
SOFTWARE VERIFICATION RESEARCH CENTRESCHOOL OF INFORMATION TECHNOLOGYTHE UNIVERSITY OF QUEENSLANDQueensland 4072Australia
TECHNICAL REPORTNo. 00-01Re�nement and State MachineAbstractionKarl Lermer and Paul Strooper aFebruary 2000
Phone: +61 7 3365 1003Fax: +61 7 3365 1533http://svrc.it.uq.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Note: Most SVRC technical reports are available viaanonymous ftp, from svrc.it.uq.edu.au in the directory/pub/techreports. Abstracts and compressed postscript�les are available via http://svrc.it.uq.edu.au

Re�nement and State Machine AbstractionKarl Lermer and Paul Strooper bAbstractPrecise module interface speci�cations are essential in modular software develop-ment. The role of state in these speci�cations has been the issue of some debate andis central to the notion of data re�nement. In previous work, Ho�man and Strooperintroduce a state-abstraction lattice that de�nes a partial order on speci�cations fordeterministic and complete languages. They use this lattice to de�ne a notion ofstate abstractness and show that this intuitive notion corresponds to the use of theterms \abstract" and \concrete" as used in data-re�nement proofs. In this paper,we extend this work for a class of speci�cations and languages that we call demonicand semi-deterministic. We also introduce a notion of backward re�nement andprove that backward re�nement together with the common forward re�nement ofVDM and Z form a sound and complete re�nement technique with respect to a par-tial order on languages de�ned by demonic speci�cations. We illustrate the ideasusing simple languages and speci�cations.Keywords: formal methods, state machine, speci�cation, re�nement, modular softwaredevelopment, abstraction.1. IntroductionThe key idea in modular software development is to decompose a system into a smallnumber of modules, and to continue doing so until all modules are of a reasonable complex-ity. This approach relies on being able to subdivide the system into relatively independentmodules, and being able to precisely specify the interfaces between these modules.We would like our speci�cations to be \black box." The internals of the module areof no concern to us; only the externally observable behaviour, in the form of inputs andoutputs, is relevant. However, the notion of state is important in such speci�cations,because past inputs typically in
uence future outputs, which can only be attributed to adi�erence in state.In this paper, we build on work by Ho�man and Strooper [9], who de�ne a notion of stateabstractness for speci�cations and introduce a state-abstraction lattice to characterisere�nement proofs with abstraction functions. Their work applies to speci�cations oflanguages that are complete | every sequence of calls has a behaviour de�ned for it |and deterministic | there is at most one behaviour de�ned for every sequence of calls.Ho�man and Strooper show that state abstractness is in general independent of the choicebetween property-based, model-based, and operational speci�cations. Although somepeople object to using the notion of \state" for a property-based speci�cation, equivalence3

4classes of traces can serve as a reasonable notion of state for such speci�cations [9]. Inthis paper, we explore the relation between the abstraction lattice and data-re�nementproofs.Data-re�nement proofs [6,2,12,17] are important in modular software development.They are used to verify that a speci�cation (or implementation) SC with a concretestate representation is correct with respect to a speci�cation SA with an abstract staterepresentation. The state-abstraction lattice justi�es the terms abstract and concrete usedin this setting: if there exists a data-re�nement proof using an abstraction function thatproves that SC is correct with respect to SA, then RSC � RSA in the state-abstractionlattice (where, for a speci�cation S , RS is an equivalence relation de�ned on S). The con-trapositive of this result tells us that if RSC 6� RSA in the state-abstraction lattice, thenwe cannot prove that SC is correct with respect to SA using a standard data-re�nementproof with an abstraction function.In the remainder of this paper, we will generalise these results for languages and speci-�cations that are not necessarily complete and deterministic. In particular, we introducethe notions of demonic languages and speci�cations, and semi-deterministic speci�cations,and we show how the results extend for these speci�cations and languages. In doing so,we de�ne an ordering on demonic languages that provides a re�nement semantics on de-monic speci�cations. We prove that the common forward re�nement notion of VDM andZ [12,18,17] together with an adequate backward re�nement notion form a sound andcomplete proof technique with respect to this re�nement semantics.In Section 2, we present our terminology for languages and speci�cations. Section 3formally de�nes the restrictions that Ho�man and Strooper place on the languages andspeci�cations in their work. We also introduce the notions of demonic languages andspeci�cations, and semi-deterministic speci�cations. In Section 4, we state the VDM andZ notion of forward re�nement. We also introduce a partial order on demonic languages,and show that forward re�nement is a sound proof technique with respect to this order-ing. The completeness of forward re�nement is proven for demonic, semi-deterministicspeci�cations. Section 5 generalises the state-abstraction lattice for demonic and semi-deterministic speci�cations and languages. The mathematical structure that we use tocapture state abstractness is no longer a lattice in this case, but simply a partially orderedset. In Section 6 we introduce a backward re�nement technique and prove that forwardand backward re�nement together are sound and complete with respect to the re�nementsemantics given in Section 4. In Section 7, we review related work. In particular, weexplain how our notion of re�nement relates to the VDM and Z notion of data re�ne-ment [12,17], and how it relates to forward and backward simulation of state machines[8,10,11,15].The appendices contain the de�nitions of a number of languages and speci�cationsthat we use as examples throughout the paper. Each appendix �rst de�nes a languageinformally, and then presents one or more Object-Z speci�cations [4] for that language.We have used Object-Z merely because it provides a convenient structuring notation forthe types of modules and speci�cations that we consider in this paper. We do not use anyof the object-oriented features of Object-Z. The languages and speci�cations are clearlycontrived | they simply serve to illustrate the concepts introduced in the paper.

52. Languages and speci�cationsFollowing Parnas [16], we de�ne a module as a programming work assignment, and amodule interface as the set of assumptions that programmers using the module are permit-ted to make about its behaviour. An interface speci�cation (hereafter just speci�cation)is a statement of these assumptions. We view a module as a black box, accessible onlythrough a �xed set of operations | the exported procedures and functions. The syntaxof the speci�cation states the names of the access routines, and their inputs and outputs.We use Op to denote the set of all operation names, In to denote the set of all inputs forOp, and Out to denotes the set of all outputs. We use the special symbol ? to indicatean operation with no input or no output.The semantics of the speci�cation describes the observable behaviour of the operations.We are interested in comparing the behaviour of di�erent speci�cations. Because thereare many ways to represent the state in a speci�cation, we need a de�nition of behaviourthat is independent of the state representation. We �rst consider histories: �nite, possiblyempty sequences of the formh = hc1; v1ihc2; v2i : : : hcn ; vniFor i 2 f1; :::;ng, ci = h�i ; opii is a call to an operation opi 2 Op with input �i 2 In, andvi 2 Out is an output. We use the symbol " to denote the empty history.2.1. LanguagesThe set of all histories, H, is determined byOp, In, and Out . A language L is de�ned asa subset of H. In this paper, we only consider non-empty languages that are pre�x-closed :for any history h 2 L and any call-value pair hc; vi, if hhc; vi 2 L then h 2 L.LanH = fL � H j L 6= ? ^ L is pre�x-closed gNote that this is quite a natural restriction and that it implies that " 2 L for all languagesin LanH.We introduce the following operators on histories. For any historyh = hc1; v1ihc2; v2i : : : hcn ; vniwe denote the corresponding trace or input sequence byI(h) = c1c2 : : : cnWe de�ne I(") = ". For a set of histories H � H, we de�ne the set of all traces of H byTr(H) = fI(h) j h 2 H gFor a language L and a trace t 2 Tr(H), we collect all possible histories (in L) withtrace t in the setrL(t) = fh j h 2 L ^ I(h) = tgNote that for each h 2 L, h 2 rL(I(h)). For languages L, L0 � H,rL[L0(�) = rL(�) [rL0(�) ; rL\L0(�) = rL(�) \rL0(�)We will also use the following operators on �nite sequences � = s1s2:::sn: �[i] = si ,head(�) = s1, front(�) = s1; :::; sn�1, last(�) = sn , and � B f1; :::;mg the restriction of �to f1; :::;mg. Finally, we use #S to denote the size or length of a set or sequence S .

62.2. Speci�cationsA speci�cation S de�nes a language L | the subset of H expressing the behaviourde�ned by the speci�cation. In general the form of the speci�cation may vary, but in thispaper we focus on model-based speci�cations, where the behaviour is speci�ed in terms ofa state space St .De�nition 1 A model-based speci�cation S is a six-tuple(Op;St ; In;Out ; INIT; S)with operation set Op, state set St, input set In, output set Out, a nonempty set of initialstates INIT � St, and an interpretation functionS : Op ! P((In � St) � (St �Out))Note that Op, St , In, Out , INIT are permitted to be in�nite sets. Any operation op 2 Opis interpreted via S as a set of pairs(h�; si; hs 0; !i)where each pair represents a state transition with input � 2 In, internal states s; s 0 2 St(s denotes the state before and s 0 the state after the operation is performed), and output! 2 Out . For a speci�cation S , the precondition of operation op 2 Op with input � 2 Inwill be denoted bypreS (h�; opi) = fs 2 St j 9 s 0 2 St ; ! 2 Out : (h�; si; hs 0; !i) 2 opS gand the postcondition of op with input � bypostS (h�; opi) = fs 0 2 St j 9 s 2 St ; ! 2 Out : (h�; si; hs 0; !i) 2 opS gSimilarly, we de�ne the postcondition of a trace t 2 Tr(H) byptraceS (t) = 8>>><>>>: INIT if t is the empty tracefs 0 2 St j 9 s 2 St ; ! 2 Out :(h�; si; hs 0; !i) 2 opS ^ s 2 ptraceS (t1)gif t = t1h�; opiNote that in our setting, pre- and postconditions denote sets of states, not predicates.Given a speci�cation S and a history h 2 H, we denote the set of �nal states of h by�nalS (h) = 8><>: INIT if h = "fs 0 2 St j 9 s 2 St : (h�; si; hs 0; !i) 2 opS ^ s 2 �nalS (h1)gif h = h1hh�; opi; !iNote that �nalS (h) � ptraceS(I(h)) for all histories h 2 H andptraceS (t) = [f�nalS (h) j h 2 LS ^ I(h) = tgfor all traces t 2 Tr(H).We can now de�ne the language accepted by a speci�cation S, consisting of the emptyhistory and all histories that are produced by starting from an initial state in INIT andrecursively applying the operations from Op.

7SA1v :ZINITv = 0random�(v)truevalout ! :Zout ! = vFigure 1. Object-Z speci�cation SA1 for LADe�nition 2 For a speci�cation S, the language accepted by S isLS = fh 2 H j h = " _ 9 h1 2 LS ; op 2 Op; � 2 In; ! 2 Out :h = h1hh�; opi; !i ^ (9 s 2 �nalS (h1); s 0 2 St : (h�; si; hs 0; !i) 2 opS)gIt follows from this de�nition that LS is in LanH.2.3. ExampleConsider the random number generating module de�ned by LA in Appendix A. Itcontains two operations: random generates a random integer value and has no output(indicated by the special value ?), and val returns the value generated by the last call torandom as an output. If no call to random has been made, val returns 0. For example,the historyhval ; 0ihrandom;?ihval ;�1ihrandom;?ihval ; 1ibelongs to the language LA, whereas the historyhrandom;?ihval ;�1ihval ; 1idoes not. Here we have used op as a shorthand for h?; opi, a call to an operation withno input.An Object-Z speci�cation SA1 for LA is shown in Figure 1. An Object-Z class isrepresented as a named box, SA1 in this case. A class contains an unnamed state schema,an initialisation schema (INIT), and zero or more operations (two in this case). For SA1,

8the state consists of the integer variable v . The initial value of v is constrained to 0 inthe initial state schema. The delta-list �(v) in the schema for random indicates that thevalue of v may change; the predicate true indicates that the value v 0 after the call is notconstrained. Finally, the schema for val speci�es that the output variable out ! is equal tov . Since val does not have a delta-list, the value of v does not change (i.e., v 0 = v).3. Demonic languages and speci�cationsThe state-abstraction lattice de�ned in [9] applies to languages that are complete anddeterministic. A language L is complete if for every trace in Tr(H) there is at least onehistory in L, and it is deterministic if for every trace in Tr(H) there is at most one historyin L.De�nition 3 A language L 2 LanH is complete ifTr(L) = Tr(H)A language L is deterministic if8 t 2 Tr(L) : #rL(t) = 1For a language that is both complete and deterministic, there is exactly one history inthe language for each trace. Speci�cations are also assumed to be state-deterministic, inthat there is a unique �nal state for each history.De�nition 4 A speci�cation S is state-deterministic if8h 2 LS : #�nalS (h) = 1As a special case, note that for a state-deterministic speci�cation S#�nalS (") = #INIT = 1The language LA discussed in the previous section is complete, but not deterministic.The speci�cation SA1 is not state-deterministic. The speci�cation SB1, obtained fromSA1 by changing the speci�cation of random torandom�(v)v 0 = v + 1so that it increments the value of v each time it is called, is state-deterministic. It de�nesthe language LB that is both complete and deterministic.If instead we change SA1 to SC1 by adding the operationtwov = 2

9that is only enabled when v has the value 2, then this de�nes a language LC that is neithercomplete, nor deterministic. Note that two does not have a delta-list and therefore doesnot change the value of v ; it checks that the value of v before the operation is 2, andif it is not, then the operation is not enabled. This means that LC is not complete,because htwo;?i 62 LC . LC is also not deterministic because LA is not deterministic andLA � LC .In the remainder of this paper, the notion of a demonic language will play a majorrole. We will demonstrate that this language class provides a natural semantics for datare�nements in VDM and Z. Intuitively, a language L is demonic if for every trace t inTr(L), every history of L corresponding to a sub-trace of t must be extendible by callsfrom t .De�nition 5 A language L is demonic if8 t 2 Tr(L) n f"g : rL(front(t)) = f h B f1; :::;#t � 1g j h 2 rL(t) gThe set of demonic languages will be denoted byLandH = fL � H j L 6= ? ^ L is demonicgNote that the inclusion8 t 2 Tr(L) n f"g : rL(front(t)) � f h B f1; :::;#t � 1g j h 2 rL(t) g (1)is an equivalent way of expressing that a non-empty language L is pre�x-closed.The languages LA and LB are both demonic, but the language LC is not. This isbecause SC1 includes the operation two that is only enabled when the value of the statevariable v is 2. For example, fort = hrandomihvalihtwoiwe haverLC (front(t)) = f hrandom;?ihval ; ii j i 2Zgwhereasf h B f1; 2g j h 2 rLC (t) g = f hrandom;?ihval ; 2i gEvery deterministic language is demonic. Unfortunately, the set of demonic languagesLandH does not behave as nicely as the set of pre�x-closed languages LanH, which forms acomplete lattice under the inclusion ordering � and the usual set operations. In general,demonic languages are not closed under intersection and union. However, if two demoniclanguages have the same set of traces, then their union is demonic.Proposition 1 If for a family of languages Li 2 LandH, i 2 I with Tr(Li) = Tr(Lj) ,i ; j 2 I , then [i2ILi 2 LandH.

10Proof. We take a trace t 2 Tr([i2ILi) n f"g. Then, t 2 Tr(Li) n f"g, for every i 2 I .The languages Li , i 2 I are demonic and thereforerLi (front(t)) = f h B f1; :::;#t � 1g j h 2 rLi (t) gfor i 2 I . Hence,r[i2ILi (front(t)) = [i2IrLi (front(t))= [i2If h B f1; :::;#t � 1g j h 2 rLi (t) g= f h B f1; :::;#t � 1g j h 2 r[i2ILi (t) g 2There is a notion corresponding to demonic languages for speci�cations. A speci�cationis demonic if any two states that can be reached after a certain number of calls can beextended by the same set of calls.De�nition 6 A speci�cation S is demonic if8 t 2 Tr(LS) n f"g : ptraceS(front(t)) � preS (last(t))Observe that every speci�cation S that is total in the following sense,8op 2 Op; � 2 In : preS(h�; opi) 6= ?) preS (h�; opi) = Stis demonic. Every speci�cation S that is not total has a natural total and hence demonicextension obtained by adding a new state abort and a new output symbol ab. We thenextend every operation op 2 Op in the following way: if preS (h�; opi) 6= ?, we add anew transition (h�; si; habort ; abi) to the interpretation opS for every pair h�; si such thats 62 preS(h�; opi). This includes transitions of the form (h�; aborti; habort ; abi) for everyoperation. Similarly, every pre�x-closed language has a natural demonic extension.Proposition 2 Every demonic speci�cation S de�nes a demonic language LS .Proof. Any speci�cation S de�nes a pre�x-closed language LS and therefore we haveinclusion (1). To prove the inclusion in the other direction, we assume a demonic speci-�cation S . Let t 2 Tr(LS) n f"g and h 2 rLS (front(t)). Because S is demonic we haveptraceS (front(t)) � preS(last(t)) and so �nalS (h) � preS(last(t)). Hence we may extendh by the call last(t), and there exists an output ! 2 Out such that hhlast(t); !i 2 rLS (t),which is what we need to prove the inclusion in the other direction. 2The converse is not true in general: there are non-demonic speci�cations that spec-ify demonic languages. For example, the speci�cation SD1 obtained from SC1 by re-moving val is not demonic, because even though hrandomihtwoi 2 Tr(LD), we haveptraceSD1(hrandomi) = Zand preSD1(htwoi) = f2g. However, the language LD speci�edby SD1 is clearly demonic, because there are no operations with any output. Neverthe-less, we show in Proposition 11 that for every demonic language L there exists a demonicspeci�cation S such that L = LS (in fact, there are many such speci�cations).We sometimes use an additional condition, requiring that each history h 2 LS corre-sponds to exactly one equivalence class of internal states. In this case, it is legitimate tothink of \exactly one" state.

11SA2v :Z[f?gINITv = 0random�(v)v 0 =?val�(v)out ! :Z(v =?^ v 0 2Z^ out ! = v 0) _ (v 2Z^ v 0 = v ^ out ! = v 0)Figure 2. Object-Z speci�cation SA2 for LADe�nition 7 A speci�cation S is semi-deterministic if8op 2 Op; � 2 In; ! 2 Out ; s 2 St ; h 2 LS :(s 2 �nalS (h) ^ hhh�; opi; !i 2 LS)) (9 s 0 2 St : (h�; si; hs 0; !i) 2 opS)In other words, if h; hh 0 2 LS and � is a state sequence that belongs to history h, thenthere exists a sequence of states �0 such that ��0 belongs to history hh 0. So although ahistory might end up in di�erent states, they must be indistinguishable with respect tofuture behaviour.The speci�cation SA1 for language LA is not semi-deterministic. For example, forh = hrandom;?i we have 3 2 �nalSA1(h) and hhval ; 5i 2 LA, but there exists no state s 0such that (h?; 3i; hs 0; 5i) 2 valSA1. However, the speci�cation SA2, shown in Figure 2, isstate-deterministic and hence semi-deterministic. In this speci�cation, we have added ?as a special value for the state variable v to indicate that random has been called withoutbeing followed by a call to val . Thus, we delay the choice of the random value until a �rstcall to val is made after a call to random. The disjunction in val deals with the two caseswhere val has not been called since the last call to random (�rst disjunct), and where valhas been called and the value of v should remain the same (second disjunct).Note that the notion of a semi-deterministic speci�cation is more general than that ofa state-deterministic speci�cation. Consider the speci�cation SE1 shown in Figure 3. Itis similar to SB1, but it contains one additional state variable stuck and one additionaloperation zero. Initially, the value of v is 0 and stuck is false. As long as stuck is false,

12
SE1v :Zstuck : BINITv = 0: stuckrandom�(v): stuck) v 0 = v + 1valout ! :Zstuck) out ! = 0 ^ : stuck) out ! = vzero�(stuck)stuck 0Figure 3. Object-Z speci�cation SE1 for LE

13the value of v is incremented each time random is called. Note that no value for v 0 isspeci�ed in random when stuck is true, which means that SE1 is not state-deterministic.The operation val returns 0 if stuck is true, and the value of v otherwise. Finally, theoperation zero sets the value of stuck to true, thereby ensuring that val will always return0 after that.As explained above, SE1 is not state-deterministic. It is semi-deterministic, becauseno matter what the value of v 0 is after a call to random when stuck is true, the futurebehaviour of SE1 does not depend in any way on this value of v 0. Clearly it is easy tochange SE1 so that it is state-deterministic and still speci�es the same behaviour, byspecifying a speci�c value for v 0 in random when stuck is true. However, such a speci�-cation would unnecessarily restrict the value of v 0. Although this is a contrived example,it shows a class of speci�cations that are semi-deterministic, but not state deterministic:whenever the future behaviour of the speci�cation depends on only part of the state ofthe speci�cation (for example, in SE1, the future behaviour does not depend on the valueof v if stuck is true).Proposition 3 Let S be a semi-deterministic speci�cation. S is demonic i� LS is ademonic language.Proof. One direction of the implication follows from Proposition 1. For the otherdirection, assume that LS is demonic and a trace t 2 Tr(LS) n f"g with last(t) = h�; opi.We have to proveptraceS(front(t)) � preS(h�; opi)So let us assume a state s 2 ptraceS(front(t)) and a history h 2 LS with I(h) = front(t)and s 2 �nalS (h). Then it is su�cient to prove s 2 preS(h�; opi) LS is demonic and sowe know that there exists an output ! 2 Out such that hhh�; opi; !i 2 LS . Hence, by thede�nition of a semi-deterministic speci�cation, s 2 preS(h�; opi). 24. Re�nementData-re�nement proofs [6,2,12,17] are used to verify that a speci�cation (or implemen-tation) SC with a concrete state representation is correct with respect to a speci�cationSA with an abstract state representation.There are various well-explored re�nement techniques. The re�nement of speci�cationsor state machines is often de�ned as subset relation on observable behaviours [8,1,13,15].In other words, re�nement means that the observable behaviour of SC must be a subsetof the observable behaviour of SA.In the following we are going to de�ne an ordering relation on the languages that aregenerated by speci�cations and we will use this ordering as the semantics for re�nementproofs. Thus we are gaining a re�nement semantics that is di�erent to the re�nementnotions cited above. Brie
y, a speci�cation SC re�nes a speci�cation SA if every inputthat was possible for SA is valid for SC and if the corresponding outputs are in a subsetrelation. With this semantics the notion of forward re�nement of VDM and Z [12,18,17]will prove to be a sound re�nement method.

14De�nition 8 Given two speci�cations SA = (Op;StA; In;Out ; INITA; SA) and SC =(Op;StC ; In;Out ; INITC ; SC), a relationabs : StC $ StAand operation op 2 Op, we say that opSA forward data-re�nes to opSC (opSA vabs opSC)i� the following obligations are ful�lled [12,17].(DR1) 8 � 2 In ; s 2 StA ; t 2 StC :((t ; s) 2 abs ^ s 2 preSA(h�; opi))) t 2 preSC (h�; opi)(DR2) 8 � 2 In ; ! 2 Out ; s 2 StA ; t ; t 0 2 StC :(s 2 preSA(h�; opi) ^ (t ; s) 2 abs ^ (h�; ti; ht 0; !i) 2 opSC))(9 s 0 2 StA : (h�; si; hs 0; !i) 2 opSA ^ (t 0; s 0) 2 abs)(DR1) asserts that all possible inputs for opSA are also possible inputs for opSC . In(DR2) we do not claim that all transitions of opSA can be simulated. Instead, we requirethat every possible input of opSA must be accepted by opSC with outputs that werepossible for opSA. The relation v de�nes a preorder on operations in the above context,i.e., on operations with input in In and output in Out .With this notion of operation re�nement we can state the corresponding technique ofspeci�cation re�nement [17].De�nition 9 We say that a speci�cation SA = (Op;StA; In;Out ; INITA; SA) can be for-ward re�ned to speci�cation SC = (Op;StC ; In;Out ; INITC ; SC) and write SA v SC ifthere exists an abstraction relation abs as above such that(SR1) 8op 2 Op : opSA vabs opSC(SR2) 8 t 2 INITC 9 s 2 INITA : (t ; s) 2 absWe write SA vabs SC if we want to explicitly indicate the abstraction relation abs.Obligation (SR1) requires that every abstract operation can be re�ned to a concreteone and obligation (SR2) states that, via abs, every concrete initial state corresponds toat least one abstract state. Note that we overload the semantics of the symbol v. It willbe obvious from the context whether we mean operation or speci�cation re�nement.For the example speci�cations in Appendices A and B, note that SA1 v SB1 with theabstraction relationabs = f(i ; i) : i 2ZgHowever, SB1 does not re�ne to SA1 using the same abstraction relation, because thereare many after states for random in SA1 and there is only a single one in SB1. In fact,as we will see below, there is no abstraction relation so that SB1 forward re�nes to SA1.Proposition 4 Forward re�nement v de�nes a preorder on speci�cations S as de�nedabove.

15Proof. This follows directly from the fact that forward re�nement for operations isa preorder. Re
exivity follows from using the identity as the abstraction relation. Forspeci�cations SA, SB and SC withSA vabs1 SB vabs2 SCwe have SA vabs SC with the relation-composition abs = abs2 � abs1. 2To provide a semantics for re�nement proofs on speci�cations and to ultimately generalisethe results from [9], we de�ne a partial ordering on languages.De�nition 10 Let L and L0 be languages in H,L0 b L i� Tr(L) � Tr(L0) ^ 8 t 2 Tr(L) : rL0(t) � rL(t)The above ordering on languages corresponds to the intuition behind obligations (DR1)and (DR2). For languages L and L0, L0 b L if all traces of Tr(L) occur in Tr(L0) and ifevery history in L0 corresponding to a trace in L is also a history in L.ForLA and LB from the appendices, we haveLB b LA because the set of histories for LBis a subset of the histories for LA and all traces that occur in LA also occur inLB . However,we do not have LA b LB because hrandomihvali 2 Tr(LB), but hrandom;?ihval ; 2i is inrLA(hrandomihvali) and not in rLB (hrandomihvali).Note that the ordering b is di�erent from the subset ordering on languages. For exam-ple, to �nd two languages that are ordered by b, but that are not in a subset relation,we de�ne the language LF obtained by changing the speci�cation of two in SC1 fromtwov = 2to two�(v)v 0 = 2in SF1. Note that two in SF1 does not have a precondition (i.e., the operation canalways be applied) and always changes the value of v to 2; as a result, LF is demonic.Now LF b LC , even though LF contains more histories than LC .In the subsequent discussion we are going to identify the poset (partially ordered set)(LandH;b)as a domain for the characterisation of re�nement proofs with forward re�nement and anotion of backward re�nement. We will also see that the partial ordering b on demoniclanguages characterises forward re�nement proofs on demonic, semi-deterministic speci�-cations. Note that (LanH;b) and (LandH;b) when extended with a bottom element arecomplete lattices similar to the complete lattice (LanH;�).We pointed out that the intersection of demonic languages is not necessarily demonic.However, for demonic languages L0 b L, the intersection L \ L0 is demonic.

16Proposition 5 For languages L;L0;L00 � H we have:i) L0 b L) Tr(L \ L0) = Tr(L) \ Tr(L0) = Tr(L), L0 b L0 \ Lii) L0 b L , (L0 \ L b L ^ L0 [L b L)iii) L00 b L0 b L) L00 \ L � L0iv) (L0 demonic ^ L0 b L)) L0 \ L demonicProof. For i): For any two languages L and L0Tr(L \ L0) � Tr(L) \ Tr(L0) � Tr(L)Assume L0 b L. Then, Tr(L) � Tr(L) \ Tr(L0). For t 2 Tr(L) \ Tr(L0) we haverL0(t) � rL(t), hence t 2 Tr(L \ L0) and furthermorerL0(t) � rL0(t) \ rL(t) = rL0\L(t)For ii): Assume L0 b L. Then, Tr(L) � Tr(L [L0) and for t 2 Tr(L),rL[L0(t) = rL(t) [rL0(t) = rL(t)Therefore, L0 [L b L. Part i) and Tr(L) � Tr(L0) implyTr(L \ L0) = Tr(L) \ Tr(L0) = Tr(L)For t 2 Tr(L),rL\L0(t) = rL(t) \rL0(t) = rL0(t)Hence, L0 \ L b L.Now assume L0 \ L b L and L0 [L b L. It followsTr(L) � Tr(L \ L0) � Tr(L0)and for t 2 Tr(L), rL0(t) � rL0[L(t) � rL(t). Hence, L0 b L.For iii): Let t 2 Tr(L00 \ L). Then, t 2 Tr(L) and because of L0 b L we obtaint 2 Tr(L0). Hence,rL00\L(t) = rL00(t) \rL(t)� rL0(t) \ rL(t)� rL0(t)For iv): For t 2 Tr(L0 \ L) n f"g we concluderL0\L(front(t)) = rL0(front(t)) \rL(front(t))= rL0(front(t))= fh B f1; :::;#t � 1g j h 2 rL0(t)g= fh B f1; :::;#t � 1g j h 2 rL0\L(t)g 2

17De�nition 11 Given two speci�cations SA = (Op;StA; In;Out ; INITA; SA) and SC =(Op;StC ; In;Out ; INITC ; SC), we de�ne the restricted-use speci�cationSC [SA] = (Op;StC ; In;Out ; INITC ; SC [SA])of SC under SA as follows. For every operation op 2 Op,opSC [SA] = f(h�; ti; ht 0; !i) 2 opSC j preSA(h�; opi) 6= ?gIn the case of a forward re�nement, SC [SA] speci�es the behaviour of SC for tracesaccepted by SA. We can think of this as projecting SA on SC and then using SC as wewould have SA.Proposition 6 For speci�cations SA and SC :i) SC [SA] vid SC with the identity id on StCii) SA vabs SC , SA vabs SC [SA]iii) SC demonic) SC [SA] demonicProof. Part i) follows from the de�nition of re�nement. From i) and the transitivityof re�nement, it follows that SA vabs SC [SA] implies SA vabs SC . For the converse,assume SA vabs SC . We prove SA vabs SC [SA]: let op 2 Op.(DR1): Let s 2 preSA(h�; opi) and r 2 StC with (r ; s) 2 abs. With (DR1) for there�nement opSA vabs opSC we �nd r 2 preSC (h�; opi). Hence, r 2 preSC [SA](h�; opi).(DR2): Let (h�; rihr 0; !i) 2 opSC [SA] with (r ; s) 2 abs and s 2 preSA(h�; opi). Hence,(h�; rihr 0; !i) 2 opSC and from (DR2) for the re�nement opSA vabs opSC we �nd s 0 2 StAsuch that (h�; sihs 0; !i) 2 opSA and (r 0; s 0) 2 abs.The remaining obligation (SR2) is satis�ed because INITSC [SA] = INITSC .For iii): Note that if preSA(h�; opi) 6= ?, then preSC (h�; opi) = preSC [SA](h�; opi).Therefore, for t 2 Tr(SC [SA]) n f"g, we have ptraceSC (t) = ptraceSC [SA](t). 2If we use the ordering b as the underlying semantics of speci�cation re�nement andforward re�nement with obligations (SR1) and (SR2) as the re�nement technique, thenTheorem 1 below proves the soundness of forward re�nement for demonic speci�cations.We �rst prove two lemmas.Lemma 1 Assume speci�cations SA and SC . If SA is demonic and there exists an ab-straction relation abs : StC $ StA such that SA vabs SC , then for every h 2 LSA \ LSC :8 r 2 �nalSC (h) 9 s 2 �nalSA(h) : (r ; s) 2 absProof. We prove this by induction on the length of the histories h 2 LSA \ LSC .Base case (h = "): We have �nalSA(") = INITA and �nalSC (") = INITC . In this case,the assertion is exactly (SR2).Induction step: Assume hhh�; opi; !i 2 LSA \ LSC and r 0 2 �nalSC (hhh�; opi; !i). We�nd r 2 �nalSC (h) such that (h�; ri; hr 0; !i) 2 opSC . The induction hypothesis gives us

18s 2 �nalSA(h) with (r ; s) 2 abs. Since SA is demonic, s 2 preSA(h�; opi). Applying(DR2) we �nd s 0 2 StA with (r 0; s 0) 2 abs and (h�; si; hs 0; !i) 2 opSA. Therefore, s 0 2�nalSA(hhh�; opi; !i). 2Lemma 2 Assume speci�cations SA and SC . If SA is demonic and there exists an ab-straction relation abs : StC $ StA such that SA vabs SC , then for every t 2 Tr(LSA)nf"g:a) ? 6= ptraceSC (front(t)) � preSC (last (t))b) 8 r 2 ptraceSC (t) 9 s 2 ptraceSA(t) : (r ; s) 2 absProof. We prove the assertion by induction on the length of traces t 2 Tr(LSA) n f"g:Base case (t = h�; opi): Since we assume there exists at least one initial state for eachspeci�cation, INITC is non-empty and so ? 6= INITC = ptraceSC (") = ptraceSC (front(t)).Let r 2 ptraceSC (front(t)). Because of (SR2), we �nd s 2 INITA with (r ; s) 2 abs.SA is demonic and so INITA � preSA(h�; opi). Hence, s 2 preSA(h�; opi) and condition(DR1) implies r 2 preSC (h�; opi). This proves a). To prove b), assume r 0 2 ptraceSC (t).Then there exists r 2 INITC and ! 2 Out such that (h�; rihr 0; !i) 2 opSC . Then (SR2)implies that there exists s 2 INITA with (r ; s) 2 abs. Since SA is demonic, we haves 2 preSA(t) and (DR2) ensures the existence of s 0 2 ptraceSA(t) with (h�; sihs 0; !i) 2 opSAand (r 0; s 0) 2 abs.Induction step: Let th�; opi 2 Tr(LSA) with t 6= ". By the induction hypothesisa), we �nd ? 6= ptraceSC (front(t)) � preSC (last(t)). Hence, ? 6= ptraceSC (t). Letr 2 ptraceSC (t). Because of induction hypothesis b) we �nd an element s 2 ptraceSA(t)with (r ; s) 2 abs. SA is demonic and so, s 2 preSA(h�; opi). The condition (DR1) impliesr 2 preSC (h�; opi) which concludes the proof of a). For b), let r 0 2 ptraceSC (th�; opi).Then, there exists r 2 ptraceSC (t) and ! 2 Out such that (h�; ri; hr 0; !i) 2 opSC . Theinduction hypothesis b) ensures the existence of s 2 ptraceSA(t) with (r ; s) 2 abs. SA isdemonic, hence s 2 preSA(h�; opi). With (DR2) we �nd s 0 2 StA such that (r 0; s 0) 2 absand (h�; si; hs 0; !i) 2 opSA. Hence, s 0 2 ptraceSA(th�; opi). 2We can now prove the soundness of forward re�nement for demonic speci�cations.Theorem 1 Assume speci�cations SA and SC . If SA is demonic and there exists anabstraction relation abs : StC $ StA such that SA vabs SC , theni) SC [SA] is demonic and LSC [SA] = LSA \ LSC .ii) LSC b LSA.Proof. To prove LSC b LSA, we show the following properties:1) Tr(LSA) � Tr(LSC)2) 8h 2 LSA; h 0 2 LSC : I(h) = I(h 0)) h 0 2 LSA

19Observe that part a) of Lemma 2 implies 1). We prove assertion 2) by induction onthe length of the histories h 2 LSA and h 0 2 LSC .Base case (h = h 0 = "): This follows from the fact that " belongs to every language.Induction step: Assume hhh�; opi; !i 2 LSA and h 0hh�; opi; !0i 2 LSC with I(h) = I(h 0).Because of the induction hypothesis, h 0 2 LSA \ LSC . Let r 2 �nalSC (h 0) and r 0 2 StCwith (h�; ri; hr 0; !0i) 2 opSC . It follows from Lemma 1 that there exists s 2 �nalSA(h 0)such that (r ; s) 2 abs. SA is demonic, hence s 2 preSA(h�; opi). (DR2) gives us s 0 2 StAwith (h�; si; hs 0; !0i) 2 opSA. Hence, h 0hh�; opi; !0i 2 LSA.To prove i), �rst we show LSC [SA] = LSA \ LSC . The inclusions LSA \ LSC � LSC [SA]and LSC [SA] � LSC are obvious. We prove LSC [SA] � LSA by induction on the length ofh 2 LSC [SA].Base case (h = "): Again, this follows from the fact that " belongs to every language.Induction step: Let hhh�; opi; !i 2 LSC [SA]. Then, h 2 LSA \ LSC according to ourinduction hypothesis. We �nd r 2 �nalSC [SA](h) with r 2 preSC [SA](h�; opi). Then,preSA(h�; opi) 6= ? and r 2 �nalSC (h). Because of Lemma 1 we �nd s 2 �nalSA(h) with(r ; s) 2 abs. SA is demonic, hence s 2 preSA(h�; opi). Applying (DR2) we �nd s 0 2 StAsuch that (h�; si; hs 0; !i) 2 opSA. Hence, hhh�; opi; !i 2 LSA.To prove that SC [SA] is demonic we take a trace t 2 Tr(LSC [SA]) n f"g. From what weproved before it follows t 2 Tr(LSA \ LSC) n f"g. Because of preSA(last(t)) 6= ? we havepreSC (last(t)) = preSC [SA](last(t)). Hence, by Lemma 2 a),ptraceSC [SA](front(t)) � ptraceSC (front(t))� preSC (last(t))= preSC [SA](last(t)) 2We have seen that LSC b LSA is a necessary condition for forward re�nement as de�nedabove. It is not su�cient for forward re�nement of nondeterministic speci�cations ingeneral. With respect to our semantics we have a sound, but not a complete re�nementtechnique. Nevertheless, forward re�nement is a complete method if we restrict ourselvesto semi-deterministic speci�cations.Theorem 2 Assume a demonic, semi-deterministic speci�cation SA and a demonic spec-i�cation SC . Then the following two conditions are equivalent.i) LSC b LSAii) SA v SCProof. ii)) i) is a consequence of Theorem 1 ii).i)) ii): For demonic speci�cations SA and SC we de�ne a relation abs : StC $ StAby (r ; s) 2 abs i� 9 h 2 LSC \ LSA : r 2 �nalSC (h) ^ s 2 �nalSA(h)We are going to prove the re�nement relation SA vabs SC . Assume a certain operationop 2 Op.

20(DR1) and (DR2) : Let (r ; s) 2 abs and s 2 preSA(h�; opi). There exists a historyh 2 LSA \ LSC with s 2 �nalSA(h) and r 2 �nalSC (h). Therefore I(h)h�; opi 2 Tr(LSA).Since LSC b LSA we have I(h) h�; opi 2 Tr(LSC). Because SC is demonic we mayconclude ptraceSC (I(h)) � preSC (h�; opi), and so r 2 preSC (h�; opi).Assume now r 0 2 StC and ! 2 Out with (h�; ri; hr 0; !i) 2 opSC . Hence we gethhh�; opi; !i 2 LSC and r 0 2 �nalSC (hhh�; opi; !i). From LSC b LSA we may concludehhh�; opi; !i 2 LSC \ LSA and so �nalSA(hhh�; opi; !i) 6= ?. SA is semi-deterministic andso we can �nd a state s 0 2 �nalSA(hhh�; opi; !i) such that (h�; sihs 0; !i) 2 opSA, and wehave (r 0; s 0) 2 abs according to our de�nition.(SR2) : This is satis�ed because for r 2 INITC = �nalSC (") and s 2 INITA = �nalSA(")we have (r ; s) 2 abs. 2Note that the implication i)) ii) of Theorem 2 holds without the assumption thatSA is demonic. Note also that if condition i) or condition ii) holds, that we can alwaysuse the abstraction relation(r ; s) 2 abs i� 9 h 2 LSC \ LSA : r 2 �nalSC (h) ^ s 2 �nalSA(h)to show that SA vabs SC .For the speci�cations and languages in the appendices, since SA2 is semi-deterministicand both LA and LB are demonic, and LB b LA, we can conclude SA2 v SB1. Theabstraction relation that can be used to show this isabs = f(i ;?) : i 2Zg[f(i ; i) : i 2ZgSimilarly, we can use the above theorem to prove SA2 v SA1 and the same abstractionrelation applies in this case.The theorem also proves that there is no abstraction relation so that SB1 forwardre�nes to either SA1 or SA2. Similarly, since it is not the case that LC b LF , Theorem 1proves that there is no abstraction relation so that SF1 forward re�nes to SC1. Notethat we cannot use Theorem 2 for the last case, because SC1 is not demonic.5. State-abstraction for semi-deterministic speci�cationsWe now formalise our notion of state abstractness for demonic, semi-deterministic spec-i�cations. We show that languages and semi-deterministic speci�cations de�ne right con-gruences in a natural way. Moreover, a partial ordering on these right-congruences char-acterises forward re�nement with abstraction functions. This re
ects our understandingof re�nement proofs with respect to state abstraction.De�nition 12 a) For any equivalence relation R on a set M and r 2 M we denotethe corresponding equivalence class by r = fm 2 M j rRmg and the quotient spacefr j r 2 M g by M =R. For equivalence relations R1;R2 on M and subsets M1, M2of M , R1 BM1 � R2 BM2 (read \relation R1 restricted to M1 re�nes relation R2restricted to M2") if each equivalence class of R1 restricted to M1 is a subset of someequivalence class of R2 restricted to M2. If no restriction occurs we write R1 � R2.Note that � de�nes a partial ordering on pairs of equivalence relations and subsetsof M .

21b) A relation R : H $ H is right invariant if (8 z 2 H)(xRy) xzRyz). An equiva-lence relation that is right invariant is called a right congruence. In this case theconcatenation of any equivalence class h 2 R with a history z 2 H is well-de�nedby h z b= hz .c) We say that a right congruence R : H $ H de�nes language L if L = H or L = Hny,for some y 2 H.d) For a language L � H and x ; y 2 H, xRLy i� (8 z 2 H)(xz 2 L , yz 2 L).e) For a speci�cation S we de�ne a re
exive and symmetric relation R1S ,xR1Sy i� (x ; y 2 LS ^ �nalS (x) \ �nalS (y) 6= ?) _ (x ; y 62 LS)on histories x ; y 2 H. Its transitive closure will be denoted by RS .An arbitrary right congruence R typically de�nes more than one language, and everyright congruence R on H trivially de�nes the language H. Consider the language LA andspeci�cations SA1 and SA2 in the appendix. The equivalence relation RLA contains oneequivalence class for all x 62 LA, one equivalence class for all histories x 2 LA ending inhrandom;?i, and one equivalence class for every v 2Zcontaining all histories ending inhval ; vi (the equivalence class for the integer 0 also contains the empty history "). Theequivalence relation RSA1 contains two equivalence classes: one for all x 62 LA and thesecond one for all x 2 LA. To see that all x 2 LA belong to one equivalence class, note thathrandom;?i 2 LA and that �nalSA1(hrandom;?i) = Z. Therefore, since �nalSA1(x) 2 Zfor all x 2 LA, we have�nalSA1(x) \ �nalSA1(hrandom;?i) 6= ?For SA2, on the other hand, we have RSA2 = RLA.The following proposition states the correspondence between RL and RS .Proposition 7 i) For every language L, RL is a right congruence that de�nes L.ii) Let R be a right congruence that de�nes a language L. Then R � RL.iii) For every semi-deterministic speci�cation S, RS is a right congruence that de�nesthe language LS with RS � RLS .Proof. Assertion i) follows directly from the de�nition.For ii): Let uRw for u;w 2 H. Assume further z 2 H with uz 2 L. R is a rightcongruence and therefore uzRwz . Furthermore, R is a right congruence that de�nes L,which means that we cannot have uz 2 L, uzRwz , and wz 62 L. Hence, wz 2 L andtherefore uRLw .For iii): We prove RS is right invariant. Let xRSy with x ; y 2 LS . This means thatthere exist elements xi 2 LS , i = 0; :::;n withx = x0 ; xn = y ;�nal(xi) \ �nal(xi+1) 6= ? ; i = 0; :::;n � 1

22S is semi-deterministic and so we get for z 2 H, xz 2 LS , yz 2 LS , and if xz 2 LS�nal(xi z) \ �nal(xi+1z) 6= ? ; i = 0; :::;n � 1and hence xzRSyz . Finally, since RS is a right invariance that de�nes LS it follows fromii) that RS � RLS . 2SA1 is an example of a speci�cation where RSA1 is not right invariant and does notre�ne RLA, which is because SA1 is not semi-deterministic.We are going to reduce the nondeterminism of a semi-deterministic speci�cation toreal determinism in the state space, i.e., we transform the speci�cation into a state-deterministic one. This will be done by using the equivalence relation that is induced onthe state space via the above introduced equivalence relation RS .De�nition 13 Given a semi-deterministic speci�cationS = (Op;St ; In;Out ; INIT; S)we de�ne an equivalence relation ES on the state space St by sESs 0 i�9 h 2 LS : s; s 0 2 [f�nalS (h 0) j h 0RSh g _ s; s 0 2 St n [f�nalS (h 0) j h 0 2 LS gWe denote the corresponding quotient spaces bySt = St=ES ; INIT = INIT=ESIn addition, we get a corresponding speci�cation S = (Op;St ; In;Out ; INIT; S) if wede�ne,opS = f(h�; si; hs 0; !0i) j (h�; si; hs 0; !0i) 2 opS g ; for all op 2 OpFor the speci�cation SE1 from the appendix, the state space of SE1 consists of equiv-alence classes of states of SE1. Thus, each state of SE1 contains a set of states of typese1 de�ned byse1v :Zstuck : BFor example, the initial state of SE1 is the equivalence class with the singleton set con-taining the element s 2 se1 such that s:v = 0 and : s:stuck . Moreover, the states ofSE1 contain all equivalence classes that are a singleton set with one element s such that: s:stuck , plus the one equivalence class consisting of all elements s such that s:v is anyinteger and s:stuck is true. The latter equivalence class is a state in SE1 because all thesestates in SE1 really represent the same abstract state (i.e., they are indistinguishable withrespect to future behaviour).In general, the correspondence between S and S is formulated in the following Propo-sition.

23Proposition 8 Let S be a semi-deterministic speci�cation. Then,a) S is state-deterministic with LS = LS and RS = RSb) S is state-deterministic i� S = Sc) S is demonic i� S is demonicProof. We �rst prove the following two properties:i) 8 s 2 St ; h 2 LS : s 2 �nalS (h)) s = [f�nalS (h 0) j h 0RSh gii) 8 s 2 St ; h 2 LS : s 2 �nalS (h)) s = [f�nalS (h 0) j h 0RSh gAssertion i) is an immediate consequence from the de�nition of RS and ES . We prove ii)by induction on the length of h 2 LS .Base case (h = "): Let s 2 �nalS ("). Because of �nalS (") = INIT we �nd s0 2 INIT withsESs0. From i) and s0 2 �nalS (") we concludes = s0 = [f�nalS (h 0) j h 0RS" gInduction step: Assume h 2 LS , last(h) = hh�; opi; !i and s 2 �nalS (h). Then we�nd s0 2 �nalS (front(h)) with (h�; s0i; hs ; !i) 2 opS . Our induction hypothesis givesus s0 = [f�nalS (h 0) j h 0RS front(h) g. The de�nition of opS guarantees the existence ofs 00 2 s0 and s 0 2 s with (h�; s00i; hs 0; !i) 2 opS . Hence, we �nd h0 2 LS with s 00 2 �nalS (h0)and h0RS front(h). Note that s 0 2 �nalS (h0hh�; opi; !i) and because of i) and the rightinvariance of RS ,s = s 0 = [f�nalS (h 0) j h 0RSh0hh�; opi; !i g= [f�nalS (h 0) j h 0RSh gThis �nishes the proof of ii), which shows that S is state-deterministic. The inclusionLS � LS is obvious. For h 2 LS we �nd s 2 �nalS (h); from ii) we can concludes = [f�nalS (h 0) j h 0RShg and therefore �nalS (h) 6= ?. Hence, h 2 LS .To see RS = RS we take h1; h2 2 H. Note the following equivalences:h1RSh2 ^ h1; h2 2 LS , 9 s 2 �nalS (h1) : s = [f�nalS (h 0) j h 0RSh1g ^s = [f�nalS (h 0) j h 0RSh2g, 9 s 2 St : �nalS (h1) = �nalS (h2) = fsg, h1RSh2 ^ h1; h2 2 LSThe �rst equivalence follows from i), the second from LS = LS and ii), and the thirdfrom the fact that S is state-deterministic.The assertion b) follows from i) and ii), and c) follows from Proposition 3 and LS = LS :S demonic , LS demonic , LS demonic , S demonic 2For the speci�cations in the appendix, note that SE1 is semi-deterministic, but notstate-deterministic, and hence SE1 6= SE1.We now introduce a relation on pairs (R;L) where R : H $ H is a right congruencethat de�nes a language L.

24De�nition 14 (R1;L1) � (R2;L2) i� L1 b L2 ^ R1 B (L1 \ L2) � R2R1 B (L1 \ L2) is an equivalence relation on L1 \ L2, and the above de�nition requiresthat every equivalence class of R1B(L1\L2) is a subset of an equivalence class of R2. Notethat the restriction of R1 to L1\L2 can be canonically extended to a right congruence onH that de�nes L1 \ L2. Note also that if L1 = L2 then the relation (R1;L1) � (R2;L2)reduces to R1 � R2.Proposition 9 The relation � de�nes a partial ordering on pairs (R;L) as above.Proof. The re
exivity and antisymmetry of � are immediate from the de�nition. Forthe transitivity assume (R1;L1) � (R2;L2) � (R3;L3). Then, L1 b L2 b L3 and so, withProposition 5 iii), L1 \ L3 � L2. Hence,R1 B (L1 \ L3) = R1 B (L1 \ L2 \ L3)� R2 B (L2 \ L3)� R3 2We will use this partial ordering to generalise the main results of [9] to demonic, semi-deterministic speci�cations.De�nition 15 Let L be a language. We de�ne the corresponding abstraction lattice byALL = hfR j R right congruence that de�nes Lg;�iProposition 10 ALL is a complete lattice with greatest element RL and least elementR?L , h R?L h 0 i� (h; h 0 2 L ^ h = h 0) _ h; h 0 2 H n LProof. Note that inffRi j i 2 I g = \i2IRi and supfRi j i 2 I g = trcl([i2IRi) forany family Ri 2 ALL, i 2 I , where trcl denotes the transitive closure of a relation. Inthis lattice, according to Proposition 7, RL is the greatest element; the least element isthe partition of L consisting entirely of singleton sets, R?L . 2We will see that the abstraction lattice characterises state abstraction on deterministiclanguages and their semi-deterministic speci�cations. If states are viewed as history sum-maries, then RL summarises the histories as much as possible, and the minimum elementdoes no summarisation at all. Proposition 7 tells us that the abstraction lattice for lan-guage L contains an element for every semi-deterministic speci�cation S with languageL, i.e., RS .Consider the speci�cation SE1 from the appendix. It is semi-deterministic and fullyabstract in the sense that RLE = RSE1. To obtain a speci�cation that is not fully abstract,we can simply change the speci�cation of random fromrandom�(v): stuck) v 0 = v + 1

25to random�(v)v 0 = v + 1The new speci�cation SE2 always increments the value of v in random and is thus state-deterministic. SE1 only increments the value of v when stuck is false, and leaves the valueof v 0 unspeci�ed when stuck is true. Note that this does not change the language de�nedby the speci�cation, because when stuck is true, the future behaviour does not dependon the value of v any more. Now (RSE2;LE) � (RSE1;LE) because every two historiesdistinguished by RSE1 are also distinguished by RSE2. However, the converse is not true,since RSE2 distinguishes histories that RSE1 does not. Therefore, for LE we have:(R?LE ;LE) � (RSE2;LE) � (RSE1;LE) = (RLE ;LE)Unfortunately, the lattice ALL is not su�cient as a domain for data re�nement proofswith nondeterministic languages. During a forward re�nement, traces might lose corre-sponding output sequences. This is the reason why we have to consider all languages L0with L0 b L.De�nition 16 We de�ne the partially ordered setASH = h f (R;L) j R 2 ALL ^ L 2 LandH g ; �iand call it the state abstraction poset of H.The greatest element of ASH is (f(x ; y) j x = y = " _ x ; y 2 H n f"gg; f"g). Ingeneral, ASH is neither a lattice, nor a meet semi-lattice, nor a join semi-lattice, due tothe nondeterminism in the underlying re�nement ordering. Note that by adding a bottomelement we obtain a chain complete poset, i.e. a poset where every chain has a supremum.In this poset, the in�mum of a chain exists if for each language in the chain there is asmaller language in the chain which is �nite, in the sense that the number of outputs fora given input is always �nite.We propose that the abstraction poset is used to characterise state abstractness on de-monic, semi-deterministic speci�cations. Speci�cally, for two demonic, semi-deterministicspeci�cations SA;SC we will say that SC is less state abstract than SA if(RSC ;LSC) � (RSA;LSA)For the language LE from the appendix, we have shown a number of elements in thestate abstraction lattice. However, for all these, the language LE is the same. For anexample of two elements in a state abstraction poset for which the languages are notthe same, consider the language SG1 obtained from SA1 by adding the operation zeroand the state variable stuck that behave in the same way as in SE1. SG1 is not semi-deterministic. We therefore change SG1 to SG2 using the same technique that was used

26to turn SA1 into a state-deterministic speci�cation SA2 by introducing the special value? to indicate that random has been called without being followed by a call to val . ThenSG2 is state-deterministic and (RSE1;LE) � (RSG2;LG). Note that LE 6= LG, but thatLE b LG .We have seen that every semi-deterministic speci�cation de�nes a right-congruence ina natural way. The converse is true as well. Every element of ASH determines a semi-deterministic speci�cation in the following sense.De�nition 17 For a right congruence R : H ! H that de�nes a language L � H wede�ne a speci�cation S (R;L) = (Op;StS(R;L); In;Out ; INITS(R;L); S(R;L)) with state andinitialisation spacesStS(R;L) = fh j h 2 Lg ; INITS(R;L) = f"gThen, for each operation op 2 Op we de�ne the following state transitions on St:opS(R;L) = f(h�; ti; ht 0; !i) j � 2 In ^ ! 2 Out ^ t ; t 0 2 StS(R;L) ^ t 0 = t hh�; opi; !igProposition 11 Let R : H ! H be a right congruence that de�nes a language L � H.Then the following properties hold.i) S (R;L) is state-deterministic with RS(R;L) = R and LS(R;L) = L.ii) S (R;L) demonic , L demonic.Proof. For i): By induction over the length of histories in LS(R;L), respectively L, weprovea) 8h 2 LS(R;L) : h 2 L ^ �nalS(R;L)(h) = fhgb) L � LS(R;L)For a): Base case (h = "): �nalS(R;L)(") = INITS(R;L) = f"g.Induction step: Let h 2 LS(R;L) with last(h) = hh�; opi; !i. Since LS(R;L) is pre�x-closed, front(h) 2 LS(R;L) and by the induction hypothesis,�nalS(R;L)(front(h)) = ffront(h)gR is a right invariance, hence front(h) last(h) = h. We therefore have �nalS(R;L)(h) 6= ?and there exists t 0 2 St such that (h�; front(h)i; ht 0; !i) 2 opS(R;L). The de�nition ofopS(R;L) gives us t 0 = front(h) last(h) = h. Therefore, h 2 L and �nalS(R;L)(h) = fhg.For b): Induction step: Let h 2 L with last(h) = hh�; opi; !i. By the inductionhypothesis, we have front(h) 2 LS(R;L). Because of a), �nalS(R;L)(front(h)) = ffront(h)g.Hence, (h�; front(h)i; hh; !i) 2 opS(R;L) and we are done withh = front(h) last(h) 2 LS(R;L)

27From a) follows it that S (R;L) is state-deterministic; a) and b) imply L = LS(R;L).Now, for h1; h2 2 H,h1Rh2 ^ h1; h2 2 L , �nalS(R;L)(h1) = fh1g = �nalS(R;L)(h2), h1RS(R;L)h2 ^ h1; h2 2 LS(R;L)and therefore, R = RS(R;L).For ii): With i) and Proposition 3 we get that S (R;L) is demonic i� L is demonic. 2We next show that the ordering � on the state-abstraction poset ASH has a concreteinterpretation in the context of demonic, semi-deterministic speci�cations.Theorem 3 Assume demonic, semi-deterministic speci�cations SA and SC . Then thefollowing properties are equivalent.i) (RSC ;LSC) � (RSA;LSA)ii) SA vabs1 SC , with a partial function abs1 : StC 7! StAiii) S (RSA;LSA) vabs2 S (RSC ;LSC), with a function abs2 : (LSA\LSC)=RSC ! LSA=RSAProof. By Proposition 8 we get the demonic, state-deterministic speci�cations SA andSC with LSA = LSA, LSC = LSC , RSA = RSA and RSC = RSC .i)) ii): With RSC B (LSC \ LSA) � RSA and LSC b LSA there exists a naturalembeddingabs2 : (LSC \ LSA)=RSC ! LSA=RSA ; abs2(h) = h (2)Now we de�ne a relation abs1 : StC $ StA ; by(t ; s) 2 abs1 i� 9 h 2 LSA \ LSC : fsg = �nalSA(h) ^ ftg = �nalSC (h)From the remark following Theorem 2, we conclude SA vabs1 SC . It remains to provethat abs1 is a partial function from StC to StA. Let (t ; s1), (t ; s2) 2 abs1, then there existh1; h2 2 LSA \ LSC witha) �nalSC (h1) = ftg = �nalSC (h2)b) �nalSA(h1) = fs1g ; �nalSA(h2) = fs2gFrom a) it follows that h1RSCh2. Then, the embedding abs2 in (2) gives us h1RSAh2 whichis equivalent to h1RSAh2. Recall that SA is state-deterministic, and hence s1 = s2.ii)) i): Assume SA vabs SC with a partial function abs1 : StC 7! StA. By applyingTheorem 1 we get LSC b LSA. Then, because of Lemma 1 we know that the abstractionfunction abs1 satis�es for every h 2 LSC \ LSA the following condition:c) 8 t 2 StC : ftg = �nalSC (h)) t 2 dom(abs1) ^ fabs1(t)g = �nalSA(h)

28Obligation c) asserts that the embedding (2) is well-de�ned. This �nishes the proof ofii)) i).i) , iii): Because of Propositions 11, 8 we have S (RSA;LSA) = S (RSA;LSA) andS (RSC ;LSC) = S (RSC ;LSC). Then, equivalence i) , iii) is an immediate consequenceof equivalence i), ii) with the speci�cations S (RSA;LSA) and S (RSC ;LSC). 2From statement c) it follows that any abstraction function abs1 that satis�es ii), isuniquely determined on the set S f�nalSC (h) j h 2 LSA \ LSC g and satis�es8h 2 LSA \ LSC ; t 2 StC :ftg = �nalSC (h)) (t 2 dom(abs1) ^ fabs1(t)g = �nalSA(h))Obviously, for two demonic, semi-deterministic speci�cations SA and SC , equality inASH means RSA = RSC and LSA = LSC . From Theorem 3 we can now deduce what thisequality means in terms of the underlying state spaces: two demonic, semi-deterministicspeci�cations SA and SC are equal in ASH i� there is a partial injection abs : StC 7! StAsuch that SA vabs SC vabs�1 SA.The following special case of Theorem 3 extends the main result of [9] for deterministicand complete languages: for a demonic language L, two elements in the abstraction latticeALL are related if and only if there exists a functional re�nement for the underlyingdemonic, semi-deterministic speci�cations. Recall that a semi-deterministic speci�cationis demonic exactly if it de�nes a demonic language.Corollary 1 Assume demonic, semi-deterministic speci�cations SA and SC that de�nethe same language. Then the following properties are equivalent.i) RSC � RSAii) There exists a partial function abs : StC 7! StA such that SA vabs SC .6. Completeness of re�nementWe have seen that re�nement with obligations (SR1) and (SR2) is a sound and completemethod for demonic, semi-deterministic speci�cations. But what happens if the speci�-cations are not semi-deterministic? In this case, forward re�nement is not complete. Inother words, there exist demonic speci�cations SA and SC with languages LSC b LSAwhere SA cannot be re�ned to SC with (SR1) and (SR2). For example, SA1 does notre�ne to SA2, even though both are demonic and de�ne the same language.This re
ects the similarity with common forward re�nement techniques which are notcomplete, unless an adequate backward re�nement technique is added [13,10,15].In this section, we de�ne a backward re�nement technique to also obtain a completeproof method in our framework. We show that this method together with forward re�ne-ment is sound and complete, i.e., for speci�cations SA and SC with languages LSC b LSAwe have a re�nement from SA to SC with a combination of forward and backward re�ne-ment. To accomplish this, we construct intermediate speci�cations.We �rst de�ne a notion of backward re�nement for operations in our context.

29De�nition 18 Given two speci�cations SA = (Op;StA; In;Out ; INITA; SA) and SC =(Op;StC ; In;Out ; INITC ; SC) with a relationabs : StC $ StAand an operation op 2 Op, we say that opSA backward re�nes to opSC (opSA v0abs opSC)if the following obligations are ful�lled.(DR1') 8 � 2 In : preSA(h�; opi) 6= ?) (preSC (h�; opi) 6= ? ^(8 t 2 postSC (h�; opi)9 s 2 postSA(h�; opi) : (t ; s) 2 abs) ^(8 t 2 postSC (h�; opi) ; s 2 StA : (t ; s) 2 abs) s 2 postSA(h�; opi)))(DR2') 8 � 2 In ; ! 2 Out ; s; s 0 2 StA ; t 2 StC :((t ; s) 2 abs ^ (h�; si; hs 0; !i) 2 opSA))(9 t 0 2 StC : (h�; ti; ht 0; !i) 2 opSC ^ (t 0; s 0) 2 abs)(DR3') 8 � 2 In ; ! 2 Out ; s 0 2 StA ; t ; t 0 2 StC :((t 0; s 0) 2 abs ^ s 0 2 postSA(h�; opi) ^ (h�; ti; ht 0; !i) 2 opSC))(9 s 2 StA : (h�; si; hs 0; !i) 2 opSA ^ (t ; s) 2 abs)This relation de�nes a preorder on operations which is di�erent from the commonbackward re�nement notions [8,13,10,11,15,17], as explained in Section 7.De�nition 19 We say that a speci�cation SA can be backward re�ned to speci�cation SCif there exists an abstraction relation abs, as above, such that(SR1') 8op 2 Op : opSA v0abs opSC(SR2') (8 s 2 INITA 9 t 2 INITC : (t ; s) 2 abs) ^(8 s 2 StA ; t 2 INITC : (t ; s) 2 abs) s 2 INITA)In this case, we write SA v0abs SC or simply SA v0 SC .Note that we use the symbol v0 in di�erent contexts for operation and speci�cationre�nement.As for forward re�nement, backward re�nement as de�ned above de�nes a preorder.Proposition 12 The relation v0 de�nes a preorder on speci�cations S .The following propositions and lemmas are used to show that forward re�nementv andbackward re�nement v0 together form a sound and complete proof method for speci�ca-tion re�nement. We �rst concentrate on the soundness of backward re�nement and thende�ne the intermediate speci�cations that are needed to show that forward and backwardre�nement together are complete.Now, recall the restricted-use speci�cation SC [SA] from De�nition 11. Similar to for-ward re�nement, SC [SA] de�nes how SA is simulated in SC under a backward re�nement.Proposition 13 For speci�cations SA and SC :

30i) SC [SA] v0id SC with the identity id on StCii) SA v0abs SC , SA v0abs SC [SA]Proof. i) is straightforward and that SA v0abs SC [SA] implies SA v0abs SC is aconsequence of i) and the transitivity of v0. It remains to prove that SA v0abs SC impliesSA v0abs SC [SA]. We assume SA v0abs SC and an operation op 2 Op:For (DR10): Let preSA(h�; opi) 6= ?. Because of (DR10) for the re�nement SA v0abs SCwe have preSC (h�; opi) 6= ? and hence by de�nition of SC [SA], preSC [SA](h�; opi) 6= ?.Now, assume r 2 postSC [SA](h�; opi). Then, r 2 postSC (h�; opi) and because of (DR10),there exists s 2 postSA(h�; opi) such that (r ; s) 2 abs. But, if r 2 postSC [SA](h�; opi) ands 2 StA with (r ; s) 2 abs, then r 2 postSC (h�; opi). Again, because of (DR10) we canconclude that s 2 postSA(h�; opi).For (DR20): Let (r ; s) 2 abs and (h�; si; hs 0; !i) 2 opSA. (DR20) implies the exis-tence of r 0 2 StC such that (h�; ri; hr 0; !i) 2 opSC . Hence, by the de�nition of SC [SA],(h�; ri; hr 0; !i) 2 opSC [SA].For (DR30): Let (r 0; s 0) 2 abs and (h�; ri; hr 0; !i) 2 opSC [SA] with s 0 2 postSA(h�; opi).Then, (h�; ri; hr 0; !i) 2 opSC and by condition (DR30), there exists s 2 StA such that(h�; si; hs 0; !i) 2 opSA and (r ; s) 2 abs.(SR20) is ful�lled, because SC and SC [SA] have the same initialisation sets. 2The next theorem states the soundness of backward re�nement. Before that, we provetwo lemmas.Lemma 3 Assume speci�cations SA and SC . If there exists an abstraction relation abs :StC $ StA such that SA v0abs SC , then for every h 2 LSC [SA]:i) 8 s 2 �nalSA(h) 9 r 2 �nalSC [SA](h) : (r ; s) 2 absii) 8 s 2 StA ; r 2 �nalSC [SA](h) : (r ; s) 2 abs) s 2 �nalSA(h)iii) �nalSA(h) 6= ?Proof. We prove our assertion by induction on the length of h 2 LSC [SA]:Base case (h = "): In this case i) and ii) follow from (SR20) and iii) is ful�lled becauseINITA 6= ?.Induction step: Let hhh�; opi; !i 2 LSC [SA].For i): Assume s 0 2 �nalSA(hhh�; opi; !i). Let s 2 �nalSA(h) with (h�; si; hs 0; !i) 2opSA. From the induction hypothesis i) we can conclude r 2 �nalSC [SA](h), and thusr 2 �nalSC (h), with (r ; s) 2 abs. Because of (DR20) we �nd r 0 2 StC such that(h�; ri; hr 0; !i) 2 opSC , and hence (h�; ri; hr 0; !i) 2 opSC [SA] with (r 0; s 0) 2 abs.For ii): Let s 0 2 StA, r 0 2 �nalSC [SA](hhh�; opi; !i) with (r 0; s 0) 2 abs. Hence, thereexists r 2 �nalSC [SA](h) with (h�; ri; hr 0; !i) 2 opSC [SA]. According to the de�nition ofSC [SA] we have preSA(h�; opi) 6= ?. Because of (DR10) we get s 0 2 postSA(h�; opi). (DR30)then leads to s 2 StA with (h�; si; hs 0; !i) 2 opSA and (r ; s) 2 abs. Our induction hypoth-esis ii) then allows us to conclude s 2 �nalSA(h) and hence, s 0 2 �nalSA(hhh�; opi; !i).

31For iii): From �nalSC [SA](hhh�; opi; !i) 6= ?, we can deduce preSA(h�; opi) 6= ?. We then�x r 0 2 �nalSC [SA](hhh�; opi; !i). Then, r 0 2 postSC [SA](h�; opi). Because of (DR10) we �nds 0 2 postSA(h�; opi) with (r 0; s 0) 2 abs. From ii) we conclude s 0 2 �nalSA(hhh�; opi; !i). 2Lemma 4 Assume speci�cations SA and SC . If there exists an abstraction relation abs :StC $ StA such that SA v0abs SC , then for every h 2 LSA:8 s 2 �nalSA(h) 9 r 2 �nalSC [SA](h) : (r ; s) 2 absProof. We prove our assertion by induction on the length of h 2 LSA:Base case (h = "): In this case our assertion is ful�lled because of (SR20).Induction step: Let hhh�; opi; !i 2 LSA. Let s 0 2 �nalSA(hhh�; opi; !i). Then, we �nds 2 �nalSA(h) with (h�; si; hs 0; !i) 2 opSA. By the induction hypothesis, we can �nd anr 2 �nalSC [SA](h) with (r ; s) 2 abs. Because of (DR20) there exists r 0 2 StC such that(h�; ri; hr 0; !i) 2 opSC [SA] and (r 0; s 0) 2 abs. 2Theorem 4 Let SA and SC be speci�cations with SA v0abs SC . Then,i) LSC b LSA and LSC [SA] = LSA = LSA \ LSCii) SC [SA] is demonic ifSA is demonic and 8 t 2 INITC 9 s 2 StA : (t ; s) 2 abs (3)Proof. For i): By the de�nition of SC [SA], LSC [SA] � LSC . Furthermore, fromLemma 4, LSA � LSC [SA] and from Lemma 3, LSC [SA] � LSA. This proves LSC [SA] =LSA = LSA \ LSC .For LSC b LSA we prove8 t 2 Tr(LSA) : rLSC (t) � rLSA (t)by induction on the length of the traces:Induction step: Let t = t 0h�; opi 2 Tr(LSA) and h = h 0hh�; opi; !i 2 rLSC (t). Then we�nd r 2 �nalSC (h 0), r 0 2 StC with (h�; ri; hr 0; !i) 2 opSC . Since preSA(h�; opi) 6= ? and(DR10), there exists s 0 2 postSA(h�; opi) with (r 0; s 0) 2 abs. Then, (DR30) gives us theexistence of s 2 StA with (h�; si; hs 0; !i) 2 opSA and (r ; s) 2 abs. Finally, our inductionhypothesis together with Lemma 3 ii) ensure that s 2 �nalSA(h 0), and therefore h 2 LSA.For ii): Let th�; opi 2 Tr(SC [SA]). We have to show ptraceSC [SA](t) � preSC [SA](h�; opi).Let r 2 ptraceSC [SA](t).First case, t = ": Then, r 2 INITC . Because of condition (3) we �nd s 2 StA, and(SR20) implies s 2 INITA. SA is demonic and so, s 2 preSA(h�; opi). (DR20) impliesr 2 preSC [SA](h�; opi).Second case, t 6= ": Because of (DR10) we �nd s 2 ptraceSA(t) with (r ; s) 2 abs. SA isdemonic, hence s 2 preSA(h�; opi) and with (DR20) we conclude r 2 preSC [SA](h�; opi).

32 2The above result proves the soundness of backward re�nement with respect to theordering b. To prove the completeness of the combination of forward and backwardre�nement, we construct two intermediate speci�cations.De�nition 20 Let S = (Op, St, In, Out, INIT, S) be a speci�cation. We de�ne thecorresponding tight speci�cation bS = (Op;St ; In;Out ; INIT; bS) withopbS = f(h�; s); hs 0; !0i) 2 opS j 9 h 2 LS : s 2 �nalS (h)g ; for all op 2 OpEach opbS is created by restricting the pre- and postconditions of the operation opSas much as possible without changing the overall behaviour of the speci�cation S . It isobvious that bS has exactly the same behaviour as S .Lemma 5 Assume a speci�cation S. Then S vabs bS and bS vabs S with(r ; s) 2 abs i� (r = s ^ 9 h 2 LS : s 2 �nalS (h))Additionally, LS = LbS and bS is demonic i� S is.Proof. The proof is a straightforward veri�cation of the data re�nement rules (DR1),(DR2), and (SR2).For (DR1) and (DR2): Let (r ; s) 2 abs. Then, r = s and there exists h 2 LS withs 2 �nalS (h). By de�nition of bS , we get s 2 preS (h�; opi) , s 2 prebS (h�; opi).In addition, we have(h�; si; hs 0; !i) 2 opbS ^ (s 0; s 0) 2 abs , (h�; si; hs 0; !i) 2 opS ^ (s 0; s 0) 2 abs(SR2) is obvious because the same initialisation sets are used in S and bS .Obviously, LbS � LS and to show LS � LbS , we prove 8h 2 LS : �nalS (h) = �nalbS (h)by induction on the length of h 2 LS :Base case (h = "): �nalS (") = INIT = �nalbS (").Induction step: Let hhh�; opi; !i 2 LS . From the induction hypothesis, �nalS (h) =�nalbS (h). The de�nition of opbS then implies �nalS (hhh�; opi; !i) = �nalbS (hhh�; opi; !i).Of course, this implies for every trace t 2 Tr(Ls) that ptraceS(t) = ptracebS(t) and theremaining assertion, S demonic i� bS demonic, is an immediate consequence. 2With the same notations as above we prove that bS backward re�nes to S (R?LS ;LS).Recall that the state space StS(R?LS ;LS) can be identi�ed with the set LS [fH n LSg.Lemma 6 Let S be a speci�cation. Then bS v0abs S (R?LS ;LS) with(h; s) 2 abs i� s 2 �nalS (h)

33Proof. For (DR10): Let s 2 postbS(h�; opi). Because of the tight de�nition of opbSthere exists a history h 2 LS with last(I(h)) = h�; opi such that s 2 �nalS (h). Hence(h; s) 2 abs and h 2 postS(R?LS ;LS)(h�; opi).If h 2 postS(R?LS ;LS)(h�; opi), then h 2 LS and thus there exists s 2 �nalS (h). Therefore,s 2 postbS(h�; opi) and (h; s) 2 abs.Let h 0 2 postS(R?LS ;LS)(h�; opi) and s 0 2 St with (h 0; s 0) 2 abs. Thus, s 0 2 �nalS (h 0) andwe �nd h 2 LS , ! 2 Out such that h 0 = hhh�; opi; !i. Hence, there exists s 2 �nalS (h)with (h�; si; hs 0; !i) 2 opS . Then, (h�; si; hs 0; !i) 2 opbS .For (DR20): Assume (h; s) 2 abs and (h�; si; hs 0; !i) 2 opbS . Therefore, s 2 �nalS (h)and hence hhh�; opi; !i 2 LS . Hence, s 0 2 �nalS (hhh�; opi; !i). We conclude that(hhh�; opi; !i; s 0) 2 abs and (h�; hi; hhhh�; opi; !i; !i) 2 opS(R?LS ;LS).For (DR30): Let (h 0; s 0) 2 abs and (h�; hi; hh 0; !i) 2 opS(R?LS ;LS). Then, s 0 2 �nalS (h 0)according to our de�nition, and there exists s 2 �nalS (h) such that (h�; si; hs 0; !i) 2 opbS .For (SR20): Note that �nalS (") = INIT and INITS(R?LS ;LS) = f"g. Hence, s 2 INIT i�("; s) 2 abs. 2Lemma 7 Let SA and SC be speci�cations with demonic SC and let LSC b LSA. Thenthere is a forward re�nement S (R?LSA ;LSA) vabs SC with(r ; h) 2 abs i� h 2 LSA \ LSC ^ r 2 �nalSC (h)Proof. This follows from Proposition 11 and Theorem 2 where, as we remarked,i)) ii) holds for not necessarily demonic SA. 2Finally, we formulate the completeness Theorem of the combination of forward andbackward re�nement which is a consequence of Lemmas 5, 6 and 7.Theorem 5 Let SA and SC be speci�cations, SC demonic with LSC b LSA. Then thereexist abstraction relations absi , i = 1; 2; 3 such thatSA vabs1 bSA v0abs2 S (R?LSA ;LSA) vabs3 SCIf we restrict ourselves to demonic speci�cations, this completeness result together withTheorems 1 and 4 shows that forward and backward re�nement together form a soundand complete proof method with respect to the ordering b on demonic languages.Theorem 6 Let SA and SC be demonic speci�cations. SA re�nes to SC by using forwardand backward re�nement i� LSC b LSA.This theorem shows that there is a re�nement proof that SA1 v SA2 using a combina-tion of forward and backward re�nement. In fact, with the abstraction relationabs = f(?; i) : i 2Zg[f(i ; i) : i 2Zgwe can show that SA1 v0 SA2. Note that this abstraction relation is the inverse of theabstraction relation that we used to show SA2 v SA1, and that there is no need toconstruct any intermediate state machines in this case.

347. Conclusions and related workIn this paper, we have extended the abstraction lattice proposed by Ho�man andStrooper [9] to cover languages that are not necessarily deterministic and complete (Def-initions 15 and 16). We have de�ned a partially ordered set of languages and rightcongruences that characterises state abstractness on demonic and semi-deterministic spec-i�cations and we have shown that the VDM and Z notion of (forward) re�nement withabstraction functions from the concrete to the abstract state spaces is sound and completewith respect to this partial order for demonic, semi-deterministic speci�cations (Theorem3). Finally, we have de�ned a notion of backward re�nement (De�nition 19), similar to thecommon backward re�nement notions, and shown that forward and backward re�nementtogether are sound and complete techniques for re�ning demonic speci�cations (Theorem6).The re�nement relation we used on demonic speci�cations combines common forwardre�nement as it is known from Z and VDM [12,17] with our notion of backward re�nement,which is a modi�cation of the classical backward re�nement [13,10,15]. The combinationleads to a re�nement notion on the underlying demonic languages that is di�erent from theclassical re�nement semantics for the state machines generated by Z speci�cations [8,17]or speci�cations with predicate transformer semantics [5,17]. In relational semantics [17],operations in Z and VDM are interpreted as total operations, where the states that ful�llthe precondition are in their speci�ed relation to the states ful�lling the postconditionand the states that do not satisfy the precondition are related to every possible state inthe state space. With total operations every combination is possible and the semantics ofthe underlying state machine is de�ned as the set of all behaviours that can be derived byperforming the extended operations in sequence. In this semantics, re�nement is de�nedas a selection process on the histories that belong to the same trace, and forward andbackward re�nement are sound and complete re�nement methods in this semantics [8,17].By providing a di�erent notion of backward re�nement (De�nition 19) and by limitingourselves to demonic speci�cations (De�nition 6) we can ensure that traces never disap-pear during the re�nement. Re�nement in this sense is a selection process on the historiesthat belong to the same trace (De�nition 10). This is not the case for re�nements with for-ward and backward re�nement in the usual sense, where histories are selected, but tracesmay disappear as a consequence of the re�nement. Note that for demonic speci�cations,SA re�nes to SC with forward and backward re�nement in the usual sense [17] does notnecessarily imply LSC b LSA: it is possible that the traces in Tr(LSA) are not a subset ofTr(LSC), and so traces can disappear during the re�nements. In complete analogy to theclassical re�nement result [8,10,11,17], forward and backward re�nement in our contextbuild a sound and complete re�nement method with respect to the ordering relation bon the languages (Theorems 5 and 6).By restricting the set of speci�cations to demonic and semi-deterministic speci�cations,forward re�nement in its own becomes even a sound and complete method (Theorem 2).This corresponds to similar results in [8,10], for so-called canonical speci�cations.In [10], inputs and outputs do not occur explicitly, a �nite alphabet of operations withbounded nondeterminism is assumed, and a special symbol ? is introduced in the statespace to simulate divergences. The semantics of state machine re�nement is the improved

35failures model of CSP [3,7]: a process is represented as a pair (F ;D) of failures F anddivergencesD . Thus, process (F1;D1) re�nes to process (F2;D2) i� F2 � F1 and D2 � D1.This implies that the traces of the concrete process are a subset of the traces de�ned bythe abstract process. The re�nement notions on the operation level are down-simulationand up-simulation which are similar to forward and backward simulation, respectively.Down-simulation achieves that the concrete traces are a subset of the abstract ones andhence is stronger than forward simulation in our context. Neither down-simulation norup-simulation are complete re�nement methods on their own, but it is shown that down-simulation together with up-simulation are sound and complete with respect to statemachine re�nement in the improved failures model.In [11], the trace model for re�nement relies on divergences and not on failures. Againthere is no occurrence of input and outputs and a special symbol ? appears in the statespace to simulate divergences. A process is represented as a tuple (T ;D) with tracesT and divergences D . The process (T1;D1) re�nes to process (T2;D2) i� T2 � T1 andD2 � D1. Downward and upward simulation de�ne the two re�nement notions at theoperation level. They are slightly di�erent to the respective notions in [10]. This is dueto the missing notion of failures. But again the traces of the abstract process are a subsetof the traces of the concrete process. One of the main results of this paper is againthat downward and upward simulation together form a complete proof method when thedivergence model is used for state machine re�nement.Gardiner and Morgan [5] use predicate transformer semantics instead of relational se-mantics [8]. The predicate transformer for a speci�cation statement can be interpretedas a relation on the state space that relates the states in the precondition with the cor-responding states in the postcondition, and that relates all states that do not satisfy theprecondition with all possible states (this is called chaotic behaviour) [14,17]. Composi-tion of predicate transformers then means composition of total operations which naturallyleads to a demonic speci�cation and the re�nement relation on operations with predicatetransformer semantics can be interpreted as subset relation on total operations, similaras for the classical forward and backward re�nement in relational semantics [8,17]. Onemain di�erence with [8] is that Gardiner and Morgan prove that one single data re�ne-ment method, which they call cosimulation, is sound and complete when all operationsare total. Cosimulation can be interpreted as re�nement with an abstraction relation onthe power sets of the state spaces instead of an abstraction relation on the state spacesin conventional forward and backward re�nement. Our forward and backward re�nementnotions are stronger and hence less expressive than cosimulation when used on their own,but they lead to a complete re�nement method when used in combination.AcknowledgementsWe thank Alena Gri�ths and the anonymous referees for their suggestions on earlierversions of the paper. Part of this research was funded by the Australian Research CouncilLarge Grants A49600176 and A49937045.REFERENCES1. M. Abadi and L. Lamport. The existence of re�nement mappings. In Proc. of the 3rdAnnual Symposium on Logic in Computer Science, pages 165{175. IEEE Computer

36 Society, 1988.2. R. J. R. Back. On correct re�nement of programs. Journal of Computer and SystemSciences, 23:49{68, 1981.3. S.D. Brookes and A.W. Roscoe. An improved failures model for communicating pro-cesses. Lecture Notes in Computer Science, 197, 1985.4. R. Duke and G. Rose. Formal Object-Oriented Speci�cation and Design Using Object-Z. Software Veri�cation Research Centre, The University of Queensland, 1995.5. P. H. B. Gardiner and C. Morgan. A single complete rule for data re�nement. FormalAspects of Computing, 5(4):367{382, 1993.6. C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica,1(4):271{281, 1972.7. C.A.R. Hoare. Communicating sequential processes. Prentice-Hall, 1985.8. C.A.R. Hoare, He Jifeng, and J. W. Sanders. Prespeci�cations in data re�nement.Information Processing Letters, 25:71{76, 1987.9. D.M. Ho�man and P.A. Strooper. State abstraction and modular software develop-ment. In G.E. Kaiser, editor, Proc. of the Third ACM SIGSOFT Symposium on theFoundations of Software Engineering, pages 53{61. ACM Press, 1995.10. He Jifeng. Process simulation and re�nement. Formal Aspects of Computing, 1:229{241, 1989.11. He Jifeng. Various simulations and re�nements. In J.W. de Bakker, C., W.P. deRoever, and G. Rozenberg, editors, Stepwise Re�nement of Distributed Systems: Mod-els, Formalisms, Correctness, volume 430 of Lecture Notes in Computer Science, pages340{360. Springer-Verlag, 1989.12. C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall, secondedition, 1990.13. M. B. Josephs. A state-based approach to communicating processes. DistributedComputing, 3:9{18, 1988.14. Steve King. Z and the re�nement calculus. In Proceedings of VDM'90, Lecture Notesin Computer Science 428, pages 308{312. Springer-Verlag, 1990.15. N. Lynch and F. Vaandrager. Forward and backward simulation for timing-basedsystems. In J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors,Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science,pages 397{445. Springer-Verlag, 1991.16. D.L. Parnas and P.C. Clements. A rational design process: How and why to fake it.IEEE Transactions on Software Engineering, SE-12(2):251{257, February 1986.17. J. Woodcock and J. Davies. Using Z: Speci�cation, Re�nement , and Proof. Prentice-Hall, 1996.18. J.C.P. Woodcock. The rudiments of algorithm re�nement. The Computer Journal,35(5):441{450, 1992.A. Language LA and speci�cations SA1 and SA2The language LA contains two operations: random generates a random integer value,and val returns the value generated by the last call to random as an output. If no call torandom has been made, val returns 0.

37SA1v :ZINITv = 0random�(v)truevalout ! :Zout ! = vSA2v :Z[f?gINITv = 0random�(v)v 0 =?val�(v)out ! :Z(v =?^ v 0 2Z^ out ! = v 0) _ (v 2Z^ v 0 = v ^ out ! = v 0)B. Language LB and speci�cation SB1The language LB is a subset of LA. The behaviour of random is changed so that itis now deterministic and acts like a counter, incrementing the value of the counter eachtime random is called.SB1v :Z

38 INITv = 0random�(v)v 0 = v + 1valout ! :Zout ! = vC. Language LC and speci�cation SC1The language LC is like LA except that it has the additional operation two, which doesnot a�ect the behaviour of the other operations, but which does have a precondition thatstates that the value generated by the last call to random should be 2.SC1v :ZINITv = 0random�(v)truevalout ! :Zout ! = vtwov = 2D. Language LD and speci�cation SD1The language LC is like LD except that the operation val has been removed.

39SD1v :ZINITv = 0random�(v)truetwov = 2E. Language LE and speci�cations SE1 and SE2The language LE is obtained from LB by adding a call zero that ensures that the outputparameter out ! of val is always 0 after a call to zero has been made. When zero has notbeen called yet, val returns the number of calls to random that have been made.SE1v :Zstuck : BINITv = 0: stuckrandom�(v): stuck) v 0 = v + 1valout ! :Zstuck) out ! = 0 ^ : stuck) out ! = vzero�(stuck)stuck 0

40 SE2v :Zstuck : BINITv = 0: stuckrandom�(v)v 0 = v + 1valout ! :Zstuck) out ! = 0 ^ : stuck) out ! = vzero�(stuck)stuck 0F. Language LF and speci�cation SF1The language LF is like LC except that instead of testing that the value of v is 2 intwo it sets the value of v to 2.SF1v :ZINITv = 0random�(v)truevalout ! :Zout ! = v

41two�(v)v 0 = 2G. Language LG and speci�cations SG1 and SG2The language LG is obtained from LA by adding a call zero that ensures that the outputparameter out ! of val is always 0 after a call to zero has been made. When zero has notbeen called yet, val returns the value generated by the last call to random (or 0 if val hasnever been called).SG1v :Zstuck : BINITv = 0: stuckrandom�(v)truevalout ! :Zstuck) out ! = 0 ^ : stuck) out ! = vzero�(stuck)stuck 0SG2v :Z[f?gstuck : B

42 INITv = 0: stuckrandom�(v): stuck) v 0 =?val�(v)out ! :Zstuck) out ! = 0: stuck) ((v =?^ v 0 2Z^ out ! = v 0) _ (v 2Z^ v 0 = v ^ out ! = v 0))zero�(stuck)stuck 0

