
SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 01-14

Representing ASN.1 in Z

Antonio Cerone

June 2001
(Revised: November 2002)

Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In: C. Johnson, P. Montague and C. Steketee, editors, Proceedings of the Australasian Information Se-
curity Workshop (AISW2003), Adelaide, Australia, Conferences in Research and Practice in Information
Technology, Vol. 21, pages 9–16 Australian Computer Society, 2003.

Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript
files are available via http://svrc.it.uq.edu.au

Representing ASN.1 in Z

Antonio Cerone

Abstract

ASN.1 (Abstract Syntax Notation One) has been in-
creasingly used in defining the data structures used in
internet security protocols. In this paper we present a
framework for translating ASN.1 specification into Z.
We use a restricted version of ASN.1, which is how-
ever sufficiently powerful to specify important net-
work communication protocols. Finally, we present
an example of translation based on the Cryptographic
Message Syntax of S/MIME.

1 Introduction

In the last two decades ASN.1 (Abstract Syntax No-
tation One) [6, 7, 10] has been increasingly used in
defining the data structures used in internet security
protocols [2, 3, 4, 5, 11]. ASN.1 is a standard notation
to give an abstract representation to the syntactical
structure of datatypes used in network communica-
tion protocols. It is independent of the encoding al-
gorithm used to represent the actual instantiations of
the datatypes, but contains enough details to provide
a model suitable for analysis.

Our overall research aims to verify security proto-
cols using a refinement approach. Since we are in-
terested in security protocols, whose data structure
is specified using ASN.1, we need to represent ASN.1
in some formal language commonly used in verifica-
tion environments. Z [12] is a highly abstract model-
oriented specification notation. It has already been
used for modelling security protocols [1, 9, 8] and has
a well-established notion of refinement [13]. It there-
fore provides a sound basis for our research. How-
ever, to get started, we must first translate security
protocol datatype structures expressed in ASN.1 into
equivalent Z declarations. In this paper we define just

such a mapping.
ASN.1 is presented in a descriptive fashion in cryp-

tic reports without any attempts to give any for-
mal characterization to static and dynamic semantics
[2, 6, 10]. Static semantics is implicitly introduced in
such reports by informally describing the restrictions
to impose on the possible specifications allowed by
the syntax of ASN.1. Our translation into Z implic-
itly includes all aspects of static semantics: only the
ASN.1 definitions that meet the restriction required
by the static semantics have a representation in Z.

The subset of ASN.1 [6] we are going to formalise
has been used to define the data structures used by
the S/MIME internet protocol [4, 5]. Moreover, we
are going to work with ASN.1 without going into the
details of the Basic Encoding Rules (BER) or the Dis-
tinguished Encoding Rules (DER) used to represent
values of each ASN.1 type as a string of bits [6]. The
semantics given to our translation will be, however,
consistent with the Encoding Rules.

Section 2 briefly introduces the ASN.1 notation.
Section 3 defines the framework for representing the
syntax and static semantics of ASN.1 in Z. Section 4
shows how ASN.1’s module structure can be repre-
sented in Z. Finally, Section 5 presents a brief exam-
ple of translation based on the Cryptographic Mes-
sage Syntax of S/MIME [4].

2 The Notation

Historically ASN.1 [2, 6, 7, 10] was originated in the
1980s [2] by the need of representing in a machine-
independent way the complex data structures that
are used in internet protocols [7]. The notation has
then been revised and extended during the last two
decades [10].

Internet protocols utilise repetitive and optional

1

structures built-up from primitive data types. There
are three main construction mechanisms:

repetition an ordered (SEQUENCE OF) or unordered
(SET OF) finite collection of components having
the same type;

record an ordered (SEQUENCE) or unordered (SET)
finite collection of fields, each having a distinct
name and a type;

alternative a choice (CHOICE) among a finite set of
alternative types.

Mutual recursion is permitted and, combined with
the alternative construction mechanism, allows the
recursive definition of data structures which can still
have a finite representation of some of their values.

3 Abstract Syntax of Types

Only a subset of ASN.1 is actually used in defining
the data structures of internet protocols [6, 7]. In
this paper we just consider this subset of ASN.1 and,
in the following, we will use ASN.1 to denote such
a subset. As a consequence, some of the definitions
given in the Standard [2, 10] will appear in our paper
in a simplified form.

In this section we present the ASN.1 data types,
and, for each of them, define a Z type to represent the
structure of that ASN.1 data type. The disjoint union
TYPE of such Z types represents all possible data
types that can be defined using the ASN.1 abstract
syntax.

The structure of an ASN.1 type is given by a Z
free type definition [12, p.81] as shown in Figure 1.
This definition is used to translate ASN.1 datatypes
into a Z type as shown in Section 5; the constructors
of the TYPE free type, which are injections, will be
used to define the complex datatype used in security
protocols [4].

We assume that the sets of identi-
fiers (IDENTIFIER), the sets of references
(REFERENCE), and the sets of values (VALUE)
are given Z types.

[IDENTIFIER, REFERENCE , VALUE]

In ASN.1 identifiers, value references, type references
and module references all consist of one or more let-
ters, digits and hyphens, with a hyphen neither oc-
curring as the last character nor immediately follow-
ing another hyphen. Identifier and value references
always start with a lower-case letter, whereas type
references and module references always start with
an upper-case letter [10]. In our translation we use

• IDENTIFIER to represent identifiers and value
references;

• REFERENCE to represent type references and
module references.

This disjunction of the two sets is ensured in the Z
representation by the definition of two separate types
IDENTIFIER and REFERENCE .

In the rest of this section, for each of the alter-
natives in the free type above, we give the ASN.1
abstract syntax and we introduce the Z representa-
tion. Every alterative type is represented in Z by a
schema definition. A schema definition consists of a
schema name, a declaration part and a predicate [12,
p.51]. The declarations in a schema definition have
a local scope. We will also make use of axiomatic
descriptions [12, p.50], which are unnamed schema
definitions with a global scope.

The following meta-syntax is used in describing
ASN.1 notation [6].

CHOICE
reserved words in capitalized typewriter style;

Var,Vari
bold words (possibly indexed) denote variables;

[]
bold square brackets denote an optional term;

()
bold parentheses group related terms;

. . .
bold dots indicate repeated occurrences;

|
bold vertical bar delimits alternatives within a
group;

2

TYPE ::= simple〈〈SimpleType〉〉 – simple type
| tagged〈〈TaggedType〉〉 – tagged type
| any〈〈AnyType〉〉 – type ANY
| choice〈〈Alternative〉〉 – type CHOICE
| sequence〈〈Sequence〉〉 – type SEQUENCE
| sequenceof 〈〈SequenceOf 〉〉 – type SEQUENCE OF
| set〈〈Set〉〉 – type SET
| setof 〈〈SetOf 〉〉 – type SET OF

Figure 1: Structure of an ASN.1 type

=
bold equal sign expresses terms as subterms.

3.1 Simple Types

Simple Types are atomic types; they do not
consist of components. The following sim-
ple types are relevant to the PKCS standards
[11]: BIT STRING, IA5String, INTEGER, NULL,
OBJECT IDENTIFIER, OCTET STRING, Printable-
String, T61String, UTCTime. Since we are not inter-
ested in the encoding, we will not distinguish between
string types and non-string types.

We represent Simple Types in Z by a free type
definition without constructors as shown in Figure 2.

3.2 Tagged Types

All ASN.1 types apart from ANY and CHOICE can be
given a tag. Tagging is commonly used to distin-
guish types which have the same structure but play
different roles within an application. At a lower level
tagging can be also used to remove ambiguities in the
definition of a structured type. For example, optional
components of the same data structure, constructed
as a record, need to be given distinct tags to avoid
ambiguity. Therefore tagged types are abstractly the
same if and only if they have the same tag, indepen-
dently of their name.

There are four classes of tags:

universal are defined in CCITT Recommendation

X.208 [2] and have the same meaning in all ap-
plications;

application are specific to a given application;

private are specific to a given enterprise;

context-specific are specific to a given structured
type.

Classes universal , application and private have ex-
plicit names in the syntax and are used to distinguish
between types with the same structure whereas class
context-specific has a null name in the syntax and is
used to tag optional components of record-like data
structures.

Tagging can be implicit , when derived from an-
other type by changing its tag, or explicit , when de-
rived from another type by adding a tag.

The structure of an ASN.1 tagged type

[[Class] Number] (IMPLICIT | EXPLICIT) Type

with

Class = UNIVERSAL | APPLICATION | PRIVATE
is represented in Z, in the context of the TYPE defi-
nition above, by a schema

TaggedType
class : Class
number : OptNat
tagmethod : TagMeth
type : TYPE

type 6∈ (ran any) ∪ (ran choice)

3

SimpleType ::= bitstring – type BIT STRING
| iastring – type IA5String
| integer – type INTEGER
| null – type NULL
| objectide – type OBJECT IDENTIFIER
| octet – type OCTET STRING
| printable – type PrintableString
| tstring – type T61String
| utctime – type UTCTime

Figure 2: Simple Types

where

Class ::= noclass
| universal
| application
| private

OptNat ::= nonat
| optnat〈〈N〉〉

TagMeth ::= explicit

| implicit

The predicate part of schema TaggedType enforces
the ASN.1 constraint that ANY and CHOICE types can-
not be given a tag by asserting that the type compo-
nent of the schema belongs to neither of the ranges
of the constructors any and choice. Special values
noclass and nonat respectively denote the absence of
class name and number

3.3 CHOICE Type

The CHOICE type denotes a union of one or more al-
ternatives. It is represented in ASN.1 as follows.

CHOICE {
[Identifier1] Type1

. . .
[Identifiern] Typen }

where Identifier1, . . . , Identifiern are optional, dis-
tinct identifiers for the alternatives. Type1, . . . ,
Typen are the types of the alternatives. The identi-
fiers are mainly for documentation, and they do not

affect the values of the types or their encoding in any
way. Types must have distinct tags.

We define a function which returns the tag associ-
ated with a TYPE type using an axiomatic descrip-
tion.

tagging : TYPE 7→ (Class ×OptNat)

dom tagging = ran tagged
∀ t : TYPE | t ∈ dom tagging •

first(tagging t) = (tagged∼ t).class ∧
second (tagging t) = (tagged∼ t).number

The tagging function is partial because not every
ASN.1 type is a tagged one. The ∼ operator de-
notes the relational inversion [12, p.100]. Notice that
the class and number attributes are visible within
the above axiomatic description due to the recursive
definition of TYPE , which includes the TaggedType
schema, where the two attributes are defined.

Since Identifier may not be present, we introduce
a special value noide, which is not an element of
IDENTIFIER, to denote the absence of Identifier.

OptIde ::= noide
| optidentifier〈〈IDENTIFIER〉〉

The structure of an ASN.1 CHOICE type is then rep-
resented in Z by a schema

4

Alternative
alternative : F1(OptIde × TYPE)

#((first (| alternative |))\{noide}) =
#(alternative ∩

((ran optidentifier)× TYPE)) ∧
#tagging (| second (| alternative |) |) =

#alternative

Every alternative of a choice is represented by a finite
non-empty set [12, p.114] of pairs. The first conjunct
of the predicate ensures that the identifiers are all
distinct while the second conjunct ensures that the
types of different alternatives have different tags.

3.4 ANY Type

The ASN.1 ANY type denotes an arbitrary value of an
arbitrary type. The arbitrary type may be defined in
the registration of an object identifier or associated
with an integer index. The structure of an ASN.1
ANY type

ANY [DEFINED BY Identifier]

where Identifier is an identifier, is represented in Z
by the following trivial schema

AnyType
definedby : OptIde

3.5 Sequence

The SEQUENCE type denotes an ordered finite collec-
tion of one or more types. It is represented in ASN.1
as follows,

SEQUENCE {
[Identifier1] Type1

[OPTIONAL | DEFAULTValue1],
. . .
[Identifiern] Typen

[OPTIONAL | DEFAULTValuen] }
where Identifier1, . . . , Identifiern are optional,
distinct identifiers for the components, Type1, . . . ,
Typen are the types of the components, and Value1,

. . . , Valuen are optional default values for the com-
ponents.

There is an additional requirement that an ASN.1
sequence must satisfy: the types of any consecutive
series of components with the OPTIONAL and DEFAULT
qualifier, as well as of any component immediately
following that series, must have distinct tags. The
need for such a restriction is due to the fact that
types are distinguished depending on their tagging
rather than on their name.

We represent the OPTIONAL and DEFAULT qualifiers
as follows.

OptionalOrDefault ::= noqual
| optional
| default〈〈VALUE 〉〉

We can now define a component of a sequence as a
triple.

Comp ::= comp〈〈OptIde×
TYPE×
OptionalOrDefault〉〉

In order to meet the restriction above, we have also
to define an auxiliary function on components of se-
quences, isOorD , which returns true if the component
is optional or default and false otherwise.

isOorD : Comp →→ B

(comp o
9 isOorD)(| OptIde×

TYPE×
{optional}

|) = {true}
(comp o

9 isOorD)(| OptIde×
TYPE×
default(| VALUE |)

|) = {true}
(comp o

9 isOorD)(| OptIde×
TYPE×
{noqual}

|) = {false}

Constructor comp and function isOorD are composed
using the o

9 relational composition operator [12, p.97]
and the resultant function gives value true if and only

5

if it is applied to a triple in Comp which has the
optional or default qualifier.

We define a function that characterizes the set of
the consecutive series of components that have the
OPTIONAL and DEFAULT qualifier, with the exception
of the last component of the series, which might not
have OPTIONAL or DEFAULT qualifier.

SeqComp == seq1 Comp

optdefseq : SeqComp → FSeqComp

∀ s : SeqComp | optdefseq s =
{u : SeqComp | u in sequence∼s ∧

∀ c : Comp | c in u •
c = last u ∨
(c in front u ∧ isOorD c)}

We also define functions that project an element of
Comp onto its identifier, if present, and onto its type.

ideof : Comp 7→ OptIde
typeof : Comp → TYPE

dom ideof =
ran(comp (| (ran optidentifier)×

TYPE×
OptionalOrDefault |)) ∧

∀ i : OptIde; t : TYPE ; o :
OptionalOrDefault •
ideof (comp(i , t , a)) = i ∧
typeof (comp(i , t , a)) = t

Finally, the structure of the SEQUENCE type is repre-
sented by a schema as follows.

Sequence
seqcomplist : SeqComp

(seqcomplist o
9 ideof) ∈ iseq IDENTIFIER ∧

∀ s : SeqComp; c1, c2 : Comp |
s ∈ optdefseq seqcomplist •
c1 in s ∧ c2 in s ∧ c1 6= c2 ⇒

tagging(typeof c) 6=
tagging(typeof c)

The first conjunct ensures that the identifiers are all
distinct by asserting that the projections of the ele-
ments of seqcomplist on the identifier gives an injec-
tive sequence of identifiers [12, p.118]. The second

conjunct guarantees the restrictions on the tags of
components that we have described at the beginning
of this section.

3.6 Sequence of

The SEQUENCE OF type denotes an ordered finite col-
lection of zero or more occurrences of a given type.
It is represented in ASN.1 as follows,

SEQUENCE OF Type

where Type is a type.
The structure of the SEQUENCE OF type is repre-

sented as follows.

SequenceOf
type : TYPE

3.7 Set

The SET type denotes an unordered finite collection
of one or more types. It is represented in ASN.1 as
follows,

SET {
[Identifier1] Type1

[OPTIONAL | DEFAULTValue1],
. . .
[Identifiern] Typen

[OPTIONAL | DEFAULTValuen] }

where Identifier1, . . . , Identifiern are optional,
distinct identifiers for the components, Type1, . . . ,
Typen are the types of the components, and Value1,
. . . , Valuen are optional default values for the com-
ponents. The types must have distinct tags.

We represent components and optional and default
qualifiers in the same way as for sequences. The
structure of the SET type is represented as follows.

6

Set
setelemlist : F1 Comp

#ideof (| setelemlist |) =
#(setelemlist∩

(comp (| (ran optidentifier)×
TYPE×
OptionalOrDefault |))) ∧

∀ c1, c2 : F1 Comp | c1, c2 ∈ setelemlist •
c1 6= c2 ⇒

(tagging(typeof c)) 6=
(tagging(typeof c))

The first assertion ensures that the identifiers are all
distinct while the second assertion guarantees that
all components have distinct tags.

3.8 Set of

The SET OF type denotes an unordered finite collec-
tion of zero or more occurrences of a given type. It
is represented in ASN.1 as follows.

SET OF Type

where Type is a type.
It is represented as follows.

SetOf
type : TYPE

4 Abstract Syntax of Modules

In this section we use a simplified syntax for an ASN.1
module. It assumes implicit tagging as a default and
it allows the definition of most of the important in-
ternet protocols such as S/MIME [4]. Our restricted
version of an ASN.1 module is represented in concrete
syntax as follows.

ModuleDef =
ModuleIdentifier
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
ModuleBody
END

The ModuleIdentifier syntax category consists of
a module reference and a possibly empty list of com-
ponent object identifiers.

ModuleIdentifier =
Reference [ObjectIdentifier]

The Reference syntax category denotes type refer-
ences and module references. The ObjectIdentifier
syntax category is defined in Section 4.2.

The ModuleBody syntax category is defined as
follows.

ModuleBody =
[Exports] [Imports] AssignmentList

The Exports and Imports syntax categories are se-
quences of types, which are respectively exported to
other modules and imported from other modules or
from the external enviroment.

Exports =
EXPORTReferenceList;

ReferenceList =
Reference1, . . . Referencen

Imports =
IMPORT ImportList;

ImportList =
ReferenceList FROMModuleIdentifier

AssignmentList =
Assignment1, . . . Assignmentn

The Z type needed to represent an ASN.1 module
is defined as follows.

MODULE ::= module〈〈ModuleIde×
Imports×
Exports×
Body〉〉

where

ModuleIde ==
REFERENCE ×OBJIDE

Imports ==
seq1((F1 REFERENCE)×ModuleIde)

Exports == F1 REFERENCE
Body == seq1 ASSIGNMENT

Types ASSIGNMENT and OBJIDE will be defined
in the next two sections.

7

4.1 Assignments

The ASN.1 syntax of an assignment of a type expres-
sion to an identifier is given as follows.

Assignment =
TypeAssignment | ValueAssignment

TypeAssignment =
Reference ::= Type

ValueAssignment =
Identifier ::= Value

We represent the domain of the assignment in Z by
a free type as follows.

ASSIGNMENT ::= typeass〈〈REFERENCE×
TYPE 〉〉

| valass〈〈 IDENTIFIER×
VALUE 〉〉

We also define two partial functions typeofref and
valueofide, which return the type and the value re-
spectively assigned to the reference and identifier
given as arguments.

typeofref : REFERENCE 7→ TYPE
valueofide : IDENTIFIER 7→ VALUE

(∀ r : REFERENCE | r ∈ dom typeofref •
(r , typeofref r) ∈ dom typeass) ∧

(∀ i : IDENTIFIER | i ∈ dom valueofide •
(i , valueofider) ∈ dom valass)

4.2 Object Identifier Values

Object identifiers are used to give an unambiguous
identification of entities which provide external ser-
vices, that is services not provided by the modelled
protocol. Such an entity can be an algorithm, an at-
tribute type or a registration authority that defines
other object identifiers.

Object identifier is the only type for which ASN.1
provides not only a notation for the type itself, but
also for values of that type. A value of type object

identifier is represented in ASN.1 as follows.

ObjectIdentifier =
{Component1. . .Componentn }

Componenti =
Identifieri |
Identifieri (Valuei) |
Valuei

where Identifier1, . . . , Identifiern are identifiers
and Value1, . . . , Valuen are optional integer val-
ues. Only the identifiers that are defined in X.208 [2]
can appear without associated integer values.

In the original definition of ASN.1 [2] there is an
optional Identifier in front of the sequence of com-
ponents to abbreviate a part of the sequence of com-
ponents. In revised versions [10] of the definition of
ASN.1 abbreviations can occur anywhere in the se-
quence of components. For simplicity, in our defini-
tion we do not allow abbreviations.

The CompDef set defines the possible structures
of components.

CompDef ::= ide〈〈IDENTIFIER〉〉
| both〈〈IDENTIFIER × VALUE 〉〉
| val〈〈N〉〉

Partial function objide is the constructor of values of
type OBJIDE .

objide : (seq1 CompDef) 7→ VALUE

{i : IDENTIFIER |
(ide i) in (dom objide)} ⊆ IdeX208

where IdeX208 is the set of the identifiers that are
defined in X.208. Now we can define the objide Z
type as a subtype of VALUE .

OBJIDE == {v : VALUE | v ∈ ran objide}

5 Example

The initial fragment of the

CryptographicMessageSyntax

8

CryptographicMessageSyntax
{ iso(1) member-body(2) us(840) rsadsi(113549)

pkcs(1) pkcs-9(9) smime(16) module(0) scm(1) }

DEFINITIONS IMPLICIT TAGS ::=
BEGIN
IMPORTS
Name

FROM InformationFramework
{ joint-iso-itu-t ds(5) module(1)

informationFramework(1) 3 }
AlgorithmIdentifier, AttributeCertificate, Certificate,
CertificateList, CertificateSerialNumber

FROM AuthenticationFramework
{ joint-iso-itu-t ds(5) module(1)

authenticationFramework(7) 3 } ;

ContentInfo ::= SEQUENCE {
contentType ContentType,
content [0] EXPLICIT ANY DEFINED BY contentType }

ContentType ::= OBJECT IDENTIFIER
.
.
.

END

Figure 3: Initial fragment of the CryptographicMessageSyntax module of S/MIME

9

Assignment1
ContentType : REFERENCE
a1 : ASSIGNMENT

a1 = typeass(ContentType,
(simple objectide))

Figure 4: Z representation of the first assignment in
CryptographicMessageSyntax

module of S/MIME is defined in ASN.1 as shown
in Figure 3 [4]. Let us translate the ContentInfo
type into Z. Notice that a similar definition of the
ContentInfo type is given in the Cryptographic Mes-
sage Syntax Standard (PKCS #7) [11], where, how-
ever, the content component is optional.

The assignment to the ContentType reference is
easily represented in Z by a constant a1 defined
as shown in Figure 4. The assignment to the
ContentInfo reference is represented by a constant
a2 defined as shown in Figure 5. The definition above
fully captures both the syntax and the static seman-
tics of the ContentInfo type.

The Exports syntactic category is empty and it
is therefore represented in Z by ∅. The Z schema in
Figure 6 represents the content of the Imports syn-
tactic category. The CryptographicMessageSyntax
module can finally be represented in Z as shown in
Figure 7. The ide joint−iso−itu−t component of the
two object identifiers in the

ImportsCryptographicMessageSyntax

schema above is the representation of the
joint-iso-itu-t identifier, which is defined in
X.208 and associated with value 2.

6 Conclusions

In this paper we have presented a translation of
ASN.1 into Z. Such a translation shows that ASN.1
can be concisely represented in Z. In this way we also
formalised previously informal work and merged dif-
ferent draft documents [2, 6, 7, 10].

Our Z model captures both ASN.1 syntax and
static semantics in an unambiguous way. It thus pro-
vides a sound starting point for formalising security
protocols in Z [9, 8].

Acknowledgements

I would like to thank Colin Fidge, Peter Kearney, An-
drea Maggiolo-Schettini and John Yesberg for help-
ful discussions. Colin also reviewed an initial draft of
this paper providing many useful comments.

The final version of this paper was prepared during
my visit at the Dipartimento di Informatica, Univer-
sity of Pisa. I would like to thank Andrea Maggiolo-
Schettini and the University of Pisa for support and
hospitality. My trip to Pisa was funded by a Travel
Grant from The University of Queensland.

Presentation of this paper was assisted by Aus-
tralian Research Council Linkage Grant LP0347620,
Formally-Based Security Evaluation Procedures.

References

[1] C. Boyd. Security architectures using formal
methods. IEEE Journal on Selected Areas in
Communication, 11(5):694–701, June 1993.

[2] CCITT. Reccomendation X.208: Specification
of abstract syntax notation one (ASN.1), 1988.

[3] CCITT. Reccomendation X.509: The director—
authentication framework, 1988.
URL: http://sunsite.org.uk/public/computing/
ccitt/ccitt-standards/1992/X/x509 1.asc.gz.

[4] R. Housley. Cryptographic message syntax
(RFC 3369). Technical report, Network Work-
ing Group, RSA Laboratories, August 2002.
URL: http://www.ietf.org /rfc /rfc3369.txt.

[5] R. Housley. Use of the RSAES-OAEP key trans-
port algorithm in CMS — internet draft. Techni-
cal report, S/MIME Working Group, RSA Lab-
oratories, August 2002.
URL: http://www.itef.org /internet-drafts /
draft-ietf-smime-cms-rsaes-oaep-06.txt.

10

Assignment2
ContentInfo : REFERENCE
a2 : ASSIGNMENT

∃ t1 : TYPE ; s1 : AnyType • t1 = any s1 ∧ (s1 = definedby(optidentifier contentType)) ∧
(∃ t2 : TYPE ; s2 : TaggedType • (t2 = tagged s2) ∧

(s2.Class = noclass) ∧
(s2.number = optnat) ∧
(s2.tagmethod = explicit) ∧
(s2.type = t1) ∧

(∃ t3 : TYPE ; s3 : Sequence; c1, c2 : Comp •
(t3 = sequence s3) ∧
(s3.seqcomplist = 〈c1, c2〉) ∧
(c1 = comp(optidentifier contentType, typeofref ContentType, noqual)) ∧

(c2 = comp(optidentifier content, t, noqual)))) ∧
(a2 = typeass(ContentInfo, (simple, t3)))

Figure 5: Z representation of the second assignment in CryptographicMessageSyntax

ImportsCryptographicMessageSyntax

i : Exports

i = 〈({Name}, (InformationFrameWork ,
objide〈ide joint−iso−itu−t , both(ds, 5), both(modules, 1),

both(informationFrameWork , 1), val3〉))
({AlgorithmIdentifier ,AttributeCertificate,Certificate,

CertificateList ,CertificateSerialNumber},
(AuthenticationFrameWork ,
objide〈ide joint−iso−itu−t , both(ds, 5), both(modules, 1),

both(authenticationFrameWork , 7), val3〉))〉

Figure 6: Z representation of the IMPORT part of the CryptographicMessageSyntax

CryptographicMessageSyntax
m : MODULE

(∃ b : seq1 Body •
b = 〈Assignment1.a1,Assignment2.a2, . . .〉 ∧

(∃ o : OBJIDE •
o = objide〈both(iso, 1), both(member−body , 2), both(us, 840),

both(rsadsi , 113549), both(pkcs, 1), both(pkcs−9, 9),
both(smime, 16), both(modules, 0), both(cms, 1)〉 ∧

(∃n : ModuleIde • n = (CryptographicMessageSyntax , o) ∧
m = module(n,∅, ImportsCryptographicMessageSyntax .i , b))))

Figure 7: Z representation of the CryptographicMessageSyntax module11

[6] B. S. J. Kalinski. A layman’s guide to a subset of
ASN.1, BER and DER. Technical report, RSA
Laboratories, 1993.

[7] J. Lamouth. Understanding OSI. International
Thomson Computer Press, 1996.

[8] B. W. Long. Formalising key distribution in the
presence of trust using Object-Z. In C. Johnson,
P. Montague, and C. Steketee, editors, Proceed-
ings of the Australasian Information Security
Workshop and the Workshop on Wearable, In-
visible, Context-Aware, Ambient, Pervasive and
Ubiquitous Computing, volume 21 of Confer-
ences in Research and Practice in Information
Technology. Australian Computer Society, 2003.

[9] B. W. Long, C. Fidge, and A. Cerone. A Z based
approach to verifying security protocols. Techni-
cal Report 02-02, Software Verification Research
Centre, The University of Queensland, 2002.
URL: http://www.svrc.uq.edu.au /Publications
/2002 /svrc2002-002.html.

[10] AS/NZS 8824.1:1998. Information technology—
Abstract Syntax Notation One. Part 1: specifi-
cation of basic notation. Technical report, Aus-
tralian/New Zealand Standard, 1998.

[11] RSA-Security. Public-key cryptography stan-
dards. RSA Laboratories, Web Page, 2002.
URL: http://www.rsasecurity.com /rsalabs /
pkcs /.

[12] J. M. Spivey. The Z Notation. International
Series in Computer Science. Prentice-Hall, 1989.

[13] J. B. Wordsworth. Software Development with
Z — A Practical Approach to Formal Methods
in Software Engineering. International Series in
Computer Science. Prentice-Hall, 1992.

12

