
SOFTWARE VERIFICATION RESEARCH CENTRE

SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 01-20

Supporting Abstraction when Model
Checking ASM

Kirsten Winter

Version 1, June 2001

Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/14981524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


To appear in Proceedings of ASM’2001 Workshop.

Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript files
are available via http://svrc.it.uq.edu.au



Supporting Abstraction when
Model Checking ASM

Kirsten Winter

Software Verification Research Centre,
The University of Queensland, Queensland 4072, Australia

(kirsten@svrc.uq.edu.au)

Abstract. Model checking as a method for automatic tool support for
verification highly stimulates industry’s interests. It is limited, however,
with respect to the size of the systems’ state space. In earlier work,
we developed an interface between the ASM Workbench and the SMV
model checker that allows model checking of finite ASM models. In this
work, we add a means for abstraction in case the model to be checked is
infinite and therefore not feasible for the model checking approach. We
facilitate the ASM specification language (ASM-SL) with a notion for
abstract types and introduce an interface between ASM-SL andMultiway
Decision Graphs (MDGs). MDGs are capable of representing transition
systems with abstract types and functions and provide the functionality
necessary for symbolic model checking. Our interface maps abstract ASM
models into MDGs in a semantic preserving way. It provides a very simple
means for generating abstract models that are infinite but can be checked
by a model checker based on MDGs.

1 Introduction

In previous work, we showed how model checking can be applied to ASM (c.f.,
[Win97] and [CW00]). We implemented an interface from the ASM Workbench
(see [Cas00]) to the model checker SMV for translating ASM models (given in the
specification language of the Workbench, ASM-SL) into SMV code. By means
of two case studies, we showed how to make use of this approach: errors can
be found in the early phase of developing a model through the counterexamples
provided by the model checker. This approach serves very well for debugging
and provides a better insight into the ASM model. Due to its fully automatic
nature, model checking is very appealing for industry.

The main disadvantage of model checkers, however, is given by its limitation.
Since it is a fully algorithmic approach, the model under consideration has to be
finite and, moreover, it has to be small enough in order to provide termination
of the checking procedure in a suitable time. Abstraction is a means to adjust
the size of the model.

ASM supports the idea of modelling on different levels of abstraction already.
However, this choice of a modelling level is guided by understandability and
succinctness of the specification text rather than by reducing the size of the



model’s state space. From the viewpoint of model checking, more abstract models
may be even bigger than the concrete ones because they may use some infinite
data type in order to abstract from implementation details. For instance, in a
protocol specification, passing of messages may simply be specified by means
of the extend-rule applied to an infinite domain of messages in transit rather
than introducing the notion of queues (c.f., [Dur98]). Such a model with infinite
domains, however, is not feasible for model checking. Therefore, we need another
means for supporting either abstraction or the treatment of abstract models that
include infinite domains.

In the literature concerned with model checking, most attempts for support-
ing abstraction are based on the idea that an abstraction function is applied to
the given concrete model, which is too large to be treated, for computing an
abstract model, which can be handled by the model checker. Two tasks have
to be solved: firstly, finding an appropriate abstraction function and secondly,
computing the abstract model and proving that it preserves the properties of
the concrete model (see e.g., [GS97,SS99,BH99]). This technique involves the
use of an (interactive) theorem prover and some insight of how to define the
abstraction function.

Another direction aims at the treatment of infinite systems by means of un-
interpreted functions. Functions with an infinite domain or range that are not
relevant to the properties to be checked are treated “symbolically” instead of ex-
ploring their infinitely many possible evaluations. For model checking hardware
systems, uninterpreted functions are used in [BD94,CN94].

In our work, we follow the second direction: We introduce a notion for ab-
stract types in the ASM-SL. We regard models that comprise abstract types as
abstract ASM since functions over these abstract types have no fixed interpre-
tation. We provide a mapping from abstract ASM to Multiway Decision Graphs
(MDGs) ([CZS+97,CCL+97]), a graph structure that is capable of representing
abstract transition systems. MDGs are a generalisation of BDDs and provide the
basic functionality for symbolic model checking. We refer to the library of these
functions as the MDG-Package ([Zho96]). Exploiting this framework, the user
interaction for generating an abstract model is limited to the task of choosing
the types to be abstracted.

This paper is organised as follows: ASM and MDGs are presented briefly
in Sections 2 and 3. Section 4 describes the generation of abstract models that
can be represented by MDGs. In Section 5, the transformation from ASM into
MDGs is given in two steps: Firstly, ASM are mapped into the intermediate
language ASM-IL+ (Subsection 5.1). Secondly, ASM-IL+ is transformed into
MDGs (Subsection 5.2). Section 6 relates our work to others’ and Section 7
gives a summary.

2 Abstract State Machines

In this section we introduce some basic notions of ASM (see [Gur95] for the
complete definition). We first describe the underlying computational model and
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then the syntax and semantics of the subset of the ASM language needed in this
paper.

2.1 Computational Model

Computations Abstract State Machines define a state-based computational
model, where computations (runs) are finite or infinite sequences of states {Si},
obtained from a given initial state S0 by repeatedly executing transitions δi:

S0
δ1−→ S1

δ2−→ S2 . . .
δn−→ Sn . . .

States The states are algebras over a given signature Σ (or Σ-algebras for
short). A signature Σ consists of a set of basic types and a set of function names ,
each function name f coming with a fixed arity n and type T1 . . . Tn → T , where
the Ti and T are basic types (written f : T1 . . . Tn → T , or simply f : T if n = 0).
for each function name f : T1 . . . Tn → T in Σ (the interpretation of the function
name f in S). Function names in Σ can be declared as:

– static: static function names have the same (fixed) interpretation in each
computation state;

– dynamic: the interpretation of dynamic function names can be altered by
transitions fired in a computation step (see below);

– external : the interpretation of external function names is determined by the
environment (thus, external functions may change during the computation
as a result of environmental influences, but are not controlled by the system).

Any signature Σ must contain at least a basic type BOOL, static nullary function
names (constants) true : BOOL, false : BOOL, the usual boolean operations (∧,
∨, etc.), and the equality symbol =. We also assume that there is a (polymorphic)
type SET (T ) of finite sets with the usual set operations. When no ambiguity
arises we omit explicit mention of the state S (e.g., we write T instead of T S

for the carrier sets, and f instead of fS for static functions, as they never change
during a run).

Locations If f : T1 . . . Tn → T is a dynamic or external function name, we call
a pair l = (f, x) with x ∈ T1 × . . .× Tn a location (then, the type of l is T and
the value of l in a state S is given by fS(x)). Note that, within a run, two states
Si and Sj are equal iff the values of all locations in Si and Sj are equal (i.e.,
they coincide iff they coincide on all locations).

Transitions Transitions transform a state S into its successor state S′ by
changing the interpretation of some dynamic function names on a finite number
of points (i.e., by updating the values of a finite number of locations).

More precisely, the transition transforming S into S′ results from firing a
finite update set ∆ at S, where updates are of the form ((f, x), y), with (f, x)
being the location to be updated and y the value. In the state S′ resulting from
firing ∆ at S the carrier sets are unchanged and, for each function name f :

fS′(x) =

{
y if ((f, x), y) ∈ ∆
fS(x) otherwise.

3



Note that the above definition is only applicable if ∆ does not contain conflicting
updates , i.e., any updates ((f, x), y) and ((f, x), y′) with y 6= y′.

The update set ∆—which depends on the state S—is determined by eval-
uating in S a distinguished closed transition rule P , called the program. The
program consists usually of a set (block) of rules, describing system behavior
under different—usually mutually exclusive—conditions.

2.2 The ASM Language

Terms Terms are defined as in first-order logic: (i) if f : T1 . . . Tn → T is
a function name in Σ, and ti are terms of type Ti (for i = 1, . . . , n), then
f(t1, . . . , tn) is a term of type T (written t : T ) (if n = 0 the parentheses are
omitted, i.e. we write f instead of f()); (ii) a variable v (of a given type T ) is
a term. The meaning of a term t : T in a state S and environment ρ is a value
Sρ(t) ∈ T defined by:1

Sρ(t) =

{
fS(Sρ(t1), . . . , Sρ(tn)) if t ≡ f(t1, . . . , tn)
ρ(v) if t ≡ v.

As opposed to first-order logic, there is no notion of formula: boolean terms are
used instead. Finite quantifications of the form “(Q v in A : G)”, where Q is
∀ or ∃, v : T , A : SET (T ), and G : BOOL, are also valid boolean terms.2

Transition rules While terms denote values, transition rules (rules for short)
denote update sets , and are used to define the dynamic behavior of an ASM: the
meaning of a rule R in a state S and environment ρ is an update set ∆S,ρ(R).

ASM runs starting in a given initial state S0 are determined by the program
P : each state Si+1 (i ≥ 0) is obtained by firing the update set ∆Si(P ) at Si:

S0

∆S0 (P )
−→ S1

∆S1 (P )
−→ S2 . . .

∆Sn−1
(P )

−→ Sn . . .

Basic transition rules are the skip, update, block , and conditional rules. Addi-
tional rules are the do-forall (a generalized block rule) and choose rules (for
non-deterministic choice).3

R ::= skip | f(t1, . . . , tn) := t | R1 . . . Rn | if G then RT else RF

| do forall v in A with G R′ | choose v in A with G R′

The form “if G then R” is a shortcut for “if G then R else skip”. Omitting
“with G” in do-forall and choose rules corresponds to specifying “with true”.

1 Environments—denoted by the letter ρ—are finite maps containing bindings which
associate (free) variables to their corresponding values. We adopt the following nota-
tion: ρ[v 7→ x] is the environment obtained by modifying ρ to bind v to x, while ρ\v
is the environment with the binding of variable v removed from ρ. For closed terms
and rules, we omit explicit mention of ρ (e.g., if t is a closed term, S(t) = S∅(t)).

2 Also in the rest of this paper we use A for set-typed terms and G for boolean terms.
3 The ASM Workbench support more rules, such as let and case rules with pattern
matching: however, for reasons of space, we have to skip them here.
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The semantics of transition rules is as follows:

∆S,ρ( skip ) = { }
∆S,ρ( f(t1, . . . , tn) := t ) = { ((f, (Sρ(t1), . . . , Sρ(tn))), Sρ(t)) }

∆S,ρ(R1 . . . Rn ) =
⋃n

i=1 ∆S,ρ(Ri )

∆S,ρ( if G then RT else RF ) =

{
∆S,ρ(RT ) if Sρ(G) = true
∆S,ρ(RF ) otherwise

∆S,ρ( do forall v in A with G R′ ) =
⋃

x∈X ∆S,ρ[v→x](R
′ )

where X = {x | x ∈ Sρ(A) ∧ Sρ[v→x](G) = true}.

Note that executing a block (or a do-forall) rule corresponds to simultaneous
execution of its subrules4 and may lead to conflicts.

Choose rules are not directly supported by our transformation tool, but can
always be replaced by external functions for arbitrary choice of a value (by a
transformation similar to skolemization). For example, let Ai be terms of type
SET (Ti), i = 1, 2, 3, and fx : T1, fz : T2 → T3 external functions with fx ∈ A1

and fz(y) ∈ A3 for each y ∈ A2. Then the following two rules are equivalent:

choose x in A1

do forall y in A2

choose z in A3

a(x, y, z) := x+ y + z

∼= do forall y in A2

a(fx, y, fz(y)) := fx + y + fz(y)

Multi-Agent ASM Concurrent systems can be modelled in ASM by the no-
tion of multi-agent ASM (called distributed ASM in [Gur95]). The basic idea
is that the system consists of more agents , identified with the elements of a
finite set AGENT (which are actually sort of “agent identifiers”). Each agent
a ∈ AGENT executes its own program prog(a) and can identify itself by means
of a special nullary function self : AGENT , which is interpreted by each agent
a as a.

As a semantics for multi-agent ASM we consider here a simple interleaving
model, which allows us to model concurrent systems in the basic ASM formalism
as described above. In particular, we consider self as an external function, whose
interpretation selfSi determines the agent which fires at state Si. We assume
that there is one program P , shared by all agents, possibly performing different
actions for different agents, e.g.:

if self = a1 then prog(a1)
. . .
if self = an then prog(an)

where {a1, . . . , an} are the agents and prog(ai) is the rule to be executed by
agent ai, i.e., the “program” of ai.

4 For example, a block rule a := b, b := a exchanges a and b.
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3 Multiway Decision Graphs

Multiway Decision Graphs (MDGs) are a generalisation of Binary Decision Dia-
grams (BDDs). They are a data structure for canonically representing formulas
of a many-sorted first-order logic, called Directed Formulas (DFs). A special
feature of the underlying logic is the distinction between concrete and abstract
sorts. Correspondingly, function symbols may be concrete, abstract (if the range
is abstract), or cross-operators (if the range is concrete but the domain contains
some abstract sort).

DFs are suitable for describing sets of states and transition relations of tran-
sition systems. They are formulas in disjunctive normal form (DNF) over simple
equations of the following form: f(B1, . . . , Bn) = a (where f is a cross-operator
and a is a constant of concrete sort), w = a (where w is a variable of concrete
sort and a is a concrete constant), or v = A (where v is a variable of abstract
sort and A is a term of the same sort). Furthermore, in each disjunct of a DF, all
left hand sides (LHSs) of the equations are pairwise distinct and every abstract
variable that occurs as a LHS must occur in every disjunct of the DF. To be rep-
resented by MDGs, a DF has to be concretely reduced, i.e., all concrete variables
that occur on the right-hand side (RHS) of an equation have to be substituted
by a value.

An MDG is a finite graph G, whose non-terminal nodes are labelled by terms
and whose edges are labelled by terms of the same sort as the node. Terminal
nodes are labelled by formulas. Generally, a graph G represents a formula in the
following way:

– If G consists of a single terminal node, then it represents the formula the
node is labelled with.

– If G has a root node labelled with term A and edges labelled with
terms B1, . . . , Bn leading to subgraphs G1, . . . , Gn that represent formulas
P1, . . . , Pn, then G represents the formula

(A = B1 ∧ P1) ∨ (A = B2 ∧ P2) ∨ . . . ∨ (A = Bn ∧ Pn)

In Figure 1, we depict the formula
that is given above as a graphG. To be
a canonical representation, an MDG
has to satisfy certain well-formedness
conditions which involve an order on
function symbols and variables that
has to be provided by the user (the
detailed list of conditions is defined in
[CZS+97,CCL+97]).
A library of operations on MDGs is

A

B1

B2

Bn

Gn
G2G1

...

Fig. 1: The MDG G

available that is sufficient for realising an implicit state enumeration, namely
disjunction, relational product, and pruning-by-subsumption (see [Zho96]). They
are defined for combining sets rather than only pairs of MDGs. This allows us to
represent the transition relation as a set of several small graphs instead of one
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big graph and benefits from a more efficient state enumeration.

The relational product operation computes the conjunction of a set of graphs
under existential quantification of all variables in a given variable set E and the
possible renaming η of variables, ((∃v ∈ E)(

∧
1≤i≤n Pi) · η). This is used for

computing the set of reachable states from a given state (in which case the
MDGs Pi represent the transition relation and E the set of state variables).
Pruning-by-subsumption approximates the difference of two sets. This enables
us to check if an invariant (given as an MDG) is satisfied in a given set of states
(also given as an MDG).

According to the well-formedness conditions on MDGs, the application of
the operations is restricted. The relational product of two MDGs can only be
computed if their nodes are not labelled with the same abstract variable. Dis-
junction, in contrast, is applicable only to MDGs that contain the same set of
abstract variables as nodes labels (i.e., the same set of abstract variables that
occur as LHSs in the equations of the corresponding DF).

4 Generating Abstract ASM

In order to make use of the concept of abstract sorts in MDGs, we introduce a
syntactic feature into ASM-SL for indicating that a type is abstract. Given this,
we are able to automatically indicate abstract functions and cross-terms as well.
We get a simple tool for computing an abstract ASM once the user has chosen
the types that are considered to be abstract.

In an abstract ASM, abstract functions and variables are treated as being
uninterpreted, i.e., every interpretation is possible. We may describe the step of
abstraction as stripping off semantics by giving up information about interpreta-
tion. Thus, the abstract specification is a model for all structures with the same
signature. That is, an abstract ASM describes a set of concrete ASM with suit-
able (with respect to the signature) interpretations for abstract sorts, functions,
variables, and cross-terms. Figure 2 depicts the abstraction step: We consider
the sort Q in our concrete model as abstract and change all its occurrences into
Dataabs. As a result, we get an abstract model of the same signature. For this
abstract specification, all those interpretations are suitable that have a sort, a
2-ary function that maps arguments of the given sort to a value of the same sort,
and a boolean predicate over the sort. In the figure, we give some examples for
different interpretations for the sort Dataabs and the functions that are possible.

The purpose of this abstraction step is to substitute infinite sorts, and func-
tions over them, since these cannot be exhaustively explored. The use of cross-
terms on abstract sorts and their complete case distinction naturally provides
a partitioning of the infinite sort into finitely many equivalence classes. The
state space of the abstract model is smaller in most cases. It can be canonically
represented by MDGs and the corresponding model checking algorithm can be
applied to check certain properties.
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abstract model

concrete model

stripping off
interpretation:

append : Q�Q! Q

is empty : Q! Bool

gabs : Dataabs �Dataabs ! Dataabs
fabs : Dataabs ! Bool

other concrete models as instances

mult : Int� Int! Int

is even : Int! Bool

op : Word�Word! Word

is int : Word! Bool

model checking MDG representation

Q : Dataabs

Fig. 2. Lifting a concrete model to an abstract model

As a simple example,
consider the specification of a
generic timer in Figure 3: the
system gets as an input value
any natural number max that
specifies the number the timer
has to count to. The timer has
two states, COUNT and RING.
As long as the system is in
state COUNT it increments the

max
reset(t)

if (t<max) 
then incr(t)

if (t=max)

RINGCOUNT

reset(t)

Fig. 3: Example of a generic timer

state variable t in every step. Once t has reached the limit max the system
changes into state RING; a bell might ring to give a signal. In the next step, t is
reset and the timer starts again counting to max .

This system specification can easily be abstracted by treating the natural
numbers N as abstract sort Nabs. We replace the equality relation on natural
number by a new predicate isEq that compares two abstract values of sort
Nabs; isEq(t,max ) may evaluate to true if the (abstract) arguments are equal,
otherwise it evaluates to false. The functions incr and reset turn into abstract
functions that map any value of sort Nabs into a value of the same sort.

In the MDG approach, predicates like isEq are cross-term symbols; they are
applied to abstract terms and evaluate to a value of concrete sort (in our example,
boolean values). When model checking, we can use cross-terms since their range
is a concrete type that can be enumerated. Without any knowledge of the value
of the abstract parameter, we simply unfold the different (enumerate-able) cases
and explore them when model checking. This may lead to exploring states that

8



do not occur in the concrete model and hence may yield wrong counterexamples.
One means for addressing this problem is to add rewrite rules to the model which
restrict the possible interpretations of abstract sorts and functions (for further
investigation of this problem see also [ZST+96,MSC97]).

Lifting a model to a higher level of abstraction can be done automatically
within our transformation step from ASM to MDG provided the developer has
chosen the domains of the ASM that should be considered as abstract sorts. Func-
tions in the ASM model that involve abstract data are automatically treated as
abstract functions or cross-terms. In contrast to other approaches for generat-
ing abstraction, there is no extra effort necessary to change the model under
investigation other than the change of the data type definition.

5 The Transformation of ASM into MDG

In order to benefit from the notion of abstract sorts for supporting abstrac-
tion, we have to extend the ASM language with a syntactic feature that allows
a sort to be marked as abstract. This extension requires an extension of the
basic transformation algorithm (see [CW00]) as well. The extended algorithm
is introduced in the following two steps: Firstly, we detail the adaption of the
basic transformation algorithm that transforms ASM models into the extended
intermediate language ASM-IL+. Secondly, we develop a transformation from
ASM-IL+ models into MDGs. We have to justify that ASM-IL+ rules represent
DFs which can be canonically represented by MDGs. The second transformation
step completes the interface from the ASM Workbench to the MDG-Package.

5.1 The Adapted Transformation into ASM-IL+

The original transformation algorithm maps all occurrences of dynamic and ex-
ternal functional terms f(t1, . . . , tn) into locations f(a1, . . . , an), which can be
renamed to simple state variables. This is done by simplifying and unfolding:
The evaluation of parameter terms ti to elements ai may be state dependent.
Each possible evaluation of these terms leads to a different location. The result
of the unfolding procedure is a set of locations that are given by all possible
evaluations of the dynamic parameter terms.

Functions and terms of abstract sort cannot be similarly evaluated; their in-
terpretation is not specified. Unfolding a term involves evaluating it, i.e., adding
the state dependent interpretation to a term. Therefore, an uninterpreted func-
tion cannot be unfolded in any term in which it appears. In order to implement
this special treatment for abstract functions, we have to restrict the unfolding
procedure to functions that are concrete.

Adapted simplification function. The transformation algorithm for simplifica-
tion and unfolding follows an inductive schema. The treatment of abstract func-
tions and cross-terms is easily introduced into this inductive schema by adding
some case distinctions to the term simplification: abstract terms should not be
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values, locations and variables are mapped to

[[ a ]] ζ = a values and [[ loc ]] ζ = loc locations

[[ v ]] ζ =

{
a = ζ(v) if v ∈ dom(ζ) and of concrete sort

vabs otherwise

for applied functions we distinguish

[[ ti ]] ζ = ai for each i ∈ {1, . . . , n} ⇒

[[ f(t1, . . . , tn) ]] ζ =




a = fA(a1, . . . , an) if f is a static
function name of concrete sort

loc = (f, (a1, . . . , an)) if f is a dynamic/external
function name of concrete sort

fabs(a1, . . . , an) if f is a static
function name of abstract sort

locabs =
(fabs , (a1, . . . , an))

if f is a dynamic/external
function name of abstract sort

if all arguments are of constant sort and
[[ ti ]] ζ = loc or [[ ti ]] ζ = f ′(t̄′) for some i ∈ {1, . . . , n} ⇒

[[ f(t1, . . . , tn) ]] ζ = f( [[ t1 ]] ζ , . . . , [[ tn ]] ζ)

if some arguments ti are of abstract sort and [[ ti ]] ζ = tabs ⇒
if f is a cross-term operator or a static function name:

[[ f(t1, . . . , tn) ]] ζ = f( [[ t1 ]] ζ , . . . , [[ tn ]] ζ)

if f is an abstract function name:

[[ f(t1, . . . , tn) ]] ζ = (fabs , ( [[ t1 ]] ζ , . . . , [[ tn ]] ζ))

Table 1. Adapted Term Transformations

unfolded to any evaluation. The modified definition for term simplification is
summarised in Table 1.

The simplification function [[ . ]] ζ is related to the variable assignment ζ : V →
SA since all concrete variables in V are mapped to the values of the corresponding
concrete sort. The base of the induction schema is given by simple terms. We
distinguish constant values a, locations loc, that may change their values at
a transition step, and variables v, which can be evaluated to values a if they
are concrete (according to ζ) or left as uninterpreted variables vabs if they
are abstract5. We extend this base by functional terms: Functional terms are
abstract functions applied to terms ti that can be abstract terms or concrete
values. These terms cannot be unfolded further; the simplification terminates.
Any dynamic or external function turns into a locational term. Locational terms
can be simple, i.e., concrete locations loc, abstract functional terms locabs , or
cross-terms f(t1, . . . , tn).

5 The index abs is used in Table 1 for indicating that a variable or term is of abstract
sort or is a cross-term.
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Locational terms that are abstract functions (and not cross-terms) are mapped
into simple variables by merging function symbol and parameter symbols into
one new variable name. This is indicated through the pair (fabs ,(t1, . . . , tn)).
In contrast, any static functional term, and also any cross-term, is kept as a
function application: f(t1, . . . , tn). The term simplification [[ . ]] ζ (c.f., Table 1)
works inductively over arbitrary function application: concrete parameters are
unfolded, abstract parameters are left unchanged. We distinguish between terms
whose parameters are all concrete values, terms whose parameters are concrete
but have to be unfolded further, and terms that have some parameters of abstract
sort:
1. If all parameters are (unfolded to) values, we distinguish between

- static functions that are concrete; these have to be evaluated by means
of applying the function interpretation fA to the parameter values;

- dynamic or external functions that are concrete; these turn into a loca-
tion loc by means of merging function symbol and parameter symbols;
any location loc is thus equivalent to a simple state variable;

- static functions of abstract sort; these are left as uninterpreted func-
tions fabs which are not applied; they are denoted as functional terms
fabs(a1, . . . an).

- dynamic or external functions of abstract sort; we denote these terms
as locabs , a locational term that can change its value, and proceed similar
to concrete locations: we merge the function symbol and the parameter
symbols and get an abstract state variable.

2. If all parameters are of concrete sort but some of them are non-values, i.e.,
locations loc or other function applications f ′(t̄′) that have to be unfolded
further, we apply the unfolding function to the parameters first.

3. If some parameters are abstract terms tabs , i.e., abstract variables vabs or
abstract functions fabs(t1, . . . , tn), we simplify the parameters by [[ . ]] ζ first;
two cases may occur:
- the function is a cross-operator or a static abstract function; in this case
we keep the function;

- the function is an abstract function; we merge the function symbol and
the parameter symbols into one abstract variable.

First-order terms of the form (∃v : g(v)) s(v) or (∀v : g(v)) s(v) are simplified
as in the original transformation (see [Win01]) as long as their range is a concrete
and finite set. If the range of a first-order term turns into an abstract range by
means of applying abstraction to the domain SA

i the range is not enumeratable
any more. The simplification keeps the head variable v as an abstract variable
and treats the body s(v) as a cross-term. This is shown in Table 2 by applying
[[ . ]] ζ to the body. For abstract head variables v, [[ s(v) ]] ζ implicitly models univer-
sal quantification over every a ∈ SA

i . Existential quantification over an abstract
variable is logically not expressible.

Note that uninterpreted, abstract functional terms fabs(t1, . . . tn), where f
abs

is a static abstract function and ti is a value or another abstract term, or
f(t1, . . . tn) where f is a cross-term operator, are not mapped into a state vari-
able name. In contrast to the SMV approach, these functional terms may appear
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quantified terms over finite ranges
{a ∈ SA

i | B |= g(a)} where SA
i is a concrete sort:

[[ ((∃v : g(v)) s(v)) ]] ζ = [[ s(v) ]] ζ[v 7→a1] ∨ . . . ∨ [[ s(v) ]] ζ[v 7→an]

[[ ((∀v : g(v)) s(v)) ]] ζ = [[ s(v) ]] ζ[v 7→a1] ∧ . . . ∧ [[ s(v) ]] ζ[v 7→an]

quantified terms over abstract ranges

{a ∈ SA
i | B |= g(a)} where SA

i is an abstract sort:

[[ ((∀v : g(v)) s(v)) ]] ζ = [[ s(v) ]] ζ

( [[ ((∃v : g(v)) s(v)) ]] ζ is not defined; see remark below )

Table 2. Adapted Term Transformation of first-order Terms

as labels in the MDG structure. It is easy to see that abstraction saves alot of
unfolding effort. The resulting set of guarded updates is much smaller.

Table 3 summarises the rule simplification that applies the simplification
function [[ . ]] ζ (c.f., Table 1) to the terms in the rules. This rule simplification is
not changed. We recall the definition here for the readers’ convenience.

[[ skip ]] ζ = skip

[[ f(t) := t ]] ζ = if true then [[ f(t) ]] ζ : = [[ t ]] ζ

[[ block R1 . . . Rn endblock ]] ζ = [[R1 ]] ζ . . . [[Rn ]] ζ

[[ if g then R1 else R2 ]] ζ =

{
if [[ g ]] ζ then [[R1 ]] ζ
if ¬ [[ g ]] ζ then [[R2 ]] ζ

Table 3. Rule Simplifications

Adapted rule unfolding. Table 4 defines the extended rule unfolding. In this
rule unfolding, simple update rules are left unchanged. More complex rules are
unfolded according to the evaluation of concrete locations that can be found
in the rule. For every possible evaluation ai we introduce an instantiation of the
rule R[loc/ai] that is guarded by the equation (loc = ai), where loc is the first
concrete location occurring in the rule R. The substitution R[loc/ai] formalises
that every occurrence of loc is substituted by the value ai. Note that abstract
locations are not unfolded; they are left uninterpreted.

Also, all locations that appear as a left-hand side (LHS) of an update or that
are parameters of the so called primary operators (i.e., equality, conjunction,
disjunction, and negation) are excluded from the unfolding procedure due to
optimisation issues6 (c.f., [Win00]).

6 Note that in the MDG approach, we do not consider arithmetic operations as being
primary.
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If R = loc1 := a1 . . . locn := an:

E(R) = R

Otherwise:

E(R) =

{
if loc = a1 then E( [[R[loc/a1] ]] ζ)
. . .
if loc = an then E( [[R[loc/an] ]] ζ)

where
loc is the first location of concrete sort occurring in R but not as an
LHS of an update rule and not as a parameter of a primary operation;
{a1, . . . , an} is the range of location loc.

Table 4. Unfolding of concrete Locations in a Rule

ASM-IL+ representation. As a result of the adapted term simplification and
rule unfolding we get a list of pairs over locations and their guarded updates,
which is the ASM-IL+ representation for the ASM model.

( loc term i, [ (guard i1, upd termi1), (guard i2, upd term i2), . . .])
These pairs are called location-update pairs and each pair (guard ij , upd termij)
is called a guarded-update pair. In contrast to ASM-IL representations of an ASM
model, these pairs may contain abstract variables and cross-terms as LHSs and
RHSs, as well as abstract functions as RHSs of equations or updates.

Limitations of the adapted term simplification. We identify two cases in
which the adapted term simplification does not provide proper results and thus
is not applicable:

1. Any dynamic or external abstract function is mapped into an abstract state
variable. For any concrete parameter (that can be unfolded) we create sev-
eral instances of this state variable. However, abstract parameters are not
unfolded; instead of multiple instances we get only one abstract variable. For
example, assume that in the concrete ASM we have a sort A = {a, b, c} and
a dynamic function f : A → B. The location f(x) is simplified into three
state variables f a, f b, and f c. Abstracting this model we may change the
sorts A and B into abstract sorts. The same location f(x) is now simplified
into one variable f x. The resulting abstract ASM-IL+ model is not a cor-
rect abstraction of the concrete model. Note that the same problem does not
occur for cross-terms: any function g : A → C, where C is not an abstract
sort, is kept as a function application rather than being mapped into a state
variable.

2. Existentially quantified first-order terms (∃v : g(v)) s(v) where the sort of
variable v turns into an abstract sort cannot be simplified properly. The
existence of a witness (necessary to evaluate existential quantification) is
not decidable since an abstract sort has no concrete (interpreted) entities. A
similar problem does not occur for universally quantified terms.

As a consequence of these limitations, we get guidance as to where abstraction
should not be applied in our approach: Any sort that is used as a domain (or
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part of a cross-product of domains) of an n-ary dynamic or external function
should not be abstracted.

Since the adapted transformation algorithm is identical to the original trans-
formation algorithm for terms without abstract sorts, its correctness is based on
the proof given in [Win01]. In the case of terms with abstract sorts, the adapted
transformation algorithm itself defines the semantics of these terms and therefore
no correctness proof is required.

A set of location-update pairs represents an abstract transition system, which
can be treated by a tool that is based on MDGs. In the next subsection we show
that each location-update pair represents a DF in terms of the MDG approach.

ASM-IL+ Models as Directed Formulas For mapping a set of location-
update pairs into MDGs, we have to justify that the well-formedness conditions
of MDGs are satisfied. In this subsection, we show that our transformation pro-
vides directed formulas (DFs) that can be canonically represented by well-formed
MDGs (we follow the description of DFs and MDGs in Section 3).

Concretely reduced terms. Concretely reduced DFs are formulas in which all con-
crete terms on the RHS of an update or equation in such formulas are individual
constants. Only these formulas can be canonically represented by well-formed
MDGs. As introduced in the last section, the simplification function [[ . ]] ζ unfolds
all concrete terms that appear in ASM rules. This way, all terms in location-
update pairs are already concretely reduced in the sense of the well-formedness
conditions of MDGs ([CZS+97]), i.e., all concrete functions and variables are
mapped into their values.

Partitioned transition relation. In model checking approaches that are based on
decision diagrams (e.g., BDDs and MDGs), the transition relation of a tran-
sition system that is to be checked should be partitioned and represented by
smaller graphs rather than represented and treated as one large graph (c.f.,
[BCMD90]). Partitioning helps prevent the (single) representing graph growing
too big. Instead of working with one graph for representing the whole transi-
tion relation, the algorithms work on a set of smaller graphs, each representing
a part of the transition relation only. This technique is adapted for the MDG
approach as well (see [ZSC+95]). All algorithms (e.g., relational product, prun-
ing by subsumption, etc.) expect lists of MDGs as input to operate on.

Since in ASM-IL+ every location has an attached list of guarded-update pairs,
this representation naturally provides a partitioning of the overall transition
relation. Moreover, our partitioning naturally yields MDGs with disjoint sets of
primary abstract variables (see below).
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Correctness of the mapping The correctness of mapping location-updates pairs
into MDGs is based on the following equivalence:

(loc termi, [(guard i1, upd termi1), . . .]) ⇔∨
j(loc term ′

i = upd termij ∧ guard ij)

∨
(
loc term ′

i = loc termi ∧
∧

j ¬guard ij

) (1)

where loc term ′
i denotes the locational term loc termi in the next state. The

first part of the disjunction conjoins all guards and corresponding updates. The
second part specifies the “else-case”; that is, if none of the guards are true then
the location should keep its old value. It can be shown that according to the
adapted transformation algorithm introduced in the last subsection, this DNF is
a well-formed DF (for a full proof see [Win01]). Each of these DFs has at most
one abstract variable on the LHS of an equation: loc term ′

i. As a consequence
each location-update pair can be represented as an MDG. These MDGs have
pairwise disjoint sets of primary abstract variables. This property is a necessary
precondition for applying the algorithms for computing the relational product
(see Section 3). In the next section, we introduce our algorithm that interfaces
ASM-IL+ with the MDG-Package.

5.2 Transformation of ASM-IL+ into MDGs

In the second step of our transformation, an algorithm maps an ASM-IL+ model
into a set of MDGs. In order to do this, we have to treat the updates, the guards
of the updates, and the else cases, which specify that the location is not changed
if none of the guards are satisfied. Moreover, a variable ordering that satisfies
the well-formedness conditions should be suggested.

Representing a location-update pair (loci, [(guardi1, val i1), . . .]) as an MDG

is straightforward if we cons-
ider the equivalence (1). The
next state variable loc′i la-
bels the root node of the
graph. Each edge starting at
the root is labelled with one
of the specified values in the
next state val ij and leads to
the subgraph Gij that repre-
sents the corresponding guard
of the update guardij . Fig-
ure 4 sketches a graph for a
location-update pair.

loc
0

i

vali1

vali2 vali3

loci

Gi1

Gi2 Gi3

Gelse

Fig. 4: Location-update pair represented as MDG

Figure 4 shows also that one edge of the MDG is labelled by the current
value of the location loci and leads to a graph Gelse . This branch specifies the
else-case of the location-update pair: if none of the guards guard ij are satisfied,
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and therefore none of the updates can fire, the location should keep its value in
the next state. For model checking, this semantics has to be specified explicitly.
Otherwise, the checker investigates every possible case.

For generating a branch that represents this else-case behaviour, we need
to keep in mind that an edge cannot be labelled with a concrete variable. If
loci is of abstract sort, then we may simply use the abstract state variable loci
as an edge label. However, if loci is of con-
crete sort, then it has to be substituted by its
current value val loci

. In this case, we have to
generate a graph that comprises branches for
all possible evaluations for the state variable
loci. Thus, each branch represents the formula
loc′i = val i∧loci = val i, which obviously spec-
ifies that the location keeps its value. Figure 5
depicts an MDG that represents the else-case
for a concrete location that ranges over three
values. This (sub-) graph is disjoined with the
MDG that represents the location-update pair
(without else-case).

loc
0

i

vali1

vali2

vali3

vali1
vali2 vali3

loci loci loci

True

Fig. 5: The else-case for concrete
locations

For generating the MDG Gij that represents a guard, we use four basic
functions (and, or, negation, and equality) as basic boolean operators that may
appear in the guard (referred to as primary operators in the last section). Every
other boolean operator can be mapped to these basic predicates.

– and(opd1, opd2) is transformed into the conjunct of opd1 and opd2, assum-
ing that both operands are given as MDGs.

– or (opd1, opd2) is transformed into the disjunct of opd1 and opd2, if both
operands are given as MDGs.

– not(opd) is transformed into the negation of opd , if the operand is given as
an MDG that does not contain node labels of abstract sort.

– eq(lhs , rhs) assembles a new MDG. Its root is labelled by lhs , and it has a
single edge labelled with rhs which leads to the leaf True.

Except for equations, the boolean operations take MDGs as operands. Thus, we
recursively call the guard transformation function for the operands. The base
of this recursion is the equality operator which operates on simple terms and
constants and yields a simple graph.

Note that in most cases, the parameters of eq cannot be complex terms. Any
parameter ti of concrete sort will be simplified into a simple term [[ ti ]] ζ during
the first step of the transformation that is introduced in the last section. These
simple terms can be treated as labels. If one parameter is of abstract sort, the
equation is mapped into a cross-term isEq(lhs , rhs) and does not cause problems
either (cross-terms can be used as labels as well).

The only terms that are not simplified by [[ . ]] ζ are the primary operators
for equality, conjunction and disjunction. If the operands of an equation are
boolean expressions with non-simplified operators, we have to replace the equa-
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tion eq(lhs , rhs) with the expression (lhs ∧ rhs)∨ (¬lhs ∧¬rhs) which is logically
equivalent7.

Basic functions for conjoining and disjoining MDGs are given in the MDG-
Package (see [Zho96]). Additionally, we implemented the algorithm for negation.
This negation of an MDG is possible if no abstract variable appears as an lhs in
any involved equations. As argued above, this is the case for guards guardij .

Our algorithm for negation of an MDG M assumes that the root is not
labelled by a variable of abstract sort (otherwise an error will be output). It
works inductively on the structure of MDGs:

– if M = true then not(true) = false

– if M =
∨

j∈J (loc = val j ∧Gj)

where dom(loc) = {val i | i ∈ I}, and the index set I, and the index subsets
J and J̄ of occurring and non-occurring indices are such that J ⊆ I, J̄ ⊆
I, J ∩ J̄ = ∅, and J ∪ J̄ = I then the negation of M can be reduced to

not(M) =
∨

k∈J̄(loc = valk ∧ true) ∨
∨

j∈J (loc = val j ∧ not(Gj)).

Figure 6 shows the sketch of the corresponding graphs for I = {val1, val2, val3}.

loc
0

val1 val2
val3

G1 G2

loc
0

val1

val2

not(G1)
not(G2)True

neg

Fig. 6. Computing negation

The initial state of an ASM model is defined together with the declaration
of functions and their domains. Every dynamic or external function may have
a defined initial value. For our transformation we gather all initialisation in-
formation and put it into a formula that determines the set of initial states:
init state =

∧
i(loci = init val i). This conjunction need not be exhaustive since

initialisation for some functions may be omitted. This formula is transformed
into a simple MDG that consists of a single branch comprising all conjuncts.
The domains of an ASM model are defined as enumerations or by set compre-
hensions in the case of concrete sorts. Set comprehensions are unfolded by our
transformation algorithm into enumerated sorts.

Each location and each cross-term operator has an attached number in order
to define a variable ordering. This ordering determines the shape of the corre-
sponding MDG later on and heavily influences the graph size. We do not have a

7 Since guard expressions do not contain abstract variables on a LHS of an equation,
negation is applicable.
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proper heuristic for a good ordering implemented yet8. Our implementation so
far orders the locations and cross-term operators such that cross-term operators
have a greater number than locations (in most cases the former depend on some
of the latter and thus must have a greater ordering number). To support the
user, we automatically generate a function which prints the list of locations and
cross-term operators that are contributing to the current model. The order of
this variable list can changed manually.

Given this interface from ASM-IL+ to the MDG-Package, and with respect
to certain limitations for applying abstraction (as discussed in the last section),
we are able to represent ASM models with abstract sorts by means of MDGs.
This MDG representation of our model is thus treatable by MDG-based checking
algorithms.

6 Related Work

Uninterpreted functions are addressed elsewhere: In [BD94] data values and
operations within the specification of the DLX architecture are modelled by
means of uninterpreted functions. However, this approach allows only validity
checking, no temporal properties can be checked. [CN94] introduce a new logic,
called GTL, which also allows uninterpreted functions to be represented. The
decidable fragment of GTL can be treated by an automatic validity checker
(based on PVS). The thesis of Xu ([Xu99]) that introduces the logic LMDG and
the corresponding model checking algorithm based on MDGs shows that the
decidable fragment of GTL is a subset of LMDG. Moreover, the MDG model
checking approach goes beyond validity checking.

Due to the support for abstract sorts in MDGs, the computation of the
abstract model appears to be much simpler than the mechanisms suggested
in, e.g., [GS97] and [BPR00]. Instead of providing an abstraction function and
proving that properties are preserved, we generate with less effort an abstract
model that includes the intended model and more. This may result in false
negatives, that is counter-examples that are not related to the particular instance
of the model we want to check (in this case, it may be possible to add rewriting
rules to exclude the non-intended interpretations), but if no counter-example
can be found then all instances are correct.

Closer to our approach from the language point of view is the work in [Spi99].
It investigates automatic verification of ASM with unbounded input by rep-
resenting an ASM model by means of a logic for computation graphs (called
CGL*). The resulting formula is combined with a CTL*-like formula which
specifies properties and checked by means of deciding its finite validity. This
approach addresses the problem of checking systems with infinitely many inputs
but it is only applicable to ASM with 0-ary dynamic functions and input that is

8 There is some ongoing work at the University of Montreal investigating heuristics
for a good variable ordering for MDGs. The results are not published yet.

18



restricted to relations. Spielmann proves that the decision procedure is Pspace-
complete and optimal. In his framework, the verification of generalised nullary
programs which have functions in their input (instead of relations only) becomes
undecidable.

7 Conclusion and Future Work

Multiway Decision Graphs (MDGs) are a graph structure for canonically repre-
senting transition systems that include abstract sorts and functions. A library of
MDG functions is available to implement symbolic model checking algorithms
for abstract transition systems. In this work, we introduced an interface from
the ASM Workbench to MDGs. In order to exploit the expressibility of MDGs,
we introduce a notion of abstract types into ASM-SL. This provides a simple
means for generating abstract ASM models that can be represented by MDGs
and model checked.

An implementation of the transformation algorithm is available. Our interface
is tested only by using our own re-implementation of the reachability algorithm
based on functions that are provided by the MDG library. A complete model
checking tool for ASM based on MDGs is not available yet. However, we are
planning to adapt the MDG-HDL model checker (see [Xu99,XCS+98]) for our
needs. This tool implements algorithms for model checking LMDG formulas on
hardware designs. LMDG is the universal fragment of abstract CTL*, a derivate
of CTL* that is tailored for MDGs (see [XCS+98]).

We are still lacking experience with the applicability of our approach. Only
the application to various case studies will show whether the suggested abstrac-
tion mechanism is too coarse or not to provide reasonable model checking results.
If it is feasible, it provides a light-weight approach that is easy to use for checking
infinite or too large ASM models.
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In U. Glässer and P. Schmitt, editors, Proc. of the 28th Annual Conference
of the German Society of Computer Science, Technical Report, Magdeburg
University, Germany, 1998.
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