometers conveyed by rail calculated in accordance with the number of 

tickets sold multiplied by the kilometric distance for each journey (or by a mean kilometric 
distance). 

 
Freight Freight traffic (Table 61) 
 Tonnes-kilometers of revenue-earning traffic carried by rail obtained by multiplying the 

chargeable weight by the charging distance. This variable includes essentially full wagonloads as 
well as express parcels and small traffic (including postal packages). 

 
The railway companies included in the data set are: 
 
British Railways (BR); Swiss Federal Railways (CFF); Luxembourg National Railway Company (CFL); Hellenic 
Railways Organisation (CH); Irish Transport Company (CIE); Portuguese Railways (CP); German Federal 
Railways (DB);  Danish State Railways (DSB); Italian State Railways (FS); Netherlands Railways (NS); 
Norwegian State Railways (NSB); Austrian Federal Railways (OBB);  Spanish National Railways (RENFE); 
Swedish State Railways (SJ); Belgian National Railway Company (SNCB/NMBS); French National Railway 
Company (SNCF) and Finnish State Railways (VR). 
 

                                                           
20 The authors thank Henry-Jean Gathon  for making available a computer file containing most of the data used in this study. 
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Table 1. Intercept Parametersa  
  

 
  Fixed Effects   Random Effects 

     
 

   Monotonicity   Monotonicity 
 Unconstrained Monotonicity & Curvature Unconstrained Monotonicity & Curvature 

  
 
α0,1 0.143 0.020 0.035 - - - 
 (0.070, 0.217) (-0.082, 0.128) (-0.084, 0.151) 
 
α0,2 0.167 0.067 0.041 - - - 
 (0.097, 0.237) (-0.022, 0.174) (-0.049, 0.123) 
 
α0,3 0.095 0.084 -0.013 - - - 
 (0.030, 0.158) (0.006, 0.196) (-0.094, 0.082) 
 
α0,4 0.131 -0.027 -0.023 - - - 
 (0.059, 0.208) (-0.130, 0.085) (-0.136, 0.060) 
 
α0,5 0.122 0.042 -0.009 - - - 
 (0.052, 0.188) (-0.034, 0.136) (-0.093, 0.065) 
 
α0,6 0.087 -0.011 -0.070 - - - 
 (0.020, 0.156) (-0.098, 0.080) (-0.154, 0.026) 
 
α0,7 0.152 0.036 0.046 - - - 
 (0.072, 0.229) (-0.054, 0.126) (-0.036, 0.135) 
 
α0,8 0.077 -0.022 -0.068 - - - 
 (0.005, 0.148) (-0.126, 0.074) (-0.163, 0.021) 
 
α0,9 0.049 -0.034 -0.086 - - - 
 (-0.022, 0.120) (-0.108, 0.041) (-0.181, 0.003) 
 
α0,10 0.099 0.014 0.057 - - - 
 (0.027, 0.172) (-0.065, 0.087) (-0.045, 0.139) 
 
α0,11 0.069 -0.042 -0.087 - - - 
 (0.002, 0.137) (-0.115, 0.035) (-0.172, 0.002) 
 
α0,12 0.055 -0.030 -0.031 - - - 
 (-0.018, 0.128) (-0.121, 0.052) (-0.112, 0.052) 
 
α0,13 0.059 -0.042 -0.093 - - - 
 (-0.016, 0.135) (-0.141, 0.040) (-0.211, -0.003) 
 
α0,14 0.080 -0.015 -0.089 - - - 
 (0.008, 0.151) (-0.115, 0.094) (-0.225, 0.007) 
 
α0,15 0.067 0.005 -0.021 - - - 
 (-0.012, 0.145) (-0.082, 0.106) (-0.111, 0.065) 
 
α0,16 0.047 -0.078 -0.134 - - - 
 (-0.021, 0.111) (-0.163, 0.017) (-0.237, -0.050 
 
α0,17 0.081 -0.016 -0.012 - - - 
 (0.009, 0.153) (-0.081, 0.059) (-0.092, 0.073)  
 
a 0 - - - 0.054 -0.029 -0.078 
    (0.005, 0.102) (-0.069, 0.011) (-0.110, -0.043) 

  
a Numbers in parentheses are 95% posterior coverage regions.
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Table 2. Slope Parametersa 
  

 
  Fixed Effects   Random Effects 

     
 

   Monotonicity   Monotonicity 
 Unconstrained Monotonicity & Curvature Unconstrained Monotonicity & Curvature 

  
 

a 1 0.583 0.519 0.536 0.571 0.511 0.518 
 (0.536, 0.630) (0.473, 0.568) (0.483, 0.577) (0.526, 0.615) (0.463, 0.558) (0.471, 0.563) 
     
a 11 0.361 0.113 0.255 0.372 0.103 0.256 
 (0.260, 0.465) (0.014, 0.196) (0.250, 0.265) (0.276, 0.469) (0.010, 0.186) (0.250, 0.266) 
    
b1 -0.662 -0.509 -0.439 -0.632 -0.491 -0.438 
 (-0.767, -0.557) (-0.590, -0.454) (-0.488, -0.397) (-0.729, -0.533) (-0.543, -0.449) (-0.486, -0.399) 
     
b2   0.017 -0.140 -0.184 -0.013 -0.175 -0.193 
 (-0.086, 0.124) (-0.213, -0.066) (-0.236, -0.134) (-0.113, 0.086) (-0.240, -0.106) (-0.249, -0.134) 
 
b3   -0.477 -0.428 -0.428 -0.473 -0.409 -0.415 
 (-0.524, -0.435) (-0.493, -0.374) (-0.485, -0.371) (-0.515, -0.431) (-0.465, -0.352) (-0.468, -0.364) 
 
b11  0.783 0.237 0.268 0.736 0.222 0.282 
 (0.193, 1.375) (0.093, 0.379) (0.161, 0.365) (0.197, 1.276) (0.073, 0.358) (0.179, 0.390) 
 
b12  -1.100 -0.043 -0.073 -1.025 -0.050 -0.084 
 (-1.609, -0.614) (-0.115, 0.026) (-0.151, 0.009) (-1.482, -0.569) (-0.117, 0.013) (-0.170, 0.003) 
 
b13  0.663 0.026 -0.046 0.628 0.043 -0.045 
 (0.447, 0.881) (-0.073, 0.144) (-0.099, 0.006) (0.422, 0.832) (-0.070, 0.189) (-0.091, 0.004) 
 
b22  1.188 0.009 0.118 1.094 0.001 0.130 
 (0.717, 1.690) (-0.060, 0.101) (0.023, 0.212) (0.645, 1.544) (-0.062, 0.078) (0.040, 0.226) 
 
b23  -0.199 0.039 -0.029 -0.163 0.048 -0.025 
 (-0.348, -0.048) (-0.046, 0.124) (-0.083, 0.032) (-0.302, -0.023) (-0.044, 0.149) (-0.075, 0.026) 
 
b33 -0.706 -0.197 -0.020 -0.714 -0.208 -0.022 
 (-0.911, -0.504) (-0.294, -0.082) (-0.081, 0.038) (-0.901, -0.526) (-0.321, -0.082) (-0.081, 0.030) 
    
g11  -0.679 -0.284 -0.325 -0.687 -0.306 -0.344 
 (-0.802, -0.563) (-0.358, -0.201) (-0.378, -0.262) (-0.802, -0.572) (-0.384, -0.232) (-0.404, -0.281) 
   
g21  0.565 0.078 0.153 0.550 0.098 0.165 
 (0.419, 0.718) (0.016, 0.139) (0.084, 0.207) (0.409, 0.690) (0.035, 0.165) (0.103, 0.223) 
   
g31 0.148 0.163 0.170 0.171 0.162 0.170 
 (0.049, 0.250) (0.117, 0.206) (0.131, 0.205) (0.076, 0.267) (0.105, 0.209) (0.132, 0.202)     

  
a Numbers in parentheses are 95% posterior coverage regions.
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Table 3. Technical Efficiency Scores (i = 1, ..., 17)a.  
  

 
  Fixed Effects   Random Effects 

     
 

   Monotonicity   Monotonicity 
 Firm Unconstrained Monotonicity & Curvature Unconstrained Monotonicity & Curvature 
  
 

1 0.958 0.904 0.932 0.942 0.951 0.948 
 (0.902, 1.000) (0.798, 1.000) (0.829, 1.000) (0.889, 0.990) (0.885, 0.996) (0.874, 0.996) 
 
2 0.982 0.947 0.938 0.924 0.936 0.937 
 (0.931, 1.000) (0.855, 1.000) (0.843, 1.000) (0.870, 0.979) (0.863, 0.993) (0.857, 0.994) 
 
3 0.914 0.962 0.888 0.968 0.948 0.955 
 (0.852, 0.978) (0.886, 1.000) (0.818, 0.986) (0.925, 0.997) (0.880, 0.995) (0.889, 0.997) 
 
4 0.948 0.863 0.879 0.954 0.971 0.965 
 (0.893, 1.000) (0.750, 0.968) (0.784, 0.964) (0.902, 0.995) (0.921, 0.998) (0.906, 0.998) 
 
5 0.939 0.924 0.892 0.955 0.960 0.958 
 (0.881, 1.000) (0.825, 1.000) (0.801, 0.975) (0.906, 0.995) (0.902, 0.997) (0.893, 0.997) 
 
6 0.907 0.876 0.839 0.970 0.969 0.973 
 (0.848, 0.971) (0.790, 0.964) (0.768, 0.934) (0.929, 0.997) (0.918, 0.998) (0.925, 0.998) 
 
7 0.968 0.919 0.942 0.933 0.943 0.936 
 (0.909, 1.000) (0.818, 1.000) (0.860, 1.000) (0.878, 0.985) (0.871, 0.995) (0.854, 0.994) 
 
8 0.898 0.867 0.841 0.977 0.974 0.976 
 (0.840, 0.956) (0.777, 0.950) (0.751, 0.921) (0.941, 0.998) (0.929, 0.999) (0.931, 0.999) 
 
9 0.873 0.856 0.826 0.984 0.977 0.977 
 (0.815, 0.932) (0.784, 0.941) (0.744, 0.909) (0.956, 0.999) (0.934, 0.999) (0.935, 0.999) 
 
10 0.917 0.898 0.952 0.970 0.959 0.948 
 (0.862, 0.973) (0.820, 0.984) (0.867, 1.000) (0.928, 0.998) (0.898, 0.997) (0.874, 0.996) 
 
11 0.891 0.850 0.825 0.979 0.977 0.978 
 (0.834, 0.946) (0.758, 0.933) (0.741, 0.911) (0.945, 0.999) (0.935, 0.999) (0.937, 0.999) 
 
12 0.878 0.859 0.872 0.983 0.971 0.968 
 (0.819, 0.935) (0.778, 0.933) (0.806, 0.952) (0.952, 0.999) (0.923, 0.998) (0.914, 0.998) 
 
13 0.882 0.850 0.820 0.982 0.978 0.976 
 (0.827, 0.940) (0.764, 0.932) (0.725, 0.906) (0.952, 0.999) (0.939, 0.999) (0.932, 0.999) 
 
14 0.900 0.873 0.823 0.976 0.972 0.973 
 (0.838, 0.960) (0.782, 1.000) (0.745, 0.904) (0.939, 0.998) (0.924, 0.998) (0.925, 0.998) 
 
15 0.889 0.890 0.881 0.979 0.967 0.962 
 (0.830, 0.948) (0.798, 0.989) (0.786, 0.971) (0.944, 0.999) (0.914, 0.998) (0.900, 0.998) 
 
16 0.871 0.819 0.787 0.985 0.982 0.979 
 (0.815, 0.927) (0.736, 0.917) (0.687, 0.858) (0.957, 0.999) (0.949, 0.999) (0.941, 0.999) 
 
17 0.901 0.872 0.889 0.975 0.967 0.972 
 (0.840, 0.964) (0.777, 0.968) (0.816, 0.979) (0.937, 0.998) (0.913, 0.998) (0.924, 0.998)     

  
a Numbers in parentheses are 95% posterior coverage regions. 
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Table 4. Elasticities for Input 1 (t = 6; i = 1, ..., 17)a.  
  

 
  Fixed Effects   Random Effects 

     
 

   Monotonicity   Monotonicity 
 Firm Unconstrained Monotonicity & Curvature Unconstrained Monotonicity & Curvature 
  

 
1 -0.234 -0.540 -0.522 -0.256 -0.533 -0.525 
 (-0.467, 0.004) (-0.628, -0.451) (-0.603, -0.446) (-0.465, -0.045) (-0.613, -0.448) (-0.600, -0.448) 
 
2 -1.242 -0.662 -0.518 -1.201 -0.662 -0.522 
 (-1.474, -1.017) (-0.795, -0.555) (-0.581, -0.458) (-1.417, -0.986) (-0.790, -0.552) (-0.581, -0.462) 
 
3 -1.640 -0.924 -0.576 -1.540 -0.877 -0.571 
 (-2.069, -1.222) (-1.187, -0.665) (-0.777, -0.332) (-1.921, -1.160) (-1.143, -0.595) (-0.783, -0.370) 
 
4 -1.842 -1.248 -1.139 -1.812 -1.231 -1.169 
 (-2.220, -1.466) (-1.366, -1.120) (-1.230, -1.031) (-2.155, -1.471) (-1.341, -1.106) (-1.248, -1.080) 
 
5 -0.244 -1.130 -0.949 -0.303 -1.094 -0.958 
 (-0.562, 0.106) (-1.259, -1.002) (-1.081, -0.821) (-0.617, 0.011) (-1.217, -0.969) (-1.076, -0.847) 
 
6 -0.676 -1.018 -0.887 -0.716 -1.007 -0.900 
 (-0.937, -0.401) (-1.093, -0.938) (-0.958, -0.811) (-0.964, -0.468) (-1.074, -0.932) (-0.968, -0.821) 
 
7 -0.500 -0.176 -0.181 -0.448 -0.164 -0.173 
 (-0.722, -0.287) (-0.287, -0.111) (-0.279, -0.121) (-0.650, -0.243) (-0.248, -0.110) (-0.252, -0.125) 
 
8 -0.782 -0.964 -0.805 -0.804 -0.953 -0.815 
 (-1.039, -0.518) (-1.048, -0.878) (-0.877, -0.728) (-1.047, -0.560) (-1.023, -0.870) (-0.885, -0.737) 
 
9 -1.010 -0.523 -0.522 -0.985 -0.532 -0.531 
 (-1.200, -0.827) (-0.620, -0.438) (-0.619, -0.443) (-1.160, -0.810) (-0.620, -0.452) (-0.615, -0.451) 
 
10 -1.342 -1.077 -0.961 -1.364 -1.092 -0.984 
 (-1.625, -1.059) (-1.164, -0.979) (-1.031, -0.883) (-1.625, -1.105) (-1.170, -0.997) (-1.056, -0.896) 
 
11 -0.134 -0.797 -0.653 -0.137 -0.740 -0.650 
 (-0.369, 0.105) (-0.963, -0.632) (-0.801, -0.521) (-0.356, 0.082) (-0.894, -0.585) (-0.780, -0.535) 
 
12 -0.439 -0.397 -0.271 -0.408 -0.378 -0.260 
 (-0.658, -0.228) (-0.539, -0.293) (-0.341, -0.209) (-0.608, -0.209) (-0.490, -0.272) (-0.332, -0.191) 
 
13 -0.866 -0.741 -0.723 -0.849 -0.720 -0.736 
 (-1.128, -0.601) (-0.839, -0.628) (-0.781, -0.663) (-1.095, -0.605) (-0.826, -0.589) (-0.789, -0.678) 
 
14 0.383 -0.362 -0.260 0.409 -0.291 -0.240 
 (0.076, 0.692) (-0.556, -0.177) (-0.416, -0.126) (0.125, 0.692) (-0.466, -0.118) (-0.385, -0.110) 
 
15 -0.949 -0.521 -0.370 -0.894 -0.504 -0.364 
 (-1.142, -0.758) (-0.663, -0.408) (-0.439, -0.301) (-1.073, -0.714) (-0.627, -0.386) (-0.436, -0.295) 
 
16 -0.433 -0.287 -0.317 -0.402 -0.275 -0.316 
 (-0.632, -0.232) (-0.388, -0.198) (-0.414, -0.251) (-0.593, -0.207) (-0.368, -0.184) (-0.393, -0.256) 
 
17 0.080 -0.439 -0.297 0.119 -0.371 -0.279 
 (-0.206, 0.368) (-0.629, -0.256) (-0.457, -0.150) (-0.144, 0.381) (-0.539, -0.202) (-0.432, -0.141) 

  
a Numbers in parentheses are 95% posterior coverage regions.
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Table 5. Elasticities for Input 2 (t = 6; i = 1, ..., 17)a.  
  

 
  Fixed Effects   Random Effects 

     
 

   Monotonicity   Monotonicity 
 Firm Unconstrained Monotonicity & Curvature Unconstrained Monotonicity & Curvature 
  
 

1 -0.357 -0.092 -0.150 -0.333 -0.113 -0.155 
 (-0.573, -0.145) (-0.174, -0.022) (-0.225, -0.089) (-0.520, -0.146) (-0.201, -0.033) (-0.223, -0.095) 
 
2 0.094 -0.153 -0.147 0.047 -0.187 -0.160 
 (-0.061, 0.250) (-0.257, -0.048) (-0.214, -0.086) (-0.098, 0.191) (-0.299, -0.090) (-0.227, -0.093) 
 
3 0.239 -0.249 -0.343 0.127 -0.292 -0.378 
 (-0.169, 0.664) (-0.483, -0.032) (-0.535, -0.139) (-0.243, 0.499) (-0.566, -0.055) (-0.553, -0.200) 
 
4 0.981 -0.037 -0.050 0.905 -0.035 -0.051 
 (0.615, 1.362) (-0.094, -0.007) (-0.124, -0.013) (0.563, 1.245) (-0.084, -0.008) (-0.120, -0.014) 
 
5 -0.729 -0.083 -0.270 -0.684 -0.077 -0.293 
 (-1.032, -0.444) (-0.191, -0.011) (-0.376, -0.132) (-0.957, -0.409) (-0.177, -0.009) (-0.404, -0.191) 
 
6 -0.371 -0.072 -0.162 -0.348 -0.071 -0.176 
 (-0.598, -0.152) (-0.142, -0.026) (-0.236, -0.089) (-0.553, -0.142) (-0.129, -0.032) (-0.258, -0.113) 
 
7 0.136 -0.158 -0.164 0.096 -0.210 -0.167 
 (-0.052, 0.334) (-0.268, -0.058) (-0.245, -0.094) (-0.093, 0.283) (-0.314, -0.105) (-0.251, -0.089) 
 
8 -0.360 -0.100 -0.182 -0.351 -0.107 -0.198 
 (-0.562, -0.161) (-0.164, -0.042) (-0.247, -0.105) (-0.541, -0.162) (-0.170, -0.055) (-0.275, -0.134) 
 
9 0.332 -0.091 -0.052 0.299 -0.119 -0.049 
 (0.154, 0.515) (-0.176, -0.019) (-0.131, -0.005) (0.127, 0.471) (-0.211, -0.032) (-0.115, -0.004) 
 
10 0.061 -0.050 -0.044 0.058 -0.048 -0.050 
 (-0.147, 0.269) (-0.133, -0.004) (-0.108, -0.004) (-0.136, 0.252) (-0.124, -0.004) (-0.129, -0.004) 
 
11 -0.388 -0.136 -0.328 -0.389 -0.156 -0.350 
 (-0.527, -0.246) (-0.233, -0.048) (-0.413, -0.190) (-0.524, -0.254) (-0.254, -0.065) (-0.443, -0.252) 
 
12 -0.407 -0.191 -0.257 -0.425 -0.236 -0.276 
 (-0.546, -0.273) (-0.292, -0.078) (-0.334, -0.174) (-0.555, -0.294) (-0.341, -0.136) (-0.358, -0.186) 
 
13 0.438 -0.069 -0.110 0.403 -0.086 -0.110 
 (0.209, 0.672) (-0.136, -0.013) (-0.165, -0.063) (0.185, 0.620) (-0.162, -0.017) (-0.161, -0.065) 
 
14 -0.518 -0.196 -0.409 -0.528 -0.242 -0.431 
 (-0.739, -0.300) (-0.326, -0.063) (-0.518, -0.257) (-0.739, -0.318) (-0.367, -0.109) (-0.550, -0.301) 
 
15 -0.014 -0.189 -0.224 -0.066 -0.233 -0.241 
 (-0.161, 0.140) (-0.306, -0.067) (-0.309, -0.142) (-0.205, 0.071) (-0.359, -0.122) (-0.326, -0.151) 
 
16 0.148 -0.120 -0.137 0.123 -0.160 -0.136 
 (-0.042, 0.340) (-0.220, -0.037) (-0.216, -0.073) (-0.062, 0.305) (-0.269, -0.060) (-0.209, -0.073) 
 
17 -0.409 -0.207 -0.403 -0.436 -0.253 -0.427 
 (-0.625, -0.197) (-0.334, -0.072) (-0.516, -0.246) (-0.639, -0.232) (-0.386, -0.122) (-0.549, -0.293) 

  
a Numbers in parentheses are 95% posterior coverage regions.
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Table 6. Elasticities for Input 3 (t = 6; i = 1, ..., 17)a.  
  

 
  Fixed Effects   Random Effects 

     
 

   Monotonicity   Monotonicity 
 Firm Unconstrained Monotonicity & Curvature Unconstrained Monotonicity & Curvature 
  
 

1 -0.480 -0.439 -0.362 -0.485 -0.420 -0.350 
 (-0.589, -0.372) (-0.510, -0.353) (-0.442, -0.288) (-0.586, -0.384) (-0.494, -0.331) (-0.426, -0.277) 
 
2 0.267 -0.190 -0.329 0.277 -0.168 -0.317 
 (0.113, 0.425) (-0.285, -0.116) (-0.380, -0.278) (0.131, 0.423) (-0.264, -0.076) (-0.364, -0.273) 
 
3 0.317 -0.104 -0.311 0.331 -0.121 -0.305 
 (0.109, 0.524) (-0.238, -0.011) (-0.431, -0.206) (0.133, 0.526) (-0.270, -0.015) (-0.399, -0.205) 
 
4 -0.430 -0.133 -0.079 -0.387 -0.151 -0.073 
 (-0.670, -0.191) (-0.257, -0.031) (-0.146, -0.028) (-0.609, -0.162) (-0.305, -0.034) (-0.144, -0.024) 
 
5 -0.200 -0.223 -0.092 -0.211 -0.256 -0.091 
 (-0.393, -0.015) (-0.340, -0.085) (-0.197, -0.014) (-0.388, -0.034) (-0.390, -0.122) (-0.185, -0.016) 
 
6 0.024 -0.173 -0.121 0.024 -0.183 -0.116 
 (-0.096, 0.145) (-0.233, -0.106) (-0.187, -0.067) (-0.088, 0.137) (-0.248, -0.116) (-0.183, -0.065) 
 
7 -0.774 -0.592 -0.598 -0.770 -0.552 -0.580 
 (-0.859, -0.696) (-0.722, -0.492) (-0.692, -0.498) (-0.851, -0.689) (-0.661, -0.444) (-0.670, -0.492) 
 
8 0.167 -0.154 -0.157 0.167 -0.160 -0.151 
 (0.078, 0.257) (-0.199, -0.113) (-0.211, -0.118) (0.083, 0.252) (-0.201, -0.124) (-0.199, -0.115) 
 
9 -0.333 -0.361 -0.380 -0.316 -0.327 -0.365 
 (-0.416, -0.253) (-0.466, -0.282) (-0.457, -0.303) (-0.393, -0.241) (-0.409, -0.248) (-0.440, -0.292) 
 
10 0.426 -0.023 -0.065 0.443 -0.018 -0.057 
 (0.292, 0.558) (-0.068, -0.001) (-0.119, -0.020) (0.316, 0.569) (-0.052, -0.001) (-0.111, -0.015) 
 
11 -0.879 -0.474 -0.328 -0.886 -0.499 -0.323 
 (-1.078, -0.687) (-0.589, -0.355) (-0.401, -0.265) (-1.064, -0.707) (-0.626, -0.374) (-0.391, -0.264) 
 
12 -0.140 -0.406 -0.477 -0.150 -0.383 -0.465 
 (-0.246, -0.027) (-0.488, -0.332) (-0.533, -0.413) (-0.256, -0.044) (-0.467, -0.289) (-0.518, -0.412) 
 
13 -0.885 -0.431 -0.319 -0.865 -0.427 -0.308 
 (-1.086, -0.692) (-0.536, -0.326) (-0.394, -0.251) (-1.043, -0.685) (-0.546, -0.310) (-0.383, -0.241) 
 
14 -1.372 -0.738 -0.580 -1.390 -0.747 -0.570 
 (-1.586, -1.153) (-0.855, -0.617) (-0.661, -0.501) (-1.586, -1.196) (-0.865, -0.619) (-0.639, -0.501) 
 
15 -0.031 -0.317 -0.432 -0.028 -0.298 -0.420 
 (-0.152, 0.096) (-0.405, -0.249) (-0.487, -0.372) (-0.145, 0.089) (-0.386, -0.209) (-0.472, -0.369) 
 
16 -0.912 -0.591 -0.532 -0.906 -0.558 -0.516 
 (-1.026, -0.806) (-0.704, -0.484) (-0.629, -0.438) (-1.008, -0.803) (-0.659, -0.451) (-0.604, -0.427) 
 
17 -1.113 -0.644 -0.544 -1.127 -0.654 -0.536 
 (-1.265, -0.957) (-0.734, -0.554) (-0.611, -0.478) (-1.266, -0.990) (-0.743, -0.564) (-0.594, -0.478) 

  
a Numbers in parentheses are 95% posterior coverage regions. 
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Table 7. Output Shadow Price Ratio (t = 6; i = 1, ..., 17)a.  
  

 
  Fixed Effects   Random Effects 

     
 

   Monotonicity   Monotonicity 
 Firm Unconstrained Monotonicity & Curvature Unconstrained Monotonicity & Curvature 
  
 

1 0.644 0.656 0.926 0.653 0.594 0.822 
 (0.407, 0.963) (0.471, 0.859) (0.687, 1.182) (0.427, 0.947) (0.409, 0.809) (0.632, 1.067) 
 
2 0.553 0.519 0.572 0.499 0.489 0.532 
 (0.370, 0.772) (0.406, 0.659) (0.455, 0.704) (0.342, 0.683) (0.378, 0.617) (0.420, 0.664) 
 
3 0.996 3.020 1.028 0.791 3.292 1.077 
 (0.002, 2.449) (1.670, 4.917) (0.698, 1.434) (-0.050, 1.951) (1.677, 5.869) (0.788, 1.421) 
 
4 -2.039 4.305 17.673 -3.130 3.692 18.766 
 (-9.048, -1.543) (1.050, 13.575) (8.533, 27.143) (-7.219, -1.551) (1.064, 10.374) (9.178, 28.984 
 
5 0.231 1.729 1.215 0.261 1.464 1.143 
 (0.060, 0.456) (0.980, 2.841) (0.857, 1.820) (0.091, 0.492) (0.903, 2.315) (0.803, 1.630) 
 
6 0.288 0.702 0.826 0.305 0.606 0.758 
 (0.151, 0.465) (0.434, 1.033) (0.637, 1.143) (0.174, 0.476) (0.406, 0.861) (0.568, 1.014) 
 
7 3.050 1.029 1.272 2.710 1.025 1.155 
 (1.840, 4.945) (0.727, 1.449) (0.843, 1.685) (1.680, 4.210) (0.706, 1.411) (0.796, 1.534) 
 
8 0.251 0.666 0.687 0.256 0.590 0.639 
 (0.145, 0.377) (0.452, 0.916) (0.550, 0.893) (0.159, 0.373) (0.432, 0.779) (0.496, 0.819) 
 
9 2.170 0.486 0.924 2.087 0.455 0.826 
 (1.007, 4.768) (0.332, 0.656) (0.654, 1.225) (0.994, 4.039) (0.290, 0.655) (0.607, 1.097) 
 
10 0.304 0.312 0.567 0.307 0.264 0.510 
 (0.161, 0.516) (0.168, 0.490) (0.420, 0.799) (0.177, 0.497) (0.152, 0.403) (0.370, 0.701) 
 
11 1.377 4.595 2.477 1.448 4.506 2.428 
 (0.915, 1.947) (3.251, 6.493) (2.119, 2.868) (0.988, 2.025) (3.214, 6.306) (2.077, 2.789) 
 
12 0.441 0.887 0.678 0.384 0.851 0.614 
 (0.243, 0.678) (0.619, 1.278) (0.524, 0.840) (0.208, 0.583) (0.611, 1.140) (0.467, 0.778) 
 
13 14.276 1.750 3.041 -24.761 1.700 2.774 
 (-69.349, 71.487) (1.160, 2.477) (2.101, 4.015) (-76.863, 74.817) (1.042, 2.562) (2.058, 3.541) 
 
14 2.836 7.666 3.295 2.809 7.968 3.208 
 (1.696, 4.270) (4.404, 12.978) (2.747, 3.804) (1.777, 4.089) (5.025, 12.574) (2.667, 3.672) 
 
15 0.822 0.962 0.775 0.724 0.947 0.727 
 (0.492, 1.217) (0.727, 1.270) (0.628, 0.942) (0.446, 1.054) (0.717, 1.230) (0.584, 0.886) 
 
16 5.168 1.058 1.536 3.843 1.037 1.385 
 (2.118, 7.522) (0.763, 1.431) (1.037, 2.042) (2.037, 6.927) (0.700, 1.454) (0.976, 1.827) 
 
17 2.406 6.649 2.770 2.316 6.974 2.726 
 (1.369, 3.697) (3.947, 10.961) (2.426, 3.087) (1.400, 3.438) (4.410, 10.903) (2.371, 3.020) 

  
a Numbers in parentheses are 95% posterior coverage regions. 
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Fig. 1.  Random Effects Estimates of the Posterior Pdf for b2  
 
 
 
 
 

 
 

Fig. 2. Fixed Effects Estimates of Elasticity for Input 1, Firm i = 3, Period t = 6 
 
 
 
 

 
 

Fig. 3. Random Effects Estimates of Elasticity for Input 1, Firm i = 3, Period t = 6 
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Fig. 4. Fixed Effects Estimates of Elasticity for Input 2 Firm i = 3, Period t = 6 
 
 
 
 

 
 

Fig. 5. Random Effects Estimates of Elasticity for Input 2 Firm i = 3, Period t = 6 
 
 
 
 
 

 
 

Fig. 6. Fixed Effects Estimates of Elasticity for Input 3 Firm i = 3, Period t = 6 
 
 

 



 

 

26

 
 

Fig. 7. Random Effects Estimates of Elasticity for Input 3 Firm i = 3, Period t = 6 
 
 
 
 
 
 

 
 

Fig. 8. Fixed Effects Estimates of Output Shadow Price Ratio, Firm i = 3, Period t = 6 
 
 
 
 
 

 
 

Fig. 9. Random Effects Estimates of Output Shadow Price Ratio, Firm i = 3, Period t = 6 
 


