
SOFTWARE VERIFICATION RESEARCH CENTRESCHOOL OF INFORMATION TECHNOLOGYTHE UNIVERSITY OF QUEENSLANDQueensland 4072Australia
TECHNICAL REPORTNo. 01-21Tool Support for Testing JavaMonitorsBrad Long Dan Ho�manPaul Strooper�June 2001

Phone: +61 7 3365 1003Fax: +61 7 3365 1533http://svr.it.uq.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Note: Most SVRC tehnial reports are available viaanonymous ftp, from svr.it.uq.edu.au in the diretory/pub/tehreports. Abstrats and ompressed postsript�les are available via http://svr.it.uq.edu.au



Tool Support for Testing Java MonitorsBrad Long� Dan Ho�many Paul Strooper�AbstratThe Java programming language supports monitors. Monitor implementations, likeother onurrent programs, are hard to test due to the inherent non-determinism. Thispaper presents the ConAn (Conurreny Analyser) tool for generating drivers for thetesting of Java monitors. To obtain adequate ontrollability over the interations betweenJava threads, the generated driver ontains proesses that are synhronized by a lok.The driver automatially exeutes the alls in the test sequene in the presribed orderand ompares the outputs against the expeted outputs spei�ed in the test sequene. Themethod and tool are illustrated in detail on an asymmetri produer-onsumer monitor,and their appliation to two other monitors is disussed.1 IntrodutionA Java monitor enapsulates data that an only be observed and modi�ed by monitor aessproedures [13℄. Only one thread may be ative inside a monitor at a time, giving eah threadmutually exlusive aess to the data enapsulated.The testing of onurrent programs in general, and the testing of monitors in partiular,is diÆult due to the inherent non-determinism in these programs. That is, if we run aonurrent program twie with the same test input, it is not guaranteed to return the sameoutput both times. This is beause some event orderings may vary between exeutions. Thisnon-determinism auses two signi�ant test automation problems: (1) it is hard to fore theexeution of a given program statement or branh and (2) it is diÆult to automate theheking of test outputs.In this paper, we extend a method for testing monitors proposed by Brinh Hansen [1℄. Theoriginal method onsists of four steps:1. For eah monitor operation, the tester identi�es a set of preonditions that will auseeah branh (suh as those ourring in an if-then-else) of the operation to be exeutedat least one.2. The tester onstruts a sequene of monitor alls that will exerise eah operation undereah of its preonditions.3. The tester onstruts a set of test proesses that will exeute the monitor alls as de�nedin the previous step. These proesses are sheduled by means of a lok used for testingonly.4. The test program is exeuted and its output is ompared with the predited output.�Shool of Computer Siene and Eletrial Engineering, Software Veri�ation Researh Centre, The Uni-versity of Queensland, Brisbane, Qld 4072, Australia. email: f brad, pstroop g�see.uq.edu.auyDept. of Computer Siene, University of Vitoria, PO Box 3055 STN CSC, Vitoria, B.C. V8W 3P6,Canada. email: dho�man�sr.uvi.a 1



By using an external lok to synhronize the alls to the monitor, we an ontrol the inter-ation of the test proesses without hanging the ode under test and thus guarantee that weexerise the preonditions we want to.The original method was devised for monitors implemented in Conurrent Pasal. In [7℄, weenhaned the method to test Java monitors. In partiular, we extended the test seletionriterion in the �rst step to inlude loop overage, onsideration for the number and typeof proesses suspended inside the monitor, and interesting state and parameter values. Wealso provided tool support by using the Roast tool for testing Java lasses [5, 9, 8℄ to hekexeption behavior and output values of monitor alls.In this paper, we provide further tool support through ConAn (Conurreny Analyser), whihautomates the third step in the method. With ConAn, the tester spei�es the sequene ofalls and the threads that will be used to make those alls. From this information, ConAngenerates a test driver that ontrols the synhronization of the threads through a lokand that ompares the outputs against the expeted outputs spei�ed in the test sequene,inluding the time at whih eah monitor all should omplete. The generated driver alsodetets when a proess in a test sequene is suspended inde�nitely.We review related work in Setion 2. In Setion 3, we introdue an asymmetri produer-onsumer monitor used to illustrate the method and ConAn. We desribe the method inSetion 4 and apply it to the asymmetri produer-onsumer monitor. In Setion 5, wedesribe the full funtionality of ConAn. We then disuss its appliation to three examplemonitors in Setion 6.2 Related WorkSeveral strategies for the testing of onurrent programs have been proposed in the liter-ature. Stati analysis involves the analysis of a program without requiring test exeution.Several graphial notations for representing the behavior of onurrent programs have beenproposed [16, 12, 17, 14, 10℄. The resulting graphs are then analyzed to generate suitabletest ases, to generate suitable synhronization sequenes for testing, or to verify propertiesof the program. However, these tehniques all su�er from the state explosion problem: evenfor simple onurrent programs, the resulting graphs are large and omplex. In many ases,this problem is ompounded by a lak of tool support.A number of authors [2, 15, 4℄ have proposed tehniques for \replaying" onurrent omputa-tions. While helpful, suh tools do nothing to ahieve adequate test overage. Carver and Tai[3℄ use a onstraint-based approah to testing onurrent programs, whih involves deriving aset of validity onstraints from a spei�ation of the program, performing non-deterministitesting, olleting the results to determine overage and validity, generating additional testsequenes for paths that were not overed, and performing deterministi testing for those testsequenes. This method requires a spei�ation and is hard to apply in pratie due to a lakof tool support.More reently, model heking has been used to automatially test interative programswritten in a onstraint-based language [6℄. The method uses an algorithm to systematiallygenerate all possible behaviors of suh a program, and these behaviors are then monitoredand heked against user-spei�ed safety properties.Very few pratial proposals have been made for the generation of test data and the exeutionof this test data. Our work builds on the work of Brinh Hansen [1℄, who presents a method fortesting Conurrent Pasal monitors. He separates the onstrution from the implementationof test ases, and makes the analysis of a onurrent program similar to the analysis of asequential program. 2



lass ProduerConsumer {String ontents;int urPos = 0;int totalLength;// reeive a single haraterpubli synhronized har reeive() {har y;while (urPos == 0) { // wait if no harater is availabletry { wait(); }ath (InterruptedExeption e) {}}// retrieve haratery = ontents.harAt(totalLength - urPos);urPos = urPos - 1;notifyAll(); // notify any other bloked send/reeive allsreturn y;}// send a string of haraterspubli synhronized void send(String x) {while (urPos > 0) { // wait if there are more haraterstry { wait(); }ath (InterruptedExeption e) {}}// store stringontents = x;totalLength = x.length();urPos = totalLength;notifyAll(); // notify any bloked reeive alls}} Figure 1: Produer-onsumer monitor3 Produer-Consumer MonitorThe ProduerConsumer lass shown in Figure 1 implements an asymmetri Produer-Consumermonitor, the Java equivalent of the Conurrent-Pasal program desribed in [1℄. The sendmethod plaes a string of haraters into the bu�er and the reeive method retrieves thestring from the bu�er, one harater at a time.The monitor state is maintained through three variables: ontents stores the string ofharaters, urPos represents the number of haraters in ontents that have yet to bereeived, and totalLength represents the length of ontents.The synhronized keyword in the delaration of the send and reeive methods spei�esthat these methods must be exeuted under mutual exlusion, i.e., only one thread an beative inside one of these methods at any time. Thus, if thread T attempts to exeute asynhronized method in a lass while there is another thread ative in the same lass, T willbe suspended.The wait operation is used to blok a onsumer thread when there are no haraters in thebu�er, and a produer thread when the bu�er is nonempty. It suspends the thread thatexeuted the all and releases the synhronization lok on the monitor. Eah wait all isplaed inside a try-ath blok to trap any thread interruption exeptions that may our.The notifyAll operation wakes up all suspended threads, although only one thread at atime will be allowed to aess the monitor. 3



reeive()C1 0 iterations of the loopC2 1 iteration of the loopC3 multiple iterations of the loopsend()C4 empty stringC5 0 iterations of the loopC6 1 iteration of the loopC7 multiple iterations of the loopproesses suspended on the queueC8 no proesses suspendedC9 one sender suspendedC10 one reeiver suspendedC11 multiple senders suspendedC12 multiple reeivers suspendedFigure 2: Test onditions for produer-onsumer monitor4 Testing Java MonitorsThe four steps involved in testing a Java monitor are desribed below.4.1 Step 1: Identifying preonditionsIn the original method [1℄, a set of preonditions is derived that will ause every branh of themonitor operations to be exeuted. Sine Java monitors typially ontain while-onditions, weaim to ahieve loop-overage of the ode under test instead. Spei�ally, we selet suÆienttest ases so that eah loop is exeuted 0, 1, and multiple times.In addition, we onsider the number and types of proesses suspended on the monitor queuefor eah all to notifyAll. Following ommon testing pratie, we inlude tests for queuesize 0, 1, and greater than 1.Finally, we onsider any speial monitor state or parameter values that we want to test.For the produer-onsumer monitor, we test that, for example, the implementation behavesorretly when we send an empty string.Ideally, we would test all ombinations of the ases above, but that would lead to a pro-hibitively large number of ases. Instead, we deide on whih ombinations of onditions totest and reord these as test onditions; see Figure 2. A unique identi�er is inluded for eahtest ondition for later referene. In this ase, we have 12 onditions that we want to test.4.2 Step 2: Construting a sequene of allsIn the seond step, the tester onstruts a sequene of monitor alls that will exerise eahof the test onditions and speial ases identi�ed in step 1. There are many sequenes thatwill exerise all onditions. The tester must onstrut one or more of these, typially throughtrial and error. One long test sequene is possible [7℄, but we have found that it is easier tomanage multiple, short test sequenes that eah exerise one or more onditions.Figure 3 shows a test sequene for the produer-onsumer monitor. With eah all is a uniquetime-stamp, the output produed by the all, the onditions that the all satis�es, and a setof suspended monitor alls, eah identi�ed by the time at whih the all was made. The allssuspended olumn failitates the heking of the test sequene against the test onditions.4



time all output onditions alls suspendedT1 send("a") { C5; C8 {T2 send("b") { C9 T2T3 reeive() 'a' C6 {T4 reeive() 'b' { {Figure 3: A test sequene for produer-onsumer monitorIn the example, the �rst all is send("a"), whih satis�es both onditions C5 (0 iterationsof the loop) and C8 (no proesses suspended). We also onsider when a proess is woken upas part of the test sequene. At time T3, after the reeive all, the suspended monitor all,T2, is woken up, hene satisfying ondition C6 (1 iteration of the loop for a all to send).Note that we do not reord all onditions satis�ed by the alls. For example, we do notreord that the reeive all at time T3 satis�es ondition C1, beause this test sequene wasdesigned to test the suspension and waking up of send alls.4.3 Step 3: Implementing the sequeneDuring test exeution, the all sequene must be as desribed in Figure 3. This meansthat we must implement a test driver that starts a number of threads that all the monitorproedures in the presribed order. However, the relative progress of these threads willnormally be inuened by numerous unpreditable and irreproduible events, suh as thetiming of interrupts and the exeution of other proesses.To guarantee the order of exeution, the method uses an abstrat lok to provide synhro-nization. This lok provides three operations: await(t) delays the alling thread until thelok reahes time t, tik advanes the time by one unit, waking up any proesses that areawaiting that time, and time returns the number of units of time passed sine the lokstarted. The time operation has been added to the method to detet when threads wakeup. Previously, for example, threads violating safety properties of the monitor and threadswaking at inorret times ould go undeteted. This ould our if the test ase passed, basedsimply on the output of the monitor alls. The time all allows a tester to ensure eah threadwakes up at a ertain time or between a range of times.ConAn automates this step in the method by allowing the tester to speify the sequene ofmonitor alls and by assigning eah all to a thread. ConAn sets up the lok and timer,generates await alls to ontrol the order of alls to the monitor, and manages the passingof time. Progression of time is ontrolled by a separate proess that makes the lok tik atregular intervals. The time interval is hosen to be large enough to guarantee that any allor waking up of a test proess is guaranteed to omplete within one time interval.The sript writer never needs to deal diretly with the lok or timer. If a liveness error ausesa thread to suspend inde�nitely, ConAn detets this, terminates the thread at ompletionof the test sequene, reports an appropriate error message, and ontinues with the next testsequene. On ompletion of a test sript, the number of test ases, the number of valueerrors, and the number of liveness errors are reported.Continuing the example, Figure 4 shows a ConAn test sequene for the produer-onsumermonitor. Two threads, sender and reeiver, are used. The alls in the methods orrespondto the monitor alls in Figure 3. The translation from the test sequene to the ConAn testsript is straightforward. Eah tik blok, delimited by begin tik and end tik, alls amonitor ommand. The all to send("a") at time 1 (T1) ompletes at time 1. Then, theall to send("b") at time 2 suspends and does not omplete until time 3, when a all toreeive() is made. 5



begin_asegoal_onditions C5 C6 C8 C9begin_tik // T1begin_thread sender#exMonitor m.send("a"); #end#valueChek time() # 1 #endend_threadend_tikbegin_tik // T2begin_thread sender#exMonitor m.send("b"); #end#valueChek time() # 3 #endend_threadend_tikbegin_tik // T3begin_thread reeiver#valueChek m.reeive() # 'a' #end#valueChek time() # 3 #endend_threadend_tikbegin_tik // T4begin_thread reeiver#valueChek m.reeive() # 'b' #end#valueChek time() # 4 #endend_threadend_tikend_ase Figure 4: ConAn test sequene to test a sender suspendedTo further support the method, we have integrated ConAn with the Roast testing tool [5, 9, 8℄by allowing ConAn to inlude Roast test templates. We use the Roast test templates toimplement the individual alls to the monitor operations. The templates provide automatiheking of exeptions and a onvenient way for heking the return values of monitor alls.In addition, Roast provides support for debugging when the testing reveals a failure.Calls to send are plaed inside a Roast exeption-monitoring template, delimited by #exMonitorand #end, to ensure that no exeptions are thrown during the all. Similarly, alls to reeiveare plaed inside a Roast value-heking template, delimited by #valueChek, # and #end, toensure that the all before the # returns the expeted output after the #. After eah monitorall, the lok time funtion is also alled to hek the time at whih the thread ompletesthe all.4.4 Step 4: Exeution and omparisonTest ase exeution and omparison is fully automated. The test sript is parsed by Roastand ConAn, produing a driver as a Java soure ode �le. Then the driver is ompiled andexeuted.5 ConAn Syntax and SemantisFigure 5 shows the general struture of a ConAn test sript. Eah setion of the test sriptis desribed below.� driver hdriver-namei: driver-name will be used as the name of the generated driverprogram, i.e., the name of the Java lass required to run the test sequenes.6



driver hdriver-nameimonitor hlass-namei hmonitor-idibegin onditionshondition-idi hondition-desriptioni: : :end onditionsbegin asegoal onditions hondition-idi : : :begin setuphJava odei // test sequene setup ode (if any)end setupbegin tikbegin thread hthread-idihJava odei // ode for this threadend threadbegin thread hthread-idihJava odei // ode for this threadend thread: : :end tikbegin tik: : :end tik: : :begin teardownhJava odei // test sequene teardown ode (if any)end teardownend asebegin ase: : :end ase: : :exit Figure 5: Struture of a ConAn test sript

7



� monitor hlass-namei hmonitor-idi: lass-name is the name of the monitor under test(MUT). Themonitor-id is any valid Java variable name and is used to reate an instaneof the MUT. This identi�er an then be used in the test sequenes to referene the MUTinstane. A new MUT instane is reated for eah test sequene.� hondition-idi hondition-desriptioni: Conditions are listed in the onditions blok,delimited by begin ondition and end ondition. Eah ondition is identi�ed byondition-id ; the ondition-desription is plain text. All onditions are doumented inthis setion and may be referened in the goal onditions setion of the test sequenes.Conditions are an aid to understanding and evaluating a test sript and provide trae-ability between the test sequenes and the listed onditions. Conditions that do notappear in the goal onditions list of any test sequene are reported by ConAn aspotential problems. However, the use of onditions in a test sript is optional.� Test sequene: A test sript onsists of one or more test sequenes, delimited bybegin ase and end ase. Eah test sequene onsists of a number of tik bloks rep-resenting units of time (tiks) of length tikTime seonds. A test sequene ompletesafter n+ 1 tiks have passed, where n is the number of tik bloks in the sequene.� goal onditions hondition-idi: For eah test sequene, a number of goal onditionsmay be listed. Conditions may be listed in more than one test sequene, so onditionreferenes are not required to be unique aross test sequenes.� Setup and Teardown bloks: Setup ode, delimited by begin setup and end setup,and teardown ode, delimited by begin teardown and end teardown, an be insertedat the beginning and end of a test sequene. Eah thread within a test sequene isan instane of the same Java lass. This means that an instane of ode and variablesreated in the setup blok is de�ned for eah thread in the test sequene. However, onlyone instane is reated for variables de�ned as stati, whih is shared by all threadsin the test sequene.� Tik blok: Eah tik blok, delimited by begin tik and end tik, represents a unitof time (or tik). Eah tik has a duration of tikTime seonds. It is assumed thatany statement exeuting within a tik blok will omplete before tikTime seonds haspassed. Hene, all statements, for all threads within a tik blok, exeute within thesame unit of time.� Thread blok: Eah thread blok begins with the begin thread statement that identi-�es the thread that will exeute the enlosed Java ode by the thread identi�er thread-id.For eah unique thread identi�er aross all tik bloks in a test sequene, a separatethread is reated. A thread with identi�er id exeutes ode for eah tik blok T that idappears in. The ode that is exeuted �rst suspends the thread until time T is reahed,and then exeutes the Java ode assoiated with id and time T . Eah thread identi�ermay appear only one in eah tik blok.Any Java ode or Roast test ases an be entered between the begin thread andend thread statements. In addition, after all tiks for a test sequene have ompleted,the driver heks to make sure there are no suspended threads for that test sequene.6 Examples6.1 Complete produer-onsumer test sriptFigure 6 presents some basi statistis about the full produer-onsumer test sript and thetwo other test sripts disussed in this setion. Five test sequenes were developed for testing8



metri produer-onsumer ConAn lok readers-writersTest Conditions 12 6 15Test Sequenes 5 3 8Test Cases 36 16 84Test Sript LOC 150 40 305Java Driver LOC 920 480 1855Figure 6: Summary of test driver generation for example monitorsthe twelve onditions of the produer-onsumer monitor. The ConAn test sript omprised150 lines, ontaining 36 test ases. Of the 36 test ases, 18 were monitor alls and 18 werewakeup heks. The generated Java program omprised 920 lines.This ompares with the 21 monitor alls previously used to satisfy the same 12 onditions[7℄. In that ase, however, the driver required 200 lines of Roast sript and produed 500lines of Java ode. Although ConAn generated more lines of Java ode, the ConAn sript ismuh simpler than the 200 line Roast sript. Moreover, it ontains all test onditions (thesewere reorded in a separate test plan in [7℄) and additional tests to hek the time at whihmonitor alls omplete.6.2 Testing the Clok monitorThe lok that is used by ConAn is also a monitor. We deided to test the lok monitorusing ConAn. The test sript for the lok monitor was simple to reate from the onditionslisted in Figure 7.await()C1 0 iterations of the loopC2 1 iteration of the loopC3 multiple iterations of the loopproesses suspended on the queueC4 no proesses suspendedC5 one awaiter suspendedC6 multiple awaiters suspendedFigure 7: Test onditions for the lokOne of the three test sequenes is shown in Figure 8. Note that the alls to m.time() inthe seond tik blok refer to the time funtion of the monitor under test (MUT). This anbe identi�ed by the use of the monitor variable m. The alls to time() without a qualifyingvariable refer to ConAn's lok. When the seond tik blok ompletes, ConAn's time hasadvaned to 2. However, the MUT's time is only inremented when we all m.tik(). Hene,the hek for time 0 before the all to m.tik() and time 1 after the all.6.3 Testing a Readers-Writers monitorTo experiment further with ConAn, we applied it to the readers and writers problem [13℄,whih is an abstration of the problem of separate proesses aessing a shared resoure (suhas a �le or database). A reader proess is only allowed to examine the ontent of the resoure,while a writer an examine and update the ontent. The problem is to ensure aess to the9



begin_asegoal_onditions C2 C5begin_tik // T1begin_thread awaiter#exMonitor m.await(1); #end#valueChek time() # 2 #endend_threadend_tikbegin_tik // T2begin_thread tiker#valueChek m.time() # 0 #end#exMonitor m.tik(); #end#valueChek m.time() # 1 #end#valueChek time() # 2 #endend_threadend_tikend_ase Figure 8: A test sequene for the lok monitorresoure so that multiple readers are allowed to examine the resoure at the same time, whileonly one writer is allowed to update the resoure at a time. Moreover, no readers should beallowed to examine the resoure while a writer is aessing it.We tested a typial solution to the readers and writers problem, whih is a monitor with fourmonitor proedures:� startRead is alled by a reader that wants to start reading;� endRead is alled by a reader that is �nished reading;� startWrite is alled by a writer that wants to start writing; and� endWrite is alled by a writer that is �nished writing.Sine alls to endRead and endWrite should never suspend, only the alls to startRead andstartWrite have alls to wait in them. Similarly, only alls to endRead and endWrite havealls to notifyAll in them.Applying ConAn to the readers and writers problem proved relatively straightforward. Wereated 8 sequenes, with a total of 42 monitor alls, to test 15 onditions. The onstrutionof eah test sequene was straightforward, ompared with the non-trivial exerise of reatingone long sequene onsisting of 31 monitor alls [7℄. Using multiple shorter test sequeneshas greatly simpli�ed the seletion of test ases to over the test onditions.One minor problem that we enountered was with the non-determinism of waking up threadsin Java. When multiple threads are suspended and are waiting on the same monitor entryondition, Java does not speify the order in whih these suspended threads are woken up.In fat, we found that this order is not the same for di�erent platforms on whih we ran thetests. To make the tests platform-independent, we hanged the test ases to hek for one oftwo possible wake-up times in one thread and the other wake-up time for the seond thread.To further evaluate ConAn, we used the same seven faulty mutant versions of the readers-writers monitor implementation that were used in [7℄. In that paper, only three faulty mutantswere deteted. By implementing thread suspension handling and the new time funtion, wewere suessful in deteting all seven faulty mutants.
10



7 ConlusionThe non-deterministi nature of onurrent programs means that onventional testing meth-ods are inadequate. Deterministi exeution is a strategy that is ommonly used in the testingof onurrent programs, and it is used here in a method for testing Java monitors.The test method is derived from an existing method [1℄ that tests Conurrent Pasal monitors.The method onsists of four steps: identifying preonditions, onstruting a sequene of alls,implementing the sequene, and exeution and omparison. In earlier work [7℄, the methodwas extended in the area of identifying preonditions that are more suitable for Java monitorsand in providing basi tool support.In this paper, we provide further tool support through ConAn, whih automates the thirdstep in the method. In addition, we implemented a time funtion in the lok, to hek whenalls wake up, and provide the ability to detet liveness errors. We also improved the methodfor monitor testing by using multiple shorter test sequenes, rather than one long sequene.We disussed the appliation of ConAn to three monitors: Produer-Consumer, the ConAnlok, and Readers-Writers. It has also been used for testing a monitor in a ommerialdistributed system [11℄.Referenes[1℄ P. Brinh Hansen. Reproduible testing of monitors. Software-Pratie and Experiene,8:721{729, 1978.[2℄ R.H. Carver and K-C. Tai. Replay and testing for onurrent programs. IEEE Software,8(2):66{74, 1991.[3℄ R.H. Carver and K-C. Tai. Use of sequening onstraints for spei�ation-based testingof onurrent programs. IEEE Transations on Software Engineering, 24(6):471{490,1998.[4℄ J. Choi and H. Srinivasan. Deterministi replay of Java multithreaded appliations. InProeedings of the Symposium on Parallel and Distributed Tools, 1998.[5℄ N. Daley, D.M. Ho�man, and P.A. Strooper. Unit operations for automated lass test-ing. Tehnial Report 00-04, Software Veri�ation Researh Centre, The University ofQueensland, January 2000.[6℄ P. Godefroid, L. Jagadeesan, R. Jagadeesan, and K. Laufer. Automated systematitesting for onstraint-based interative servies. In Proeedings of the ACM SIGSOFT8th International Symposium on the Foundations of Software Engineering, volume 25, 6of ACM Software Engineering Notes, pages 40{49. ACM Press, 2000.[7℄ C. Harvey and P. Strooper. Testing Java monitors through deterministi exeution. InProeedings of the Australian Software Engineering Conferene, 2001.[8℄ D.M. Ho�man and P.A. Strooper. Prose + test ases = spei�ations. In Proeedings34th International Conferene on Tehnology of Objet-Oriented Languages and Systems,pages 239{250. IEEE Computer Soiety, 2000.[9℄ D.M. Ho�man and P.A. Strooper. Tehniques and tools for Java API testing. In Proeed-ings 2000 Australian Software Engineering Conferene, pages 235{245. IEEE ComputerSoiety, 2000.[10℄ T. Katayama, E. Itoh, and Z. Furukawa. Test-ase generation for onurrent programswith the testing riteria using interation sequenes. In Proeedings of the 2000 Asia-Pai� Software Engineering Conferene, pages 590{597. IEEE Computer Soiety, 2000.11



[11℄ B. Long and P. Strooper. A ase study in testing distributed systems. In Proeedings ofthe 3rd International Symposium on Distributed Objets and Appliations, 2001.[12℄ D. Long and L.A. Clarke. Data ow analysis of onurrent systems that use the ren-dezvous model of synhronisation. In Proeedings of the Symposium on Software Testing,Analysis and Veri�ation (TAV4), pages 21{35. ACM Press, 1991.[13℄ J. Magee and J. Kramer. Conurreny State Models and Java Programs. John Wiley &Sons, 1999.[14℄ G. Naumovih, G. Avrunin, and L. Clarke. Data ow analysis for heking propertiesof onurrent Java programs. In Proeedings of the 1999 International Conferene onSoftware Engineering, pages 399{410. IEEE Computer Soiety, 1999.[15℄ K-C. Tai, R.H. Carver, and E. Obaid. Debugging onurrent Ada programs by deter-ministi exeution. IEEE Transations on Software Engineering, 17(1):45{62, 1991.[16℄ R.N. Taylor. A general-purpose algorithm for analyzing onurrent programs. Commu-niations of the ACM, 26(5):362{376, 1983.[17℄ W.J. Yeh and M. Young. Redesigning tasking strutures of Ada programs for analysis:a ase study. Software Testing, Veri�ation and Reliability, 4:223{253, 1994.

12


