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Property Verification within a Process Algebra
Framework

Antonio Cerone George Milne

1 Introduction

In the last fifteen years process algebras have been succesfully used to model
concurrent systems and to verify equivalence between the specification and
the implementation of a system. More recently the combination of process
algebra and temporal logic through the technique of model checking [7] has
allowed the development of tools for the automatic verification of properties
of systems. The most recent tools are based on a symbolic representation
of the state space (symbolic model checking) [12] and allow the verification
of systems with a large number of states.

Since such tools involve two different formalisms, the process algebra
and the logic, their use is often very hard for non expert users. The critical
step is the specification within the logic of the properties of a system that is
modelled within the process algebra. Properties based on events performed
by processes have to be thought again in terms of logical formulas and this
procedure can easily generate errors.

In this paper we present a methodology for the automatic verification
of concurrent systems, which is based on the characterization of temporal
properties within Circal [13, 15], a process algebra in which processes can
be guarded by sets of simultaneous actions and such actions can be shared
over an arbitrary number of processes.

We introduce SAUB [6], a branching time temporal logic whose temporal
operators are based on actions rather than on states. Several modal and
temporal logics based on actions [8, 9, 16] have been developed to describe
properties of processes. With respect to the previous logics, SAUB has the
additional feature of expressing also simultaneity between actions and this
makes it suitable to describe properties of Circal processes.

The distinctive features of Circal support constraint-based modelling [17,
13]: the behaviour of a process may be constrained simply by composing



it with another process, which represents the constraints. This modelling
technique is the basis for verifying properties within the process algebra. A
property of a process can be characterized in terms of another process so
that one of the two processes constrains the other only when the property
does not hold. This approach can be applied when the property to be tested
is characterized in terms of a well-known model that satisfies it (model-based
characterization) and is very useful in the verification of safety properties.

A more sophisticated approach leads to a characterization of general
SAUB formulas in terms of Circal processes (formula-based characteriza-
tion). A property can be characterized within Circal through a translation
of the SAUB formula that describes it into a set of processes and into the
rules to compose these processes with one another. The two processes ob-
tained by the application of the rules are then tested for equivalence.

In both approaches the property verification is reduced to an equiva-
lence between processes that can be automatically verified within the Circal
System, the mechanisation of the Circal process algebra. This methodology
has been successfully applied to the specification and automatic verification
of an audio control protocol developed by Philips [1, 2] and to handshaking
control circuits of asynchronous micropipelined processors [4, 5].

2 The Circal Process Algebra

In this section we give a brief description of the Circal operators and their
semantics and refer the reader to the book by Milne [13] and the paper by
Moller [15] for further explanations. To describe and analyze a system, the
user works with the language XCircal, the extention of the Circal process
algebra that is automated by the Circal System [13].

The syntax of Circal processes is summarized by the following BNF
expressions, where P is a process, D a process definition, A is the set of
possible actions, m C A, a,b € A and [ is a process variable:

P == /\|mP|P+ P|P&P|I|Px P|P — m|P[afb]
D = I <—-P

2.1 Informal Semantics

Each Circal process has associated with it a sort, which specifies the set of
actions (ports) through which it may interact with other processes. Every
sort will be a non empty subset of A, the collection of all available actions.
The set of processes of sort L is denoted by Pr. The set of all processes



is p ¥ Urca Pr. If some action a € A is in the sort of some interacting
process, then a communication (synchronization) cannot occur via the port
a unless the process in question allows it. A synchronization event involving
any port a € A not in the sort of an interacting process may occur without
regard to the process in question. Sets of actions occur simultaneously in
the communication and may be shared over arbitrary numbers of processes.
The role of each Circal operator can be described as follows:

Termination. /\ is a constant representing a process which can participate
in no communication. This is a process that has terminated or deadlocked.
There is actually a whole family {/\z}rca of such constants.

Guarding. Single or simultaneous guards are permitted. For example
P <—(ab) P

represents the process P which will perform a and b simultaneously, and
then evolve into P'. The fact that processes may be guarded by sets of
simultaneously occurring actions is a key feature of Circal which greatly
enriches the modelling potential of the algebra in contrast to process algebras
such as CCS [14] and CSP [10] which only permit a single action to occur
at one computation instant. An example of a single guard is

P <—aP

in which process P performs the single action a and evolves to P'. In this
case a is a shorthand for (a).

Definition. A name can be given to a Circal process with the definition
operator. Recursive process definitions are permitted; for example

P<—(ab)P

is interpreted as a process that continuously repeats the simultaneous actions

(ab).

Choice. The term P + (@ represents the process which can perform either
the actions of the subterm P or the actions of the subterm (). The choice is
decided by the environment in which the process is executed. For example,
the following process can perform g or b or ¢

P<—aP +bP + cP



The choice is made depending on the action available from the environment.

Non-determinism. The term P&() represents the process which can perform
either the actions of the subterm P or the actions of the subterm (). The
computation path is decided autonomously by the process itself without
any influence from its environment. For example, the following process can

perform ¢ or b or ¢
P<—aP&bP&cP

independently of which actions are supplied by the environment. If P
chooses to perform a, and a is not supplied by the environment, then P
terminates.

Concurrent Composition. Given processes P and @, the term P * () repre-
sents the process which can perform the actions of the subterms P and @)
together (composition). Any synchronization which can be made between
two terms, due to some atomic action being common to the sorts of both
subterms, must be made, otherwise the actions of the subterms may occur
asynchronously.

Abstraction. The term P — a represents the process that is identical to P
except that the port a is invisible to the environment. We will use P —abc
as a shorthand for ((P —a) —b) —c.

Relabelling. The term P[b/a] is the new version of P in which the action b
replaces a wherever a occurs in P.
2.2 Formal Semantics

The formal semantics of Circal [15] is given in terms of transition systems
labelled with set of actions.

Definition 2.1
A Labelled Transition System (LTS) is a structure 7 = (S, A, —, sg) where

e S is a finite set of states;
e A is a finite, non empty set of actions;

o C Sx24x S is a transition relation, whose generic element (s1, yt, 52)
is usually written as s; 5 5.

e g is called the initial state



A generalized transition p £ ¢ is defined by
U 0 1o O 1o
p=>Tq <= p—>*p —p —xq for somep,p

where %% is the reflexive and transitive closure of 5. A path on 7 is
an infinite sequence of states sis9s3... such that for each 7 > 1 there exists
p € 24 such that s; LN Si+1- The set of paths on T starting from s € S is
denoted by II7(s).

For each s € S the successor set of s is

O7(s) def {pe2t | u#0 and s&; s for some s' € S}.
Definition 2.2
Let 'Tl = <81,.A1,—>1,81) and 'TQ = <82,.A2,—>2,82) be two LTSs. Then

® 71 Cmay 72 if and only if for each p € 2“4, for each p1 € Sy, s1 éL>7-1 P1
. . I
implies s9 =7, p2 for some py € Sy;

e 71 Coust T2 if and only if for each p € 24, for each py € So, 59 %7-2 P2
implies s; £, p1 for some p; € S; such that O (p1) C O, (p2);

e 71 C Ty if and only if 71 Cray T2 and T1 Syt T2

Definition 2.3

Let A the set of all available actions. The semantics of a Circal program
R € Py, is the labelled transition system

B(R) =(S,A,—,R)
such that — is the least relation that satisfies the following conditions:
° P—)Pand,uPﬂ>P;
e if PP . thenP+Q—>P +Qand Q+P — Q+ P';
e if PA P forpy#0 then P+Q5 P and Q+P 5 P
e P&(Q — P and P&Q — Q;
e if PePr,QePr, PH5P Q5 Q and pNLy=vnNLy,
then P * Q Y P« Q';

. fora,nng.AifPiP',thenP—LliLP'.



Definition 2.4
The behavioural inclusion of P € Pr, in Q € Py is defined as follows.

PEQ < B(P)EB(Q).

Definition 2.5
The equivalence of P € Pr, and Q € Py is defined as follows.

P2Q <+ PLCQ@ and QCP.

The equivalence between two processes is implemeted by the Circal System
giving to the expression
P e —

the result true, if P 22 () and false, otherwise.

3 The Methodology

As with any process algebra, the Circal process algebra is a low level lan-
guage containing the primitive constructs to model concurrency. For this
reason it is a very flexible language and it is possible to develop modelling
styles that allow the description of high level aspects of concurrent systems,
as well as application-oriented modelling styles.

One modelling style that is very useful in several application domains,
and in particular in the description of communication protocols [1, 2] is the
constraint-based modelling style [17, 13].

4 Constraint-based Modelling

The constraint-based modelling style is supported by the following distinc-
tive features of the Circal process algebra:

e guarding of processes by sets of simultaneous actions;
e sharing of events over arbitrary numbers of processes;

e the particular nature of the composition operator which provides syn-
chronization between processes without removal of the synchronising
events in the resultant behaviour.



The behaviour of a process may be constrained simply by composing it with
another Circal process which represents the constraint. As an example,
consider the process P € Py, ) defined as follows:

P <— aB+bA+cP
A <— aB + cA
B <—- bA+ c¢B

Process P generates all the finite strings on the alphabet {a, b, ¢} that consist
of alternating occurrences of a and b and arbitrary occurrences of c. Three
constraints for process P are processes C'1 € Py and C2 € Py .y and
C3 € Py} defined as follows

Cl <— af
S <— aS+bS+cS

C2 <— bC +¢D

C <— ¢D
D <—- bC
g3 < - /\{c}

Since P and C1 have the same sort and at the initial state C'1 can perform
only a the composite process P * C'l must perform a as the first action.
Then C'1 evolves to S, which can perform every possible sequence of action.
Therefore, process C'1 constrains the string to start with an occurrence of a
with any arbitrary behaviour then following. Process C2 constrains b and ¢
to occur in alternation, whereas it does not affect the occurences of action a,
which does not belong to its sort. Process C3 has only c in its sort. Thus P
can perform c¢ only synchronously with C3, but C3 terminates immediately
without performing any actions. Therefore C' constrains P not to perform
c.

Example 4.1

An important element in a protocol specification is the assumptions about
the environment in which the protocol is executed [11]. The constraint-
based modelling permits us to specify these assumptions within a process
that will be composed with the specification of the protocol.



In the protocol verified by Cerone et al. [1] messages consist of finite
sequences of 0 and 1 bits and are encoded by a sender, according to a
Manchester encoding scheme, into transitions of the voltage between two
levels on the single wire bus connecting the components. Since downgoing
transitions take a significant time to change from high to low level, they do
not appear to the receiver as edges. So the receiver can observe only upgoing
edges and this causes a loss of information during the transmission, which
results in an ambiguity in the decoding by the receiver. This ambiguity is
overcome by assuming that the protocol will always work in an environment
that guarantees the following constraints on the input:

e Every message starts with the bit 1;
e Every message either has an odd length or ends with 00.

A sequence of messages is readily modelled in Circal by a nested series of
guarded processes where the guards are events consisting of single actions
that can describe a bit 0, or a bit 1, or the “end of the message”. Different
actions are used for input and output message. We represent 0, 1 and “end
of the message” in the input by 4g, 41 and 7., respectively, and in the output
by 0g, 01 and o, respectively. For example the sequence of 2 messages, given
by the message 101 followed by the message 1100 is represented in the input
by the process
M; =41 10 %1 %e 1 91 %0 %0 Te /\
and in the output by the process
M, = 01 09 01 0 01 01 09 09 0¢ [\

The assumption about the environment is modelled by the process Con
defined as follows:

Con <— 110,
Oy <— By + 11 E + i, Con
0, <— wE+4nE+ i.Con
Eypw <— 190¢ + 1101 + i Con
E <— 430p + i1 O1

We can notice that the “end of the message” i, appears only in the states
that define an odd length (Op and O;) or an even length with the last two
bits equal to 0 (Eqyg).



The constaint-based modelling style supported by the Circal process algebra
has been used in other application domains, such as asynchronous hardware
[4, 5] and also allows the modelling of timing constraints [3, 4].

5 A Temporal Logic for Simultaneous Actions

In this section we define, the Simultaneous Action Unified Branching Logic
(SAUB) [6], a branching time temporal logic whose temporal operators are
based on actions. With respect to the previous logics based on actions,
SAUB has the additional feature of expressing also simultaneity between
actions. Therefore it permits us to discriminate between true concurrency
and non deterministic interleaving. We give here only a brief introduction
to the logic and we refer the reader to the technical report [6] for further
explanations.

Definition 5.1

The syntax of the action formulas on A is given by

AF == ¢€e|A|-AF | AFV AF
A == a foreachac A

The set of all the action formulas on A is denoted by AF(A).

Definition 5.2

Let A be a finite, non empty set of actions. Then for each a € A, f, f1, fo €
AF(A) and p € 24

p, AEe = p=10

p, AE=a < a€p

M,A‘:_'f — MaA#f

M,A‘:f1Vf2 <~ ﬂ’aAI:fl or N5A|:f2



Definition 5.3
For each f € AF(A) we define

Calf) € {p e 24, A = f}.

Definition 5.4

We define the following derived operators:

14 = eV\/.A
0, & -1,
finfa = =(=fiV—f2)
fi=afo = AV
fierfo = (= R)ANL— f2)
Definition 5.5

For each p € 2 we define the characterizing formula of u as follows.

A VaE.A\u —a A VaEu a ifp# 0
f,u:

€N Veeq 0 otherwise

The following theorem shows that f, characterizes completely the set yu €
24, Tt is a simple consequence of Definition 5.3 [6].

Theorem 5.1
For each p € 24

Calfu) = {n}-
Definition 5.6

The syntax of temporal formulas on A is given by

F .= VAF...AFOAF
| 3JAF...AFOAF
| —-F|FVF
| VAF...AFOF
| 3JAF...AFOF

The set of all the temporal formulas on A is denoted by F(A).

10



Definition 5.7

Let T = (S, A, —, s0) be a LTS. Then for each
fsfis--os fn € AF(A) and F, F1, F5 € F(A)
so, T EVfi,..., frOf
<« forall si,...,s, €S forall pi,...,p, € 24

if pi, AlEfi, i=1,...,n, and soB 18 . 51 Bsp
then p;, A= f, i=1,...,n, and
for all p € TI7(s,) forallk >0 for all v € 24
p(k) > pk+1) = v, Al

SOaTIZHfla---aanf
<= there exist s1,...,5, €S and pi,...,u, € 24 such that
pi, A= fi, i=1,...,n, pi, AEf, i=1,...,n,
80531“—%...%,1&;3” and
there exists p € II1(s,) such that
forallk >0 for all v € 24

p(k) > pk+1) = v, AlEf

301T|:_'F
= s0,THF

S(),TIZFl\/FQ
— 30,T|:F1 or 80,T|=F2

Soalevfla"'aanF
< forall si,...,s, €S forall pi,...,pu, €24

if pi, AEfi, i=1,...,n, and s0B 18 s 1 Bs,
then for all p € Il (sy)
forallk >0 p(k), T =F

SOalezlfl’"'aanF
<= there exist s1,...,5, €S and p1,...,u, €24 such that

i, A= fi, i=1,...,n, and 0B s 8B s By
and there exists p € II7(s,) such that
forallk >0 p(k), T EF
Definition 5.8
Let be f1,...,fn € AF(A), F,F1,Fy € F(A) and ® € AF(A) U F(A) We
define the following derived operators:
T v1,4014

11



LT

Fi NFy def —|(—|F1 V —|F2)

Fl —)FQ d:ef —|F1VF2

If1re s o0 VL £ DD

Vi, fnO® Y 3fy, . fuO®

3006 ¥ 31 00

vod & vTod

voo ¢ 300

306 & —vo-d

IXf1yfa € 31 fuOT

def
VX fi,..oy fn = —3A-fy...f, 0T

6 The Representation of Properties

A correctness concept that can be readily characterized in Circal is the
behavioural equivalence between two processes. The Circal expression P ==
Q is the implementation of the equivalence P £ ().

In verification, however, equivalence is often too strong a property. For
certain systems, verifying their correctness consists of determining that cer-
tain properties hold, where these properties do not constitute a complete
specification. This cannot be done in terms of equivalence, but rather in-
volves the notion of behavioural inclusion.

Let P € Py, and Q € Py be such that L € M and P and Q) are
deterministic. Then

Q- (M\L)C P

if and only if @ can be seen to constrain P and restricts P to behave as @,
that is
PxQ=P.

The Circal expression P x () == () characterizes the behavioural inclusion
of @ in P.

When @ defines a model of a system, P can be seen as a property that
@ must satisfy. However not all temporal properties can be verified through
a behavioural equivalence.

A more general approach is the use of processes to mark with new ab-
stract actions all the paths that satisfy the required property. The property

12



is then defined by a process whose sort consists only of marking actions.
By composing the process that defines the model of the system with the
marking process and abstracting away all actions apart from the marks, the
composite process is equivalent to the process defining the property if and
only if the model of the system satisfies the property.

6.1 Formula-based Characterization

In this section we define a characterization of a given property of a Circal
process by means of an equivalence between processes that involve a repre-
sentation of the temporal formula that defines the property. We start our
characterization with the temporal formulas that do not contain more than
one level of temporal operators. Notice that a formula like VfOF, with
F € F(A), has always more than one levels of temporal operators. We will
use the following process definitions:

TL <— > uTL
ue2l

YN <— yYN+nN
N <—- aN
Y <—- yY

with y,n ¢L. The TL process permits all possible set of actions to occur
anytime. The behaviour of the YN process consists of an infinite path
labelled by y that has in any point an infinite branch labelled by n.
Theorem 6.1

The behaviour of a process S € Py, satisfies the formula

Vfla"'af’l'ljf

if and only if
S *‘41;fh-~J} *14(;1;f -L=2Y

where
ALfla---af’r < - ALfl

ALj <— Y pALg,, i=1,..,r—1
KECL(fi)

ALj, <- Y uTL
.UECL(fr)

AGL; <— Y (U{yhAGL; + > (nU{n}) N
neCr(f) ugCrL(f)Uo

13



Proof The ALy, . process constrains other processes to start with the
occurrence of a sequence of sets of actions such that the i-th set satisfies
the temporal formula f;. The AGL; process marks with the new action y
all the action sets that satisfies f and with the new action n all the other
action sets.

Thus, S * ALy, .t * AGLy — L is equivalent to YV’

if and only if

S* ALy, .t * AGL; performs only action sets marked by y
if and only if

S * ALy, . s performs only action sets that satisfy f
if and only if

S performs only action sets that satisfy the temporal formula f after being
constrained to start with the occurrence of a sequence of action sets such
that the i-th set satisfies the temporal formula f;

if and only if
B(S) satisfies Vf1,..., f,Of. O

Theorem 6.2

The behaviour of a process S € Py, satisfies the formula

Elfla"'afTDf

if and only if
S*EGL}" I —L =2 YN

where

EGL}"I" < - EGLY

EGLE < - > nU{y}BGL{™ +
peCL(f)NCL(f)
Z pU{n}N, i=1,...,r—1
pgCL(fi)NCL(f)\0
EGLY < - Y. wU{y} EGL;+
peCL(f)NCL(f)

14



> pU{n} N
wgCL(fi)NCL(f)\0O
EGL; <- ) (nU{y}) EGL; +
veCL({)
> (wu{nh)N

ugCr(f)uo

Proof The EGL;I“‘f " process marks with the new action y all the action
sets in an initial sequence of action sets such that the i-th set satisfies the
temporal formula f; and the temporal formula f. It marks all the other
action sets with the new action n. After marking with n, every E'GL;" gives
control to the N process, which performs n forever, whereas, after marking
with y the last action set of the sequence, EGL;’" gives control to the EG Ly
process. The EGLy process marks with y all the action sets that satisfy the
temporal formula f until an action set that does not satisfy f is performed.
Such an action set and all the following ones are marked with n. Moreover,
EGLy; allows at any point the occurrence of an action set containing only
n.
Thus, S * EGL;l""’fT — L is equivalent to YN

if and only if

B(S * EGL;I"“’f’ — L) consists of an infinite path labelled by y that has in
any point an infinite branch labelled by n

if and only if

B(S *EGL}CI""’f ") contains at least an infinite path whose action sets contain
y and all these infinite paths have in any point an infinite branch whose
action sets contain n

if and only if

B(S) contains a path that starts with a sequence of r action sets such that
the i-th set satisfies the temporal formulas f; and f and that after the r-th
action set contains only action sets that satisfy f

if and only if
B(S) satisfies 3f1,..., frOf. O

Formulas consisting of derived temporal operators can be characterized after
transforming the derived operators in the primitive ones.

15



Example 6.1
Let S € Pyq,p,c) be the process defined as follows:

S <— aS+ (b S
We can notice that S satisfies
VeO(aVd) and FeO(bAc)

but satisfies neither
VeOb mnor  3JeO(aAc)

In fact
S« AL.* AGLyyy —L and S« EGLj,,— L

are equivalent to Y and Y N, respectively, whereas the behaviour of Sx AL
AGLy — L is given by
So <— y&
S1 <— yS1+nS
which is not equivalent to Y, and the behaviour of S * EGL{ .. — L is given
by
So < — Yy Sy
S <— nS;

which is not equivalent to Y N.

Now we show an example of characterization of a formula containing two
levels of temporal operators.

Example 6.2

The formula
Vfla"' 7fTDVgla"' JQSOh

defines a schema of the important class of liveness properties. The formula
is equivalent to
Vfi,..., frO0-3g1,...,9:0-h

We can notice that the fragment “Vfy,..., f,” defines a constraint character-
ized by the process ALy, . .. Therefore the behaviour of a process S € Pr,
satisfies the formula if and only if

S* ALy, . 5 * EGLzl,.._,gs L 3yN

16



In the protocol defined in Example 4.1, since the receiver can observe only
upgoing edges, a sequence 01 encoded by the sender can be decoded by
the receiver only when it observes the upgoing edge that encodes the bit
1. The formula V1 40Vig,41<dgr where action dp; defines the decoding of
the sequence 01 by the receiver. However, the model of the protocol does
not satisfy it because the decoding fails when the input message does not
respect the constraints defined in Example 4.1.

6.2 Model-based Characterization

The following theorem shows an alternative characterization of the formula

Vfl, ceey fer-

Theorem 6.3

The behaviour of a process S € Py, satisfies the formula

v.fla"'af’r'Df

if and only if
S * ALf1,---,fT * Gf >~ Gk ALfl,---,fr

where

Gf < = Z qu
peCL(f)

Proof The Gy process constrains other processes to perform only the action
sets characterized by f. Thus, Sx ALy, Gy isequivalent to Sx ALy, g,
if and only if S* ALy, . can perform only action sets satisfying f, that is
if and only if S satisfies Vfi,..., f,Of. m|

In this characterization the property is verified through a behavioural in-
clusion. This is possible only for safety properties. The approach becomes
very interesting when the safety property is characterized in terms of a
known model that satisfies it (model-based characterization). If process P is
the model-based characterization of such a safety property, the equivalence
given in Theorem 6.3 becomes

SxPx=§S (1)

Therefore, system S satisfies property P if and only if the behaviour of P is
included in the behaviour of S.

In most cases the correctness of a system depends on the assumptions
made about its environment. Thus the process C' defining these assumptions

17



must be composed with S, before the verification. Therefore, equivalence (1)
becomes
SxCxP=S«xC (2)

This approach exploits the modelling power of a process algebra such as
Circal and can overcome the problem of the characterization in terms of a
very complex logical formula.

Example 6.3

A typical example that uses the model-based characterization is the cor-
rectness proof of a communication protocol. A necessary property for the
correctness of a protocol is the following.

Each sequence of messages that is accepted as an input by the
protocol is output unchanged by the protocol.

This property is typical of a buffer and the specification of a buffer is well
known. If process S describes the protocol and B describes the specification
of the buffer, then the protocol satisfies the property if and only if the
behaviour of B is included in the behaviour of S, which is expressed in
Circal by

SxBx=S (3)

In general the size of the buffer, and therefore the number of its states,
depends on the protocol. However, we can be certain that there exists a
finite buffer size for each given protocol modelled in Circal, since Circal can
describe only finite-state behaviours. Therefore the property can be proved
by showing that the above equivalence is true for some finite size of B.

Since the correctness of the protocol defined in Example 4.1 depends
on the assumptions defined by process Con, the equivalence to be verified
becomes

SxCon*xB=5xCon

However this is not yet sufficient to guarantee the correctness of the protocol,
since also a process that accepts fewer inputs than the possible inputs that
are characterized by Con satisfies the equivalence above. It is necessary to
prove that S accepts at least all the inputs characterized by Con. This is true
when the behaviour of the restriction of S to the input actions is included
in the behaviour Con. Such a property is verified by the equivalence

Conx* (S —0) = Con

where O = 0j 01 0, is the list of all output actions.

18



We can notice that in this case there is a behavioural inclusion of a
restriction of the system (to input actions) in the property, which is a very
simple liveness property. “The system accepts a class of inputs” means that
the system eventually reacts to every input belonging to such a class. In
some cases [1, 2] the two equivalences

SxConxB=S*xCon and Conx(S—0)=Con

are sufficient to verify the correctness of a protocol P. The property char-
acterization is thus entirely model-based.

For a general approach to the verification of liveness properties the re-
course to a formula-based characterization is a need. However, in the char-
acterization

Sx ALy, ., * EGL"% — [, YN

of the formula
V- frOVg1, .., g5Oh

the constraint ALy s is a very simple assumption about the environ-
ment. In practical cases the assumptions about the environment can be
very difficult to be characterized in terms of temporal logic formulas. The
above characterization still works when ALy, . r is replaced by any other
constraint. Therefore, we can replace ALy . s by a process C that is a
model-based characterization of the assumptions. This is equivalent to ver-
ify the constrained system S * C rather than the unconstrained system S.
In this way the combination of the formula-based and model-based charac-
terizations increases the power of the verification methodology.

Example 6.4

In the protocol defined in Example 4.1 the assumptions about the environ-
ment are modelled by the Con process defined in Example 4.1. Therefore, if
P € Py, is the process that models the protocol, then P*Con*EGLZ%’I“ L=
/Y N proves that “when the input satisfies the constraints modelled by Con
always a sequence 01 is eventually decoded”. Therefore, the composite sys-
tem P x Con satisfies V1 40Vig, 11 dpy even if P does not.

The model-based characterization of property has also been applied to

the verification of timing constraints [4] and performance properties [5] in
the domain of asynchronous hardware.
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Example 6.5

In an asynchronous micropipelined processor the evaluation of a pipeline
stage is governed by local interactions with its neighbours using a request
acknowledge handshaking protocol. It is possible that one stage is evaluating
while at the same time a stage further on is transferring an instruction to
its neighbour. Thus, whilst the performance of a synchronous pipeline is
governed entirely by the clock rate that can be achieved with a particular
logic design, the performance of an asynchronous pipeline depends as well
on the design of the handshaking controls for each stage. In particular, if
the asynchronous logic pipeline is to be as fast as the synchronous one it
must be possible for all the evaluation of logic stages to overlap as in the
synchronous case.

Equivalence 2 has been used in the verification of the simple property
that “adjacent stages can never be occupied at the same time” [4, 5]. This
property is verified by exploiting a distinctive features of the Circal process
algebra: simultaneous event guards. A new abstract action is introduced in
every stage to mark the interval where the stage is full. If we denote by y;
the abstract action introduced in the i-th stage then the process

Yij <—wiYij +y;Yi;

characterizes the property that 1; and y; never occur simultaneously, that is
the i-th and j-th stages “can never be occupied at the same time”. There-
fore, if S models the handshaking control for the whole micropipeline, then
checking for each 4

S*Y i1 =8
proves that “adjacent stages can never be occupied at the same time”.

If such a property holds for adjacent stages, but not for alternate stages
then the degree of parallelism achieved by the micropipeline is only 50% of
the potential parallelism. If it does not hold for any pair of stages, then
adjacent stages may be occupied at the same time. So no upper bound of
50% is given to the degree of parallelism. However, we would like to know
whether all stages can be occupied at the same time.

In order to characterize such a property we combine the formula-based
and the model-based characterizations. We use the same abstract action
y for every stage of the micropipeline [5]. Then the process Y given in
Section 6.1 characterizes the property that y occurs on an infinite path
in the behaviour of the micropeline. In this case equivalence 2 cannot be
applied. If L is list of all actions in the sort of S then

(SxY)—L2Y (4)
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proves that after abstracting away all the actions in the sort of S from the
composition S * Y, there is still an infinite sequence of actions y in the
resultant behaviour. This means that there is a path where all stages are
occupied at the same time. Therefore, the whole potential parallelism can
be effectively reached [5].

7 Discussion and Future Work

In this paper we have developed a methodology for the automatic verification
of concurrent systems by using the constraint-based modelling style available
within the Circal process algebra. Three distinctive features of the Circal
process algebra are the basis of this methodology, namely, simultaneous
event guards, sharing of events over arbitrary numbers of processes and
the nature of the composition operator which provides synchronisation of
processes without the removal of the synchronising events in the resultant
behaviour.

A temporal property of the system under analysis can be characterized
either through a translation of the SAUB formula that defines the property
into a set of processes and into the rules to compose these processes with one
another (formula-based characterization), or by a well-known model that sat-
isfies the property (model-based characterization). The formula-based char-
acterization allows the verification of general temporal properties, whereas
the model-based characterization can be applied only to the verification of
safety properties and of some simple liveness properties. The two charac-
terizations can also be combined together, so increasing the power of the
verification methodology.

In future work we want to extend the logic with more powerful tem-
poral operators and also would like to add compositionality to SAUB by
developing meta-rules to combine properties of different processes, which
have possibly different sorts, and infer a property of the composite process.
This could be a first step towards a decomposition of a global property of
the overall system into the local properties of its components, which can be
verified on a much smaller state spaces.
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