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Abstract

Security protocols aim to allow secure
electronic communication despite the
potential presence of eavesdroppers.
Guaranteeing their correctness is vi-
tal in many applications. This report
briefly surveys the many formal specifi-
cation and verification techniques pro-
posed for describing and analysing se-
curity protocols.

1 Introduction

Security protocols aim to allow se-
cure electronic communication despite
the presence of eavesdroppers. Guar-
anteeing their correctness is vital in
many applications such as defence or
commerce. However, providing such
guarantees has proven very difficult.
The computing discipline of formal
methods is devoted to unambiguous
specification of system requirements,
and mathematically-precise proofs of
system properties. Many researchers
have therefore attempted to use formal
methods to verify the correctness of se-
curity protocols.

The results to date, however, have
been disappointing. Several proto-
cols which have been ‘proven’ correct
have later been found vulnerable to at-
tack [14]. We can recognise two rea-

sons for this.
Firstly, specifying protocols and

their desired properties in existing for-
malisms has been difficult. Formal
methods can express functional be-
haviour and requirements, but they do
not provide for typical security con-
cepts such as ‘confidentiality’, ‘authen-
tication’ or ‘encryption’. Therefore, ei-
ther a way must be found of repre-
senting security concepts using exist-
ing constructs, or the formalism must
be extended with new features specifi-
cally for security protocol analysis.

Secondly, formal verification of sys-
tem properties relies on having a com-
plete description of the system under
consideration. In the case of a security
protocol, this means modelling both
the communicating agents and the po-
tential eavesdropper or attacker. How-
ever, the very nature of security pro-
tocols is that they are vulnerable to
forms of attack that were not antici-
pated by their original designers. Such
attacks will also be absent from the
corresponding formal model and ‘ver-
ification’ then proves nothing about
the protocol’s security in such an en-
vironment. This is a fundamental hur-
dle. At best, formal verification can
prove only that a protocol is resis-
tant to all anticipated attacks—formal
methods cannot provide 100% security
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guarantees [34, §8].
Given these difficulties, an extraor-

dinarily wide range of formalisms have
been applied to verification of secu-
rity protocols, with varying degrees of
success. This report briefly surveys
the more prominent approaches. Sec-
tion 2 reviews some basic security pro-
tocol concepts and terminology. Sec-
tion 3 surveys ‘verification by analysis’
techniques. These are based on devel-
oping a formal model of the protocol
and then discovering the properties of
that model. Section 4 surveys ‘verifica-
tion by construction’ techniques. This
complementary approach is based on
first defining the desired protocol prop-
erties and then deriving (a model of)
a security protocol that has such prop-
erties.

2 Background: Security
Protocols

This section briefly reviews some basic
security concepts and terminology.

2.1 A Protocol Hierarchy

Using cryptographic techniques [40] to
achieve information security despite
the possible presence of attackers re-
lies on a layered set of activities.

(1) A cryptographic algorithm is
needed for enciphering and deciphering
data, given suitable keys [43][7]. Such
an algorithm must have two important
properties. Indistinguishability of en-
cryptions is the inability of an observer
to tell any meaningful difference be-
tween two encrypted messages or learn
anything about the original plaintext
messages [2][7]. Non-malleability is
the inability of an intruder to re-
spond meaningfully to a unique ‘chal-
lenge’ message [7]. Encryption al-

gorithms serve to preserve confiden-
tiality, guarantee authenticity, bind
data, and generate random numbers
[1, §5.1]. In the Secure Multipurpose
Internet Mail Exchange (S/MIME)
protocol, encrypted data is referred to
as enveloped [22, Ch. 5]. In public key
cryptography (see below), keys must
be provided in pairs. A message en-
crypted with one such key must be de-
cryptable using the other. Moreover,
to support authentication (see below),
both keys must be suitable for encrypt-
ing data [32].

(2) A cryptographic protocol de-
fines the rules for exchanging infor-
mation between communicating agents
[43, Ch. 7]. It defines the sequence
in which messages must be sent and
the required contents of each message.
The protocol assumes that communi-
cating parties already have access to
appropriate keys. In symmetric sys-
tems all keys must be kept secret,
but asymmetric systems such as pub-
lic key cryptography rely on both pub-
lic and private keys. The public key is
freely available and is used to encrypt
data that is to be sent to a particu-
lar agent. The corresponding private
key is known to the receiving agent
only, and is used to decrypt the mes-
sage received. The messages them-
selves may consist of some combination
of data, addresses and keys, in either
plaintext or encrypted forms. Cryp-
tographic protocols are often defined
in terms of nonces. This is a unique
datum produced by a particular agent
for use within a particular protocol in-
stance [30], usually to guard against
replay attacks [14] or to challenge the
other party.

(3) A key distribution protocol
determines how keys are maintained
and distributed to agents that wish
to communicate [43, Ch. 8][25]. (Of-
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ten the key distribution and crypto-
graphic protocols are considered to-
gether.) Key distribution can be di-
vided into off and on-line algorithms
[8, p. 100]. The most widely known ex-
ample of a key distribution (and cryp-
tographic) protocol is the Needham-
Schroeder public-key protocol, which
exists in both flawed [4][30][16] and
corrected [17][30][34][23] versions. An-
other flawed protocol is Netscape’s
Secure Sockets Layer (SSL) protocol
[1, p. 9] which was later upgraded to
produce the Transport Layer Security
(TLS) protocol [28, p. 136]. Another
well-known example is the Otway-Rees
shared-key protocol [44][34][14]. Some
less commonly-cited ones include Ya-
halom’s protocol [16, §9], the Wide-
Mouthed Frog protocol [16, §7], and
the obsolete Andrew Secure Remote
Procedure Call Handshake protocol
[16, §8]. There are also some stan-
dardised protocols such as CCITT’s
X.509 [16, §11][1, p. 10] and S/MIME
[22, Ch. 5]. Boyd presents several vari-
ants of key distribution protocols [10].

(4) An authentication protocol
is used to verify the identities of
communicating agents [44]. (Orig-
inally key distribution was consid-
ered part of authentication, but it is
now thought preferable to distinguish
them [12].) Authentication protocols
work via the use of digitial signatures
[32][22, Ch. 5]. The sender of a mes-
sage creates a signature by hashing the
message to be sent with a publicly-
known hashing function, and then en-
crypting the resulting hash value with
the sender’s private key. The re-
ceiver can then check that the sig-
nature and encrypted message both
came from the same source by (a) de-
crypting both the signature and mes-
sage with the sender’s public key,
(b) hashing the plaintext message, and

(c) checking that the resulting hash
value is the same as the decrypted
signature. Some early examples of
authentication protocols include the
Needham-Schroeder-inspired Kerberos
[45, §4][16, §6][1, p. 10], SPX [45, §4]
and SELANE [45, §4] protocols.

(5) Certification allows trustwor-
thy use of public keys [32]. Initially
it requires a relationship to be estab-
lished between agents and a Certifica-
tion Authority by some trusted means
outside the communications protocol,
e.g., by physical exchange of disks con-
taining keys. Digital signatures are
then used so that the Certification Au-
thority can sign public keys which are
then published and can be used with
confidence by agents that trust the Au-
thority. Furthermore, chains of cross-
certificates can be used to link Certi-
fication Authorities so that agents re-
siding under different authorities can
communicate [32].

(6) So far the protocols discussed
have been aimed at providing protec-
tion from external attackers or eaves-
droppers. Non-repudiation proto-
cols are used when the communicat-
ing agents do not trust one another,
and wish to be protected from fu-
ture malicious behaviour by the other
party [39], rather than an exter-
nal entity. This may be the case,
for instance, in commerce applica-
tions [46]. The protocols aim to pro-
vide irrefutable evidence that a partic-
ular communication took place. In the
S/MIME protocol digital signatures
are used to achieve non-repudiation of
origin so that a sender cannot later
deny having sent a message [22, Ch. 5].
Since a signature can be created only
with the particular sender’s private
key, no other agent could have cre-
ated and sent a signed message. The
complementary requirement of non-
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repudiation of receipt is used so that
a receiver cannot deny having suc-
cessfully received a message, and is
achieved by having the receiver auto-
matically return a signed acknowledge-
ment [32, §4.4]. Examples include the
Fair Exchange protocol [13], and the
Zhou-Gollman protocol [39], among
others [6].

Finally, we note that Abadi and
Needham [1] describe numerous proto-
cols, many of them with known flaws.
Anderson and Needham also describe
several flawed protocols [5].

2.2 Attacks

There are many forms of attack an in-
truder may make upon a security pro-
tocol. The most common ones are
listed below [8][38].

Eavesdropping is when the intruder
reads messages passing between
sender and receiver, without their
knowledge.

Blocking is when the intruder inter-
cepts a message and prevents it
reaching the intended recipient.

Forging is when the intruder sends
messages to other agents which
purport to be from someone else.

The success of such attacks depends on
finding flaws in the protocol. Carlsen
details the causes of numerous poten-
tial protocol flaws [19].

2.3 Properties

To resist such attacks, a security proto-
col must have certain characteristics or
properties. A wide variety of desirable
properties have been identified for se-
curity protocols, often described with
confusing or inconstent terminology.

In verification terminology, the proper-
ties to be proven for security protocols
are usually safety ones [38], i.e., those
that show that nothing ‘bad’ ever hap-
pens. (However, liveness properties,
i.e., showing that something ‘good’ will
eventually happen, may be a concern
for non-repudiation protocols [39].)

The basic services of cryptography
are confidentiality, integrity [22, Ch. 5]
and authentication [9, p. 695]. Confi-
dentiality requires that only the in-
tended recipient can read an encrypted
message [38]. To achieve this requires
that, following key distribution, only
the sender and receiver may know the
appropriate key(s) [4, p. 4][36, §2.3].
This also implies that any newly cre-
ated key must be ‘fresh’ [36, §2.3], and
that an agent can possess a unique
datum created by another only if the
owner has previously agreed to share
it [17, §3].

The authentication property re-
quires that two agents that have just
communicated using a certain key can
be certain of the origin and destination
of the message, respectively [4, p.4].
In other words, messages cannot be
forged [38]. Whereas confidentiality
requires that only a receiving agent
possessing the right (public) key may
read (unlock) a message, authentica-
tion requires that only a sending agent
possessing the right (private) key can
write (lock) a message [9, p. 695].

The integrity property requires
that the content of a message is not
changed by an attacker between the
sender and recipient [22, Ch. 5]. It can
be achieved using digital signatures,
assuming that the hashing function is
collision free [32].

Different properties are of concern
for non-repudiation protocols [6, §2.1].
The issues here are non-repudiation of
origin and receipt, and fairness [39].
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Non-repudiation of origin is a
safety property concerning the ability
of the receiver of a message to convince
a third party that it was indeed sent
by its supposed originator [39, §4.2]
[22, Ch. 5]. Non-repudiation of re-
ceipt is a liveness property concern-
ing the ability of a sender to convince
a third party that the message was re-
ceived [32], or will be received, by its
intended recipient [39, §4.2]. Fairness
is a liveness property concerning the
free availablity of messages and evi-
dence between communicating parties
[39, §4.3].

A particular protocol may provide
only a particular subset of these prop-
erties. For instance, message in-
tegrity, origin authentication and non-
repudiation of origin may all be pro-
vided as part of an authentication ser-
vice [32, p. 291].

2.4 A Standard Notation

Traditionally, security protocols are
described using a semi-formal ‘stan-
dard notation’ [20][4][1]. This con-
sists of a list of communications. For
example, the following is a standard
notation description of a simple (but
very insecure) cryptographic protocol
[43, p. 159].

1. A → B : {NA}KAB
, A

2. B → A : {NA}KBA
, B

Each step describes a directed interac-
tion between two named agents, and
the message communicated. For in-
stance, step 1 above says that agent A
sends a message to agent B. (A wild-
card destination ‘∗’ can be used for
broadcast messages [36].) The mes-
sage itself contains two parts. The
first is a unique nonce NA created
by agent A. However, this is en-
crypted using a key KAB specifically

intended for communication from A
to B. Data D encrypted with key K
is denoted ‘{D}K ’. The second part
of the message is A’s address or iden-
tity (in plaintext form)—the comma ‘,’
denotes concatenation of message com-
ponents. Encryption ‘{D}K ’ and con-
catenation ‘,’ can be combined in arbi-
trary ways to represent, for example, a
message comprising several data items
all encrypted at once with the same
key, or a message comprising the con-
catenation of several items encrypted
with different keys, or multiply en-
crypted data items, and so on.

Although widely used in the security
community, a serious problem for ver-
ifying security protocols is that stan-
dard notation is not a sufficient start-
ing point for formal analysis [4, §5].
In particular, standard notation: lacks
strong typing; makes unstated as-
sumptions; describes actions rather
than goals; can express external com-
munication actions only; cannot de-
scribe unexpected actions by intrud-
ers; and is oriented to describing mes-
sage syntax rather than semantics [20].
Since it ignores actions internal to an
agent, it is also impossible to fully de-
scribe the implementation of a proto-
col in standard notation [36, §2.2].

3 Proof by Analysis

The aim of applying verification tech-
niques to the security domain is to
prove that a particular protocol (Sec-
tion 2.1) is resistant to a particular
form of attack (Section 2.2). The chal-
lenges are that the way security proto-
cols are typically defined (Section 2.4)
differs markedly from traditional ways
of specifying computations, and the
properties that are intended to make
protocols secure (Section 2.3) are diffi-
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cult to state formally.
In this section we survey a number

of attempts to adapt traditional veri-
fication techniques to the security do-
main. All such techniques begin by ex-
pressing the protocol in a formal nota-
tion, and then proving that the result-
ing model has desirable security prop-
erties. Such proofs can be performed
in either of two complementary ways,
logical proof (Section 3.1) or model
checking (Section 3.2).

3.1 Logics

Mathematical proof offers the
strongest possible guarantee that
a (model of a) system behaves cor-
rectly. Unfortunately, such proofs
are complex and intellectually chal-
lenging. Automated theorem provers
can relieve much of the tedium of
performing non-trivial proofs, but are
difficult to use.

Logic based proofs for security pro-
tocols build on traditional mathe-
matical reasoning, using models ex-
tended for representing security con-
cepts. Logical notations typically offer
a wide range of data structures and op-
erators which makes them capable of
accurately representing the messages
transmitted in security protocols. Un-
fortunately, a particular weakness of
logic-based models is that they have
no in-built notions of communication
concepts such as message sequencing
and these must be explicitly expressed
in the model.

The first step is to take a security
protocol definition, usually given in
terms of the standard notation (Sec-
tion 2.4), and express it in math-
ematical logic. Given the well-
established structure of standard nota-
tion descriptions, it is tempting to as-
sume that this can be done automat-

ically. Indeed, Carlsen [20] describes
a tool for converting standard nota-
tion descriptions into the CKT5 modal
logic. It produces separate descrip-
tions of the protocol from each of the
agent’s viewpoints—message transmis-
sion and reception are treated as sep-
arate events.

In this logic a protocol is described
as a set of axioms, each representing
the knowledge known to an agent, or
an action performed by an agent, at
a particular step in the protocol. Se-
quencing of protocol steps is achieved
by explicit ordering of timestamps as-
sociated with each axiom. Prede-
fined language constructs and axioms
are provided for definition of a mes-
sage (msg), sending (S) and reception
(R) of messages, creation of nonces
(nonce), and encryption (e). For ex-
ample, consider the following fragment
of Yahalom’s protocol [20, p. 138].

1. A → B : A,NA

2. B → S : B, {A,NA, NB}KBS

Firstly, agent A sends a message to
agent B containing A’s address and a
nonce created by A. Agent B then
sends a message to server agent S con-
taining its own address and an en-
crypted part consisting of the data sent
by A, plus a new nonce created by B.
The tool will translate this to a logical
expression for each of the three agents.
For instance, agent B’s role would be
represented as follows [20, p. 140].

∀A,B,KBC , NA, NB, t1, t2, t3 •
RB,t1msg(A.NA) ∧
nonce(NB, t2, B) ∧
SB,t3msg(B.e(KBS , A.NA.NB)) ∧
t1 < t2 < t3

The first conjunct denotes agent B re-
ceiving the first message. Full stops ‘.’
are used to represent concatenation
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NS1 (t1 ∈ tr ∧A 6= B ∧ nonce(NA) 6∈ used(t1)) ⇒
(says(A,B, crypt(pubk(B), 〈nonce(NA),agent(A)〉)) # t1) ∈ tr

NS2 (t2 ∈ tr ∧A 6= B ∧ nonce(NB) 6∈ used(t2) ∧
says(X, B, crypt(pubk(B), 〈nonce(NA),agent(A)〉)) ∈ set(t2)) ⇒

(says(B,A, crypt(pubk(A), 〈nonce(NA),nonce(NB)〉)) # t2) ∈ tr

Figure 1: Isabelle/HOL encoding of two protocol steps [34, Fig. 2].

of message components. The sec-
ond conjunct represents the internal
action (implicit in the standard no-
tation version) of agent B creating
new nonce NB. The third conjunct
denotes B sending the second mes-
sage, and the fourth defines the order
among the timestamped events. Sim-
ilar expressions will be generated for
agents A and S. To support reason-
ing, the formal description must con-
tain significantly more detail than the
equivalent standard notation descrip-
tion. Formal proofs of properties then
proceed in terms of the underlying
modal logic and predefined axioms and
operators.

Paulson [34] encodes cryptographic
protocols in the Isabelle/HOL theorem
prover by inductively defining possi-
ble traces exhibited by the communi-
cating agents. A number of primitive
datatypes are introduced for defining
agents (agent), nonces (nonce), pub-
lic keys (pubk), etc. Also a num-
ber of operators on traces are used to
turn a trace into a set (set), and to
tell whether a particular item has ever
been used in a trace (used). Encryp-
tion is represented as an operator with
arguments consisting of a key and a
sequence of data items (crypt). Most
significantly, a trace is represented as
a sequence of communications events
of the form ‘says(α, β, µ)’ which states
that agent α sent message µ to agent β.

For instance, consider the following

fragment of the Needham-Schroeder
protocol [34, p. 25].

1. A → B : {NA, A}KAB

2. B → A : {NA, NB}KBA

These two steps would be encoded in
Paulson’s logic as the two rules shown
in Figure 1. (For readability we para-
phrase the machine-readable concrete
syntax used in Paulson’s report.) Here
〈e, f, . . .〉 denotes the sequence consist-
ing of elements e, f , etc, and e # S is
sequence S with element e prepended.
Also, let tr denote the set of traces de-
fined by the protocol.

For instance, the antecedent in
Rule NS1 identifies t1 as a trace
of the current protocol, notes that
agents A and B are distinct, and
requires that NA is a fresh nonce.
The consequent then defines an ex-
tension to trace t1 consisting of the
event of agent A sending the first en-
crypted message to agent B. Rule NS2
similarly defines the second protocol
step—its antecedent requires that the
first event already appears in trace t2.
However, the sender’s name is shown
as ‘X’ because agent B does not
know who really sent the first mes-
sage. Properties of this protocol can
then be proven by using these rules to
inductively reason about the contents
of event traces.

A particularly powerful feature of
Paulson’s approach is that it aims to
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predict unforeseen attacks by provid-
ing a rule which represents all possi-
ble behaviours of an intruder [34, §2.3].
As shown below, this is done by syn-
thesising all possible fraudulent mes-
sages that could be generated using the
observable information in the current
trace [34, Fig. 2].

Fake (t ∈ tr ∧ Y 6= I ∧
X ∈ synth(analz(spies(t))))
⇒
(says(I, Y, X) # t) ∈ tr

Function spies returns all the mes-
sages an intruder can see in a trace
[34, §3.5]. Function analz returns all
the plaintext data that can be ex-
tracted from a set of messages, in-
cluding plaintext components, and the
contents of encrypted components for
which a corresponding key can be
found in the set [34, §3.2]. Function
synth then constructs all the messages
an intruder could build from a set of
message components. Thus the Fake
rule states that if there is a message X
that intruder I can compose from the
observable data in trace t, then the
intruder will send such a message to
some other agent Y . A number of tac-
tics (mechanical proof procedures) are
provided to help explore possible at-
tacks.

Both of the above approaches intro-
duced an explicit encoding of event or-
dering, via timestamps and trace (his-
tory) variables, respectively. Indeed,
how event ordering is represented is
one of the most important character-
istics of a logic for security, especially
when reasoning about properties that
are not stable [26] (a stable property
is one that holds forever once it be-
comes true). Since the events of creat-
ing, sending and receiving information
are separated in time, logics extended
for security applications are usually ex-

pressed using ‘past’ operators [41] or
trace variables.

A totally different approach is
‘belief’ logic, the most well-known
example being the authentication
logic (also called BAN logic after
its originators—Burrows, Abadi and
Needham) [16][14]. This is an entirely
new modal logic which introduces
a wide range of security objects,
formulæ for representing security
concepts, and new reasoning rules.
In particular, belief logic avoids any
explicit notion of time by reasoning
with ‘stable’ properties only [16].

Belief logic introduces a large num-
ber of new constructs. For instance:
statement α |≡ φ says that agent α ‘be-
lieves’ formula φ; α C φ says that α
‘sees’ φ, i.e., has been sent this for-
mula by another agent; and α |∼ φ
says that α ‘once said’ φ, i.e., sent
this formula in the past. Also: propo-
sitional formula α

κ←→ β says that
agents α and β may use shared key κ
to communicate; {φ}κ denotes for-
mula φ encrypted under key φ; and
conjunction of formulæ is denoted by
a comma ‘,’ [16].

There are also numerous special-
purpose inference rules for reasoning
about security models. For instance,
the following rule (indirectly) defines
an effect of unlocking an encrypted
message [16].

Rule 1

α |≡ α
κ←→ β, α C {φ}κ

α |≡ β |∼ φ

The antecedent says that agent α be-
lieves that κ is a key shared with
agent β and that α has received for-
mula φ encrypted with key κ. The
consequent then allows us to conclude
that α believes that agent β has pre-
viously disclosed the (plaintext) for-
mula φ. Note that the logic assumes
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that formulæ, rather than messages,
are communicated between agents.

For example, consider the following
two steps from the Otway-Rees au-
thentication protocol [16, §4].

1. A → B : NX , A, B,
{NA, NX , A, B}KAS

2. B → S : NX , A, B,
{NA, NX , A, B}KAS

,
{NB, NX , A, B}KBS

In the first step agent A sends agent B
a message containing a nonce NX ,
the source and destination addresses,
and an encrypted component contain-
ing the same information concate-
nated with a nonce NA. The en-
crypted component was created using
key KAS , reserved for communication
between agent A and authentication
server agent S. Agent B cannot de-
crypt this part, but in the second mes-
sage B forwards it to server S along
with a copy of the plaintext part of A’s
message and another encrypted com-
ponent, this time containing a new
nonce NB.

Given the inadequacies of the stan-
dard security notation, reasoning in
the authentication logic begins by first
reexpressing the protocol in an ‘ide-
alised’ form [16, §4].

1. A → B : {NA, NC}KAS

2. B → S : {NA, NC}KAS
,

{NB, NC}KBS

All plaintext parts of the messages are
omitted because they can be easily
forged [16, p. 10]. Also, the repeated,
compound datum ‘NX , A, B’ has been
replaced with a single new formula NC ,
to simplify the model. (Although not
obvious from the above syntax, it must
be remembered that nonces represent
formulæ in these expressions, with ‘,’
as conjunction.)

Analysis of the protocol then pro-
ceeds by translating the idealised pro-
tocol steps, and any implicit assump-
tions about the protocol, into logical
formulæ. For instance, one of the as-
sumptions in this protocol is that S ini-
tially knows that key KAS is already
shared by agents A and S.

S |≡ A
KAS←−→ S

Also, when the second message above
is sent, we know that agent S ‘sees’
the encrypted message components
from B.

S C {NA, NC}KAS
, {NB, NC}KBS

We can then use these two predi-
cates as the antecedents in Rule 1 to
conclude that agent S believes that
agent A sent formulæ NA and NC

sometime in the past [16, pp. 16–17].

S |≡ A |∼ (NA, NC)

As an entirely new logic specifi-
cally dedicated to security protocol
proofs, the authentication logic has re-
ceived a considerable amount of at-
tention, much of it unfavourable. For
instance, the translation of protocols
into an idealised form has led to erro-
neous proofs that overlook the role of
plaintext information in ensuring secu-
rity [14]. Consequently, there have also
been many attempts to improve on or
extend belief logics [42].

Finally, we note that a number of
other predicate logic-based formalisms
have been used for specifying secu-
rity protocols including VDM-SL [29],
Z [9], and predicate logic with a spe-
cial ‘past’ operator [41], although none
of these have been used extensively.
However, Boyd and Kearney recently
showed how an animation tool could
be used to find an attack on a non-
repudiation protocol written in the
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Z specification notation [13]. They
expressed the protocol as a simple,
highly-abstract state machine. Then
a desired invariant property was ex-
pressed as a predicate on the system
state. The animator was used to “me-
thodically search the tree of possible
operation” sequences, and check at
each step that the invariant still held.
This manually-guided search was suc-
cessful at finding a particular sequence
of operations which caused the proto-
col to fail. However, for non-trivial
examples, there is clearly still a need
to “automate the search for insecure
states” [13].

3.2 Model Checking

Model checking offers a cheaper al-
ternative to formal proof. A model
checker is an automatic tool which ex-
plores the state space of a model in
an attempt to find illegal states. For
models with a small state space this
search can be exhaustive and the re-
sults are then equivalent to a formal
proof. More commonly, though, imple-
mentation limitations mean that the
model cannot be analysed completely,
and the results may then be inconclu-
sive. Nevertheless, even an incomplete
search may succeed in finding a ‘bad’
state, and can often do so more effi-
ciently than via formal proof.

Notations suitable for model check-
ing, such as process algebras and Petri
Nets, typically have in-built features
for event ordering and communication,
and have already been used extensively
for analysing communications proto-
cols. Unfortunately, though, achiev-
ing security also relies on the contents
of the messages transmitted. Model
checking languages do not have exten-
sive data structure support and ways
must therefore be found to represent

the complex messages used in security
protocols in model checking notations.

Schneider [37] observes that secu-
rity (safety) properties could be ex-
pressed in the Communicating Se-
quential Processes (CSP) process alge-
bra, including confidentiality and au-
thentication, thanks to the language’s
trace-based semantics. Since interpro-
cess communication is synchronous in
CSP, an explicit model of the com-
munications network is introduced so
that send and receive actions can be
separated in time. His models ab-
stract away from any internal details
of the way agents behave; properties
are expressed on the interactions of
agents with the communications net-
work. Given two network nodes i
and j, two unidirectional channels are
assumed to link them, via the network.
Compound action name ‘trans.i.j.m’
denotes the action of node i transmit-
ting a message m to node j, while
action ‘rec.i.j.m’ denotes reception of
this message by j.

However, defining the contents of
message m raises a problem. A par-
ticular weakness of process algebras is
that they offer little support for com-
plex data structures such as those typ-
ically used in cryptographic protocols.
To overcome this, Schneider proposes
adding a recursive data structure to
the language so that messages with
arbitrary numbers of components and
levels of encryption can be represented.
He also suggests adding an ‘informa-
tion system’ to the algebra so that
formal reasoning can be undertaken
about the data that can be extracted
from messages. In this way, a gener-
alised ‘attacker’ process could be de-
fined as a way of searching for unantic-
ipated attacks [37]. Schneider also ex-
plains how a non-repudiation protocol
can be modelled and analysed in CSP,
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AGENT =
I running.A.B →
comm!Msg1.A.B.Encrypt.key(B).NA.A →
comm.Msg2.B.A.Encrypt.key(A)?N ′

A.NB →
...

I commit.A.B →
...

Figure 2: Two protocol steps performed by an agent in CSP [30, p. 150].

to ensure liveness properties such as
non-repudiation of origin and receipt,
and fairness [39]. However, more work
needs to be done to complete Schnei-
der’s proposed approach and, in par-
ticular, to determine how it can be
represented in the Failures Divergences
Refinement (FDR) model checker used
for CSP.

Lowe [30] similarly seeks to adapt
CSP to modelling security protocols.
He defines processes for each agent, in-
cluding an intruder, and analyses their
combination using the FDR model
checker. Again the problem of how
to represent security data structures
arises. Lowe approaches this with
an extension of Schneider’s encoding.
Not only are source and destination
address fields represented in the ac-
tion names, but also the contents of
a message. For example, consider the
following fragment of the Needham-
Schroeder protocol [30, p. 149]. (It dif-
fers slightly from the one in Section 3.1
because the source and destination ad-
dress fields are explicit.)

1. A → B : A,B, {NA, A}KAB

2. B → A : B, A, {NA, NB}KBA

The behaviour of agent A is rep-
resented in Lowe’s approach by a
CSP process that performs a series of
atomic actions, as shown in Figure 2.

In CSP, x → P is a process that per-
forms action x and then behaves like
process P . Thus, process AGENT
in Figure 2 performs several atomic
actions, one after the other, where
the actions’ names have been mean-
ingfully divided into a number of fields
separated by punctuation marks. By
convention, CSP uses full stops ‘.’ to
break up compound names, and ques-
tion ‘?’ and exclamation marks ‘!’ to
denote input and output, respectively,
although these notations are merely
syntactic shorthands [27]. (The role of
actions I running and I commit is ex-
plained below.) Here comm represents
communication taking place over a
‘standard’ channel, distinct from those
used by an attacker. Fields Msg1
and Msg2 act as counters to identify
which step in the protocol the agent
is currently performing. The remain-
ing fields denote the data carried in
the message, with the word ‘Encrypt’
used to mark the start of encrypted
fields. A similar model would be given
for agent B.

The need to ‘hardwire’ all the fields
of each message into the action name
is awkward and seems inflexible, par-
ticularly when attempting to devise an
intruder process with a wide range of
possible behaviours. This is solved
simply by duplicating each type of ac-
tion for each combination of operands.
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INTRUDER =
...

intercept.Msg1?A.B.Encrypt.K.N.A′ → . . .

¤ intercept.Msg2?B.A.Encrypt.K.N.N ′ → . . .

¤ intercept.Msg3?A.B.Encrypt.K.N → . . .
...

Figure 3: Part of an intruder process in CSP [30, p. 152].

The result is verbose but “reasonably
uniform” [30, p. 152]. For instance,
part of an intruder process that can
intercept any message in this proto-
col using covert channel intercept is
shown in Figure 3, where ‘¤’ is CSP’s
nondeterministic choice operator.

Model checking of the whole system
is performed automatically by compar-
ing the CSP specification with another
specification that captures desirable
properties only. This is the purpose
of actions I running and I commit
in Figure 2. They serve to announce
what point in the overall protocol the
‘initiator’ agent has reached. Simi-
lar actions are inserted in the ‘respon-
der’ agent, and the whole system is
then compared with the following re-
cursive CSP process which considers
only the desirable behaviour that the
initiator running is followed by the
responder successfully committing to
the completed secure communication
[30, p. 153].

AI = I running.A.B →
R commit.A.B → AI

Roscoe describes this same example
in CSP as well, using the same protocol
encoding, except that he illustrates the
machine-readable concrete syntax used
by the FDR model checker [35, §15.3].

Rather than trying to adapt an

existing process algebra to the task,
Abadi and Gordon define the spi cal-
culus, a process algebra specifically
designed for modelling cryptographic
protocols [2][3]. It is based on the π-
calculus, a particularly terse, but pow-
erful process algebra. Unlike other
process algebras, the π-calculus allows
communications channels to be cre-
ated dynamically and passed as data
between processes. The spi-calculus
seeks to capitalise on this by using the
visible scope of channels as a way of
modelling secure communications (al-
though surprisingly little use is made
of this feature in examples). The spi-
calculus also extends the π-calculus
with key-encryption primitives, and its
specifications have a straightforward
correspondence to standard notation
specifications.

Operators already available for con-
structing communicating processes in
the π-calculus include: (νc)P which
declares a fresh channel c whose scope
is process P ; ‘c〈d〉 .P ’ which sends da-
tum d on channel c and subsequently
behaves like process P (P can be omit-
ted if there is no subsequent action
[2, §2.2]); and ‘c(v) .P ’ which reads
data from channel c into variable v and
then behaves like P .

In the spi-calculus the ν opera-
tor is also used for creating fresh
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keys. Several additional primitives are
also introduced for symmetric [2, §3.1]
and asymmetric [2, §5] key cryptogra-
phy. These include the term ‘{D}K ’
which denotes (shared-key) encryption
of data D with key K, as usual. Also
operator ‘case L of {D}K in P ’ rep-
resents an attempt to decrypt term L
with key K, to extract data D. If the
attempt is successful the operator be-
haves like process P , otherwise it dead-
locks. (This draws attention to failed
decryption attempts.)

Consider the following simplified
version of the Wide-Mouthed Frog key
distribution protocol [2, §3.2.2].

1. A → S : {KAB}KAS

2. S → B : {KAB}KSB

3. A → B : {NA}KAB

Here agent A wants to send a secure
message NA to agent B. To do so, A
first creates a new key KAB which it
sends to trusted server S who forwards
it to agent B.

The behaviour of agent A is ex-
pressed in the spi-calculus as follows
[2, §3.2.2].

A = (νKAB)(CAS〈{KAB}KAS
〉 .

CAB〈{NA}KAB
〉)

Since communication in the π-calculus
(and other process algebras) occurs
through named channels, rather than
naming the target process, it is as-
sumed that channel CAS is used
for communication from agent A to
agent S, CSB for communication
from S to B, and so on. The π-
calculus’ ν operator is used above to
declare a new key KAB which is then
sent in encrypted form on channel CAS

(and thus out of the scope of the dec-
laration!). This is followed by trans-
mission of the message to agent B, en-
crypted with the new key.

Server agent S is represented as fol-
lows [2, §3.2.2].

S = CAS(x) .(case x of {y}KAS

in CSB〈{y}KSB
〉)

After receiving data x on channel CAS ,
the process attempts to extract data y
using the appropriate key KAS . If suc-
cessful it then forwards y, encrypted
with key KSB, on channel CSB. The
system as a whole then consists of
agents A, B and S combined within
the scope of declarations for keys KAS

and KSB, which are used for commu-
nication between the standard agents
and the server.

Proofs of protocol properties can
then be performed by using the lan-
guage semantics to show the equiva-
lence between such a protocol descrip-
tion and another spi-calculus model
that embodies the desired property.
Thanks to its executable semantics,
the spi-calculus appears well suited to
automatic model checking, but no tool
support exists for it yet [3, §8].

Just as the spi-calculus extended the
previous π-calculus with cryptographic
primitives, the Cryptographic Secu-
rity Process Algebra (CryptoSPA) [24]
similarly builds on the CCS process al-
gebra. Its initial version, called the
Security Process Algebra (SPA), ex-
tended CCS with CSP’s hiding opera-
tor, and partitioned the visible actions
into ‘high and low level’ ones [23]. Ac-
tions were compound objects contain-
ing all the fields of protocol messages.
CryptoSPA then further extends this
by the addition of message encryption
and decryption operators [24].

CCS is a predecessor of the π-
calculus and has many operators in
common. In particular, input ‘c(v) .P ’
and output ‘c(d) .P ’ actions are repre-
sented in the same way. Also, P [x/y]
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A = CAS(A, {(B, KAB)}KAS
) .CAB({NA}KAB

)

S = CAS(u) .
([u `snd x]([(x,KAS) `dec y]([y `snd z](CSB({(A, z)}KSB

) .S))))

Figure 4: Two protocol agents defined in CryptoSPA [24, §6].

denotes process P with free occur-
rences of ‘x’ replaced by ‘y’ [31, §2.4].

To overcome the inherent weakness
of process algebras for manipulating
data, CryptoSPA adds data structures
for expressing message components,
and a logical ‘inference system’ for ma-
nipulating such data structures. For
example, the rule

{D}K , K−1 `dec D

models message decryption by say-
ing that plaintext data D can be
derived from the combination of en-
crypted message {D}K and symmet-
ric key K−1 [24, Fig. 1]. Even simpler,
rule

(p, q) `snd q

extracts the second element q from a
pair [24, Fig. 1].

A new operator then makes use
of these rules to define processes
whose behaviour is conditional on
messages received. The process
‘[(m1, . . . , mn) `r x]P ; Q’ behaves like
either of two processes depending on
whether inference rule r can be ap-
plied to tuple (m1, . . . , mn) to extract
some datum d. If the rule is success-
fully applied then the process behaves
like process P [d/x]. Otherwise, it be-
haves like process Q. (In examples, Q
is frequently omitted—we assume this
means that the overall process dead-
locks if rule application fails.)

Consider the following variant of the
Wide-Mouthed Frog protocol [24, §6].

1. A → S : A, {B,KAB}KAS

2. S → B : {A,KAB}KSB

3. A → B : {NA}KAB

The behaviour of agent A is rep-
resented straightforwardly in Cryp-
toSPA as two consecutive output ac-
tions as shown in Figure 4. Here CAS

and CAB are implicitly assumed to be
the channels reserved for communicat-
ing between the subscripted pairs of
agents in the obvious way.

The behaviour of server agent S in
Figure 4 makes use of the inference
system to extract data from a mes-
sage [24, §6]. After receiving some
message u from agent A on channel
CAS , the process performs three op-
erations on it. The first extracts the
second component, naming it x. The
second attempts to decrypt x, using
key KAS , naming the result y. The
third then extracts the second com-
ponent from y, naming it z. Assum-
ing the message received from A has
the anticipated format, component z
will be the key KAB. Agent S then
forwards this to agent B, via chan-
nel CSB, encrypting it together with
A’s address using key KSB.

There is also some tool support
available for the original SPA formal-
ism. A ‘compiler’ has been developed
which allows protocols expressed in an
abstract notation to be translated au-
tomatically to the SPA language [21].
Properties of the resulting protocol de-
scription can then be model-checked
using a separate analysis tool. As
in the CSP example shown in Fig-
ure 2, such properties are expressed
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in terms of auxiliary actions such as
‘R running’ added to the model to
make significant points in the compu-
tation externally visible [21, §6.4].

4 Proof by Construction

Rather than modelling an existing pro-
tocol and attempting to prove that it
has a desirable property, proof by con-
struction begins with a description of
the property and attempts to derive a
protocol that obeys it. Although semi-
formal approaches to designing secure
protocols have been suggested [15][11],
our interest here is with formal devel-
opment laws which guarantee that nec-
essary properties are preserved at each
step.

In the formal methods community
such a process is known as refinement
and is embodied in a number of refine-
ment calculi. To date, however, only
one of these, the B method, has been
trialled extensively on security proto-
cols. B is a relatively low level refine-
ment model in which systems are de-
scribed as state machines. However,
it has been widely used in industry
thanks to its extensive tool support.

System models in B are represented
as abstract machines, consisting of
state variables, invariants and oper-
ations on those variables. Opera-
tions are defined using programming
language-like statements including as-
signment (:=), composition of simul-
taneous assignments (||), and condi-
tional statements (if). Refinement in
B is the process of translating an ‘ab-
stract’ machine into a ‘concrete’ one,
which may include adding new state
variables and ‘internal’ operations. To
prove the correctness of such a refine-
ment it is necessary to devise a suit-
able abstraction invariant that links

the abstract and concrete variables. It
must then be shown that each opera-
tion in the concrete machine is a re-
finement of the corresponding opera-
tion in the abstract one. Typically
this means that the concrete operation
can exhibit fewer potential behaviours
than the abstract one, and that it can
be invoked in at least as many states
as the abstract operation.

For example, Abrial [4] proposed
an approach to developing security
protocols using B by working back-
wards through each step of the proto-
col and incrementally adding detail to
the formal model. Consider the follow-
ing (flawed) version of the Needham-
Schroeder protocol [4, §3].

1. A → S : A,B, NA

2. S → A : {KAB, B,NA,
{KAB, A}KBS

}KAS

3. A → B : {KAB, A}KBS

The aim is to send key KAB from
agent A to agent B. However, to en-
sure that the key is fresh, it is actually
generated by server agent S.

To begin the refinement, the desired
behaviour of the protocol is first spec-
ified as an abstract B machine. Types
KEY and AGENT are assumed to
contain all possible keys and agents,
respectively. Five variables are de-
clared to represent the state of the ma-
chine.

key1 ⊆ KEY
knowA1 ∈ key1 → AGENT
knowB1 ∈ key1 → AGENT
believeA1 ∈ key1 → AGENT
believeB1 ∈ key1 → AGENT

Here, the subscripted numbers are
used to distinguish the phase of the
refinement. Variable key represents
the set of keys that have been used
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previously, if any. The remaining
variables are total functions from the
keys used to agents. Agent knowA(k)
is the agent that created key k (or,
more accurately, the agent that in-
voked the server to create the key
on its behalf). Agent knowB(k) is
the agent that received key k. Agent
believeA(k) is the agent that the cre-
ator of key k intended to receive it.
Agent believeB(k) is the agent that
the recipient of key k believes sent it. If
the protocol is successful at distribut-
ing a new key k, then knowA(k) will
equal believeB(k) and knowB(k) will
equal believeA(k).

To achieve this goal, the machine
contains four operations, Step 1 to
Step 4. The first three will represent
the three steps in the protocol and
the fourth defines the overall effect of
the protocol. At this stage of the re-
finement, operations Step 1 to Step 3
are all null operations. All the work
is done by operation Step 4 whose
body consists of the following parallel
(simultaneous) assignments, provided
that the key is fresh.

Step 41 =
...

if K 6∈ key1 then
key1 := key1 ∪ {K} ||
knowA1(K) := A ||
knowB1(K) := B ||
believeA1(K) := B ||
believeB1(K) := A

end

Here K represents the particular key
KAB. Clearly, performing this opera-
tion will result in the desired authen-
tication relationship among the vari-
ables described above.

The refinement is to then instanti-
ate null operations Step 1 to Step 3 in
such a way that they have the same ef-

fect as Step 4, but do so by modelling
the three steps of the protocol. There
are three major data refinement steps,
each of which changes both the sys-
tem state and the four operations. The
first refinement instantiates Step 3, to
introduce the last step in the proto-
col. Two of the existing variables are
changed slightly [4, §6.1].

knowB2 ∈ key2 p→ AGENT
believeB2 ∈ key2 p→ AGENT

Now knowB and believeB are partial,
rather than total, functions because
information is no longer transferred
atomically from agent A to B. In
the state between agent A sending the
third protocol message and agent B re-
ceiving it, key KAB will belong to set
key, but is not yet part of agent B’s
local knowledge.

Additional variables are also in-
troduced to the state, for modelling
messages in transit, assuming given
type MSG.

msg2 ⊆ MSG
menc2 ∈ msg2 → AGENT
mkey2 ∈ msg2 ³ key2

magt2 ∈ msg2 → AGENT

Set msg contains those messages in
transit. The remaining variables
serve to represent the contents of the
third message in the protocol, which
has the form ‘{KAB, A}KBS

’. Agent
menc(m) denotes the agent playing
the role of agent B in message m.
Key mkey(m) denotes the encrypted
key KAB. Agent magt(m) denotes
agent A.

Null operation Step 31 is then re-
placed with one that models sending
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of the third protocol message.

Step 32 =
...

if K 6∈ key2 ∧M 6∈ msg2 then
key2 := key2 ∪ {K} ||
knowA2(K) := A ||
believeA2(K) := B ||
msg2 := msg2 ∪ {M} ||
menc2(M) := B ||
mkey2(M) := K ||
magt2(M) := A

end

Here M represents the message
{KAB, A}KBS

.
Comparing operation Step 32 to op-

eration Step 41 above, we can see than
variables key, knowA and believeA are
updated as before, and new variables
msg, menc, mkey and magt hold de-
tails of the message in transit. There-
fore, operation Step 42 merely needs to
update variables knowB and believeB
in the refined machine, using informa-
tion from the ‘message’ variables.

Step 42 =
...

knowB2(mkey2(M)) :=
menc2(M) ||

believeB2(mkey2(M)) :=
magt2(M)

It then remains to formally prove
that the combination of operations
Step 32 and Step 42 achieves the same
effect as operation Step 41. Although
this is reasonably obvious by inspec-
tion, the formal proof sketched by
Abrial requires 11 pages [4]. The
remaining two data refinements and
their proofs are even larger since more
operations are involved.

Bieber and Boulahia-Cuppens [8]
explain how the B method can be used
to develop security protocols by refine-
ment in a more general way. (Sadly,

their presentation tends to obscure,
rather than highlight, their techni-
cal achievements.) They first model
the state of a communications chan-
nel and the knowledge available to
each agent [8, §2.2.1], and then the ef-
fect of simple unconstrained commu-
nication events [8, §2.2.2]. They then
specify a perfect communications sys-
tem as a set of send and receive op-
erations [8, §3.1] and develop increas-
ingly detailed refinements of it for
sealed envelopes [8, §3.2], encryption
with shared keys [8, §3.3], on-line key
distribution [8, §4.2], and secure key
distribution [8, §4.3].

For example, one of their simplest
refinement steps introduces the follow-
ing trivial protocol for sending mes-
sage M from agent A to B [8, §3.3.2].

1. A → B : {M}KAB

This protocol is secure assuming that
key KAB can be known only by
agents A and B. (This unrealistic as-
sumption is removed in later refine-
ment steps that introduce key distri-
bution.)

To specify the desired confidential-
ity property of this protocol, Bieber
and Boulahia-Cuppens define a B ma-
chine which models the transmission
and reception of messages in envelopes
that can be opened only by the sender
and intended recipient [8, §3.2]. Their
given types include the set of plain-
text messages, MSG, the set of en-
velopes, ENV , and the set of agents,
AGENT . The machine includes the
following state variables.

sentBy ∈ ENV ↔ AGENT
sentTo ∈ ENV ↔ AGENT
channel ∈ ENV ↔ (AGENT ×

AGENT )
content ∈ ENV ↔ MSG
opener ∈ ENV ↔ AGENT
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Relations sentBy and sentTo asso-
ciate an envelope with its sender
and address, respectively. Relation
channel models the state of a com-
munications channel which may con-
tain envelopes with source and desti-
nation agent pairs [8, §2.2.1]. Relation
content associates envelopes with the
plaintext messages they contain. Rela-
tion opener associates envelopes with
the agent, or agents, who are capa-
ble of opening the envelope [8, §3.2.1].
(Bieber and Boulahia-Cuppens mis-
leadingly call this variable ‘source’.)

The machine includes operations
which denote message transmission,
reception, and potential behaviours of
attackers. For instance, the send oper-
ation has the following behaviour for a
message M , that is sent by agent A to
agent B, inside envelope E [8, §3.2.2].
Let f [S] denote the image of set S
through function f . The B statement
‘any x where P then S end’ nonde-
terministically chooses variables x that
satisfy predicate P and then performs
statement S.

any
E

where
E ∈ ENV ∧
(E 7→ M) ∈ content ∧
opener[{E}] = {A,B}

then
sentBy := sentBy ∪ {E 7→ A} ||
sentTo := sentTo ∪ {E 7→ B} ||
channel := channel ∪

{E 7→ (A,B)}
end

Thus envelope E is associated with
message M ; the only agents allowed
to open the envelope are A and B;
and the state is updated to record the
sender and intended recipient of the
envelope, and the fact that the enve-
lope has been sent into the communi-

cations channel. The other operations
are similar.

The aim of the refinement is to
translate this specification into a
model that uses a shared key to pro-
tect the envelope’s contents. To do
this, a given type KEY is assumed and
some additional state variables are in-
troduced [8, §3.3.1].

keyComp ∈ ENV → KEY
keyAuth ∈ KEY ↔ AGENT

Function keyComp associates en-
velopes with the key used to lock them.
Relation keyAuth associates keys with
the agents who have copies of the key.
The various operations are then mod-
ified to make use of the new variables.
The send operation described above is
refined as follows.

any
E, K

where
E ∈ ENV ∧
(E 7→ M) ∈ content ∧
K ∈ KEY ∧
keyAuth[{K}] = {A,B}

then
sentBy := sentBy ∪ {E 7→ A} ||
sentTo := sentTo ∪ {E 7→ B} ||
channel := channel ∪

{E 7→ (A,B)}
end

Here K represents key KAB in the pro-
tocol. The authority to open the enve-
lope is now indirectly associated with
access to the key, rather than directly
naming the agents who may do so.
The corresponding receive operation
allows agents in the set keyAuth[{K}]
only to open the envelope.

As usual, verifying that this refine-
ment step is correct involves some sig-
nificant proofs. Bieber and Boulahia-
Cuppens note that they have used the
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Msg2 =
any

NA, NB

where
(A,B, m1(NA, A, KAB)) ∈ history ∧
NB ∈ shared(A,B) ∧
NB 6∈ nonces(history)

then
history := historyy 〈(B, A, m2(NA, NB, B, KBA))〉

end

Figure 5: A communication action modelled in B [17, §6].

B toolkit’s interactive theorem prover
to discharge the proof obligations as-
sociated with such refinement steps
[8, §2.2.3].

Indeed, the complexity of the proof
obligations remains a major hurdle to
the use of refinement for verifying secu-
rity protocols. Butler has explored this
issue in considerable depth [17][18]. He
specifies protocols in B using a his-
tory variable to capture the sequence
of communications.

Consider the first two steps of the
(corrected) Needham-Schroeder proto-
col [17, Fig. 3].

1. A → B : {NA, A}KAB

2. B → A : {NA, NB, B}KBA

To model this, Butler declares the fol-
lowing variables.

history : seq(AGENT ×
AGENT ×MSG)

share : (AGENT ×AGENT ) →
PNONCE

The history variable is a sequence con-
sisting of the sender, receiver and mes-
sage for each communication to date
[17, p. 8]. Function shared associates
pairs of agents with the set of nonces
shared between them [17, p. 7].

Then the B operation representing
the second communications event in
the protocol is shown in Figure 5.
Here function nonces(h) extracts the
set of nonces appearing in history h
[17, p. 8]. Also 〈e, f, . . .〉 denotes the
sequence consisting of elements e, f ,
etc, and Sy T is sequence S concate-
nated with sequence T . Constructors
m1 and m2 in Figure 5 are tags in the
disjoint-union type MSG, and serve
to compose messages of the particular
forms used by this protocol [17, p. 8].

The operation requires that the first
protocol message m1 already appears
in the history. It then composes and
appends the second message m2 to the
history. Once this is done, a separate
operation in the model updates the set
of nonces that have been seen to date
by agent B [17, p. 9].

Butler explains how data refine-
ments of such machines can be per-
formed. B operations are guarded by
a predicate that defines the conditions
under which they may be invoked.
This can be calculated from the oper-
ation’s body [17, §4]. Unusually, But-
ler allows such guards to be strength-
ened [18, §3.2][17, §5]. This reduces
the number of states in which the op-
eration may occur—a refinement step
may therefore result in the concrete
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model deadlocking in states where the
abstract one could proceed. Normally
this would not be a valid data refine-
ment step, but is justified for security
protocols on the basis that the security
properties of interest are safety proper-
ties only, not liveness. A protocol that
deadlocks is considered ‘secure’ since it
cannot disclose any information.

In performing data refinements us-
ing this model, however, Butler expe-
rienced considerable difficulty in de-
vising suitable abstraction invariants.
A single refinement step was found
to require an invariant involving 12
complex conjuncts [17, §8]. Proofs
of side conditions involving such an
invariant were extremely demanding.
Although the B toolkit generated all
of the necessary conditions, its the-
orem prover discharged only 10% of
these automatically [17, §9]. Even
worse, any errors or omissions in
the choice of abstraction invariant led
to considerable wasted effort. In
recent work, therefore, Butler has
concentrated on ways of systemati-
cally deriving the required invariant
[18, §3.3]. Although promising, fur-
ther work seems to be required in this
area [18, §9].

Finally, a totally different approach
to protocol refinement was proposed
by Jürjens [28]. He uses a communica-
tions model based on dataflow traces,
and writes system models using oper-
ators on traces. He defines secrecy as
the inability of a stream to disclose a
secret and then suggests that refine-
ment could be used to preserve this
notion. Refinement in this dataflow-
based approach has three forms: trace
subsetting (reducing nondeterminism),
refining interfaces (cf. data refinement)
and ‘conditional’ refinement (strength-
ening an effect by taking advantage of
knowledge in the assumption).

5 Conclusion

A wide range of formal methods have
been applied to verification of security
protocols over many years. That no
one technique has yet emerged victori-
ous reflects the challenging nature of
the field. Proof by analysis, as em-
bodied in traditional verification and
model checking techniques, has re-
ceived the most attention to date. In
this area Paulson’s logic [34] and the
spi-calculus [3] appear to be the most
elegant products to date. Proof by
construction, as embodied by the re-
finement approach, appears to have at-
tracted relatively little attention, and
is therefore worthy of further explo-
ration. Butler has made significant in-
roads into the problem [18], but major
simplifications are needed before the
approach is practical.

It is clear that security protocols
have posed a significant challenge to
formal methods. For instance, merely
devising suitable data structures to
represent the contents of messages has
proven to be a stumbling block. We
have seen, for instance, message con-
tents awkwardly encoded as syntactic
parts of action names in CSP, and as a
set of separate variables for each mes-
sage component in B. Similarly, the
simple concept of message sequencing
needed to be explicitly represented us-
ing counters or history variables in the
logics and B machine models. Con-
sequently, security protocol specifica-
tions, proofs and refinements have all
been discouragingly complex to date.

Also notably absent in the papers
surveyed is the notion of probability.
Given the recent emergence of mature
formalisms for reasoning about prob-
abilistic computations [33], the time
may now be ripe to explore probabilis-
tic proofs of protocol security.
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