-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Queensland eSpace

SOFTWARE VERIFICATION RESEARCH CENTRE
SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT
No. 00-01

Refinement and State Machine
Abstraction

Karl Lermer and Paul Strooper *

February 2000

Phone: 461 7 3365 1003
Fax: +61 7 3365 1533
http://svrc.it.uq.edu.au

https://core.ac.uk/display/14981508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript
files are available via http://svrc.it.uq.edu.au

Refinement and State Machine Abstraction

Karl Lermer and Paul Strooper ”

Abstract

Precise module interface specifications are essential in modular software develop-
ment. The role of state in these specifications has been the issue of some debate and
is central to the notion of data refinement. In previous work, Hoffman and Strooper
introduce a state-abstraction lattice that defines a partial order on specifications for
deterministic and complete languages. They use this lattice to define a notion of
state abstractness and show that this intuitive notion corresponds to the use of the
terms “abstract” and “concrete” as used in data-refinement proofs. In this paper,
we extend this work for a class of specifications and languages that we call demonic
and semi-deterministic. We also introduce a notion of backward refinement and
prove that backward refinement together with the common forward refinement of
VDM and Z form a sound and complete refinement technique with respect to a par-
tial order on languages defined by demonic specifications. We illustrate the ideas
using simple languages and specifications.

Keywords: formal methods, state machine, specification, refinement, modular software
development, abstraction.

1. Introduction

The key idea in modular software development is to decompose a system into a small
number of modules, and to continue doing so until all modules are of a reasonable complex-
ity. This approach relies on being able to subdivide the system into relatively independent
modules, and being able to precisely specify the interfaces between these modules.

We would like our specifications to be “black box.” The internals of the module are
of no concern to us; only the externally observable behaviour, in the form of inputs and
outputs, is relevant. However, the notion of state is important in such specifications,
because past inputs typically influence future outputs, which can only be attributed to a
difference in state.

In this paper, we build on work by Hoffman and Strooper [9], who define a notion of state
abstractness for specifications and introduce a state-abstraction lattice to characterise
refinement proofs with abstraction functions. Their work applies to specifications of
languages that are complete — every sequence of calls has a behaviour defined for it —
and deterministic — there is at most one behaviour defined for every sequence of calls.
Hoffman and Strooper show that state abstractness is in general independent of the choice
between property-based, model-based, and operational specifications. Although some
people object to using the notion of “state” for a property-based specification, equivalence

classes of traces can serve as a reasonable notion of state for such specifications [9]. In
this paper, we explore the relation between the abstraction lattice and data-refinement
proofs.

Data-refinement proofs [6,2,12,17] are important in modular software development.
They are used to verify that a specification (or implementation) S¢ with a concrete
state representation is correct with respect to a specification S# with an abstract state
representation. The state-abstraction lattice justifies the terms abstract and concrete used
in this setting: if there exists a data-refinement proof using an abstraction function that
proves that S¢ is correct with respect to S4, then Rgc =< Rga in the state-abstraction
lattice (where, for a specification S, Rg is an equivalence relation defined on S). The con-
trapositive of this result tells us that if Rgc A Rga in the state-abstraction lattice, then
we cannot prove that S is correct with respect to S4 using a standard data-refinement
proof with an abstraction function.

In the remainder of this paper, we will generalise these results for languages and speci-
fications that are not necessarily complete and deterministic. In particular, we introduce
the notions of demonic languages and specifications, and semi-deterministic specifications,
and we show how the results extend for these specifications and languages. In doing so,
we define an ordering on demonic languages that provides a refinement semantics on de-
monic specifications. We prove that the common forward refinement notion of VDM and
Z [12,18,17] together with an adequate backward refinement notion form a sound and
complete proof technique with respect to this refinement semantics.

In Section 2, we present our terminology for languages and specifications. Section 3
formally defines the restrictions that Hoffman and Strooper place on the languages and
specifications in their work. We also introduce the notions of demonic languages and
specifications, and semi-deterministic specifications. In Section 4, we state the VDM and
Z notion of forward refinement. We also introduce a partial order on demonic languages,
and show that forward refinement is a sound proof technique with respect to this order-
ing. The completeness of forward refinement is proven for demonic, semi-deterministic
specifications. Section 5 generalises the state-abstraction lattice for demonic and semi-
deterministic specifications and languages. The mathematical structure that we use to
capture state abstractness is no longer a lattice in this case, but simply a partially ordered
set. In Section 6 we introduce a backward refinement technique and prove that forward
and backward refinement together are sound and complete with respect to the refinement
semantics given in Section 4. In Section 7, we review related work. In particular, we
explain how our notion of refinement relates to the VDM and Z notion of data refine-
ment [12,17], and how it relates to forward and backward simulation of state machines
[8,10,11,15].

The appendices contain the definitions of a number of languages and specifications
that we use as examples throughout the paper. Each appendix first defines a language
informally, and then presents one or more Object-Z specifications [4] for that language.
We have used Object-Z merely because it provides a convenient structuring notation for
the types of modules and specifications that we consider in this paper. We do not use any
of the object-oriented features of Object-Z. The languages and specifications are clearly
contrived — they simply serve to illustrate the concepts introduced in the paper.

2. Languages and specifications

Following Parnas [16], we define a module as a programming work assignment, and a
module interface as the set of assumptions that programmers using the module are permit-
ted to make about its behaviour. An interface specification (hereafter just specification)
is a statement of these assumptions. We view a module as a black box, accessible only
through a fixed set of operations — the exported procedures and functions. The syntaz
of the specification states the names of the access routines, and their inputs and outputs.
We use Op to denote the set of all operation names, In to denote the set of all inputs for
Op, and Out to denotes the set of all outputs. We use the special symbol L to indicate
an operation with no input or no output.

The semantics of the specification describes the observable behaviour of the operations.
We are interested in comparing the behaviour of different specifications. Because there
are many ways to represent the state in a specification, we need a definition of behaviour
that is independent of the state representation. We first consider histories: finite, possibly
empty sequences of the form

h = {c1,v1)(ca,v2)...{Cu,vp)
For ¢ € {1,...,n}, ¢i = {1;, opi) is a call to an operation op; € Op with input ¢; € In, and
v; € Out 1s an output. We use the symbol ¢ to denote the empty history.

2.1. Languages

The set of all histories, H, is determined by Op, In, and Out. A language L is defined as
a subset of H. In this paper, we only consider non-empty languages that are prefiz-closed:
for any history h € £ and any call-value pair (¢, v), if h(c,v) € L then h € L.

Lany = {LCH | L# DAL is prefix-closed }

Note that this is quite a natural restriction and that it implies that & € £ for all languages
in Lany.
We introduce the following operators on histories. For any history

h = {c1,v1)(ca,v2)...{Cu,vp)
we denote the corresponding trace or input sequence by
Z(h)=crca...cy
We define Z(¢) = ¢. For a set of histories H C H, we define the set of all traces of H by
Tr(H)={Z(h) | h € H}
For a language £ and a trace t € Tr(H), we collect all possible histories (in £) with
trace ¢ in the set
Ve(t)={h|he LANI(h)=1t}
Note that for each h € L, h € V¢(Z(h)). For languages £, L' C H,
Vieoe () =Ve()UVe() s Veae () = Ve() N Ve ()

We will also use the following operators on finite sequences o = s183...5,: oli] = s;,
head(c) = sy, front(o) = s1, ..., 8u—1, last(c) = s,, and o > {1, ..., m} the restriction of o
to {1, ..., m}. Finally, we use #5S to denote the size or length of a set or sequence S.

2.2. Specifications

A specification S defines a language £ — the subset of H expressing the behaviour
defined by the specification. In general the form of the specification may vary, but in this
paper we focus on model-based specifications, where the behaviour is specified in terms of
a state space St.

Definition 1 A model-based specification S is a siz-tuple
(Op, St, In, Out, IniT, %)

with operation set Op, state set St, input set In, output set Out, a nonempty set of initial
states INniT C St, and an interpretation function

S0 Op = P((In x St) x (St x Out))

Note that Op, St, In, Out, INIT are permitted to be infinite sets. Any operation op € Op

S

is interpreted via _° as a set of pairs

({¢, 8), (s,)

where each pair represents a state transition with input ¢ € In, internal states s, s’ € St
(s denotes the state before and s’ the state after the operation is performed), and output
w € Out. For a specification S, the precondition of operation op € Op with input ¢ € In
will be denoted by

pres((,0p)) = {s € St |Ts' € St,w € Out : ({1, 5),(s",w)) € 0p° }
and the postcondition of op with input ¢ by
posts((1, op)) = {s' € St | Is € St,w € Out : ({1, 5), (s, w)) € op® }
Similarly, we define the postcondition of a trace t € Tr(H) by

IniT if ¢ is the empty trace

{s€ St| dse St,we Out :
(1, 8),(s",w)) € 0p® A s € ptraces(t;)}
if t = (¢, op)

ptraceg(t) =

Note that in our setting, pre- and postconditions denote sets of states, not predicates.
Given a specification S and a history h € H, we denote the set of final states of h by

Inir ifth=c¢
finals(h) =< {s' € St| s € St : ({1,8),(s',w)) € op® A s € finals(hy)}
if h = hi{{¢, 0p),w)

Note that finals(h) C ptraces(Z(h)) for all histories h € H and
ptraces(t) = U{finals(h) | h € Ls N Z(h) =t}

for all traces t € Tr(H).

We can now define the language accepted by a specification S, consisting of the empty
history and all histories that are produced by starting from an initial state in Invi7 and
recursively applying the operations from Op.

— SA1

_InrT
v =

__random

A(v)

true

__wval
out! : Z

out!l = v

Figure 1. Object-Z specification SA1 for L4

Definition 2 For a specification S, the language accepted by S is

Ls = {heH|h=eVIh € Lg,op € Op,t € In,w € Out :
b= hi{{t,0p),w) A (Ts € finals(hy),s" € St = ({t,8),(s',w)) € op®)}

It follows from this definition that Lg is in Lany.

2.3. Example

Consider the random number generating module defined by L4 in Appendix A. It
contains two operations: random generates a random integer value and has no output
(indicated by the special value L), and val returns the value generated by the last call to
random as an output. If no call to random has been made, val returns 0. For example,
the history

(val,0)(random, L)(val, L1){random, L)(val,1)
belongs to the language L4, whereas the history
{random., L)(val, L1)(val,1)

does not. Here we have used op as a shorthand for (L, op), a call to an operation with
no input.

An Object-Z specification SA1 for L4 is shown in Figure 1. An Object-Z class is
represented as a named box, SA1 in this case. A class contains an unnamed state schema,
an initialisation schema (InTT), and zero or more operations (two in this case). For SAl,

the state consists of the integer variable v. The initial value of v is constrained to 0 in
the initial state schema. The delta-list A(v) in the schema for random indicates that the
value of v may change; the predicate true indicates that the value v’ after the call is not
constrained. Finally, the schema for val specifies that the output variable out! is equal to
v. Since val does not have a delta-list, the value of v does not change (i.e., v = v).

3. Demonic languages and specifications

The state-abstraction lattice defined in [9] applies to languages that are complete and
deterministic. A language £ is complete if for every trace in Tr(H) there is at least one
history in £, and it is deterministic if for every trace in Tr(H) there is at most one history

in L.

Definition 3 A language L € Lany is complete if
Tr(L) = Tr(H)

A language L is deterministic if
Ve Tr(L) : #Ve(t) =1

For a language that is both complete and deterministic, there is exactly one history in
the language for each trace. Specifications are also assumed to be state-deterministic, in
that there is a unique final state for each history.

Definition 4 A specification S is state-deterministic if
VheLs : #finalg(h) =1

As a special case, note that for a state-deterministic specification S

#finalg(e) = #Init = 1

The language £, discussed in the previous section is complete, but not deterministic.
The specification SA1 is not state-deterministic. The specification SB1, obtained from
SAL by changing the specification of random to

__random

A(v)
vVv=v+1

so that it increments the value of v each time it is called, is state-deterministic. It defines
the language Lp that is both complete and deterministic.
If instead we change SA1 to SC1 by adding the operation

two

RE

that is only enabled when v has the value 2, then this defines a language £ that is neither
complete, nor deterministic. Note that two does not have a delta-list and therefore does
not change the value of v; it checks that the value of v before the operation is 2, and
if it is not, then the operation is not enabled. This means that L4 is not complete,
because (two, L) & L. L¢ is also not deterministic because L4 is not deterministic and
LaC Le.

In the remainder of this paper, the notion of a demonic language will play a major
role. We will demonstrate that this language class provides a natural semantics for data
refinements in VDM and Z. Intuitively, a language £ is demonic if for every trace ¢ in
Tr(L), every history of £ corresponding to a sub-trace of ¢t must be extendible by calls
from ¢.

Definition 5 A language L is demonic if
Ve Tr(L)\{e} : Velfront(t)) = {h>{l,... . #t L1} | heV(t)}
The set of demonic languages will be denoted by
Lanyy ={LCH | L#D AL is demonic}
Note that the inclusion
Ve Tr(L)\{e} : Ve(front(t)) D {h>{l,..,#t L1} | he Ve(t)} (1)

is an equivalent way of expressing that a non-empty language £ is prefix-closed.

The languages L4 and Lp are both demonic, but the language Lo is not. This is
because SC1 includes the operation two that is only enabled when the value of the state
variable v is 2. For example, for

t = (random)(val){two)
we have

Veo(front(t)) = { (random, L)(val,i) | i € Z}
whereas

{h>{1,2} | h € V. (t)} ={(random, L){val,2)}

Every deterministic language is demonic. Unfortunately, the set of demonic languages
/Jcm;ll does not behave as nicely as the set of prefix-closed languages Lany, which forms a
complete lattice under the inclusion ordering C and the usual set operations. In general,
demonic languages are not closed under intersection and union. However, if two demonic
languages have the same set of traces, then their union is demonic.

Proposition 1 If for a family of languages L; € Lan,, i € I with Tr(L;) = Tr(L;),
i,5 € 1, then UjeiL; € Land,.

10

Proof. We take a trace t € Tr(U;erL;) \ {e}. Then, t € Tr(L;)\ {e}, for every i € I.

The languages £;, ¢ € I are demonic and therefore

Ve (front(t)={h>{l,..,#t L1} | h eV, (t)}
for ¢+ € I. Hence,

Viiez (front(t)) = UierVe,(front(t))
U,’ej{hb{l,...,#tJ_l} | hEVﬁl(t)}
= {h>{l,. . #t L1} | heVuye(t)}

O

There is a notion corresponding to demonic languages for specifications. A specification

is demonic if any two states that can be reached after a certain number of calls can be
extended by the same set of calls.

Definition 6 A specification S is demonic if
Vite Tr(Ls)\{e} : ptraces(front(t)) C preg(last(t))
Observe that every specification S that is total in the following sense,
Yop € Op,c € In : pres({t,op)) # @ = pres({t,0p)) = St

is demonic. Every specification S that is not total has a natural total and hence demonic
extension obtained by adding a new state abort and a new output symbol ab. We then
extend every operation op € Op in the following way: if pres({¢,op)) # @, we add a
new transition ((¢, s), (abort, ab)) to the interpretation op® for every pair (¢, s) such that
s & pres({(¢, op)). This includes transitions of the form ((c, abort), (abort, ab)) for every
operation. Similarly, every prefix-closed language has a natural demonic extension.

Proposition 2 FEvery demonic specification S defines a demonic language Lg.

Proof. Any specification S defines a prefix-closed language £ and therefore we have
inclusion (1). To prove the inclusion in the other direction, we assume a demonic speci-
fication S. Let t € Tr(Ls) \{e} and h € V (front(t)). Because S is demonic we have
ptraceg(front(t)) C preg(last(t)) and so finals(h) C pres(last(t)). Hence we may extend
h by the call last(t), and there exists an output w € Out such that h{last(t),w) € V. (1),
which is what we need to prove the inclusion in the other direction. O

The converse is not true in general: there are non-demonic specifications that spec-
ify demonic languages. For example, the specification SD1 obtained from SC1 by re-
moving val is not demonic, because even though (random)(two) € Tr(Lp), we have
ptracespi({random)) = Z and pregpi((two)) = {2}. However, the language Lp specified
by SD1 is clearly demonic, because there are no operations with any output. Neverthe-
less, we show in Proposition 11 that for every demonic language £ there exists a demonic
specification S such that £ = Lg (in fact, there are many such specifications).

We sometimes use an additional condition, requiring that each history h € Lg corre-
sponds to exactly one equivalence class of internal states. In this case, it is legitimate to
think of “exactly one” state.

11

_ SA2

v:ZU{Ll}

_InrT
v =0

__random

A(v)
v =1

__wval
A(v)
out! : Z

(v=LAV EZNout!l=v)V(vEZLNV =0vAout! =0

Figure 2. Object-Z specification SA2 for L4

Definition 7 A specification S is semi-deterministic if

Vope Op,t€In,we Out,s € St,heLg:
(s € finals(h) A B{{t, 0p),w) € Ls) = (Fs' € St : ({1,8),(s,w)) € op”)

In other words, if A, hh' € Lg and o is a state sequence that belongs to history h, then
there exists a sequence of states ¢’ such that oo’ belongs to history hh'. So although a
history might end up in different states, they must be indistinguishable with respect to
future behaviour.

The specification SA1l for language L4 is not semi-deterministic. For example, for
h = (random, L) we have 3 € finalg41(h) and h(val,5) € L4, but there exists no state s’
such that ((L,3),(s",5)) € val®'. However, the specification SA2, shown in Figure 2, is
state-deterministic and hence semi-deterministic. In this specification, we have added L
as a special value for the state variable v to indicate that random has been called without
being followed by a call to val. Thus, we delay the choice of the random value until a first
call to val is made after a call to random. The disjunction in val deals with the two cases
where val has not been called since the last call to random (first disjunct), and where val
has been called and the value of v should remain the same (second disjunct).

Note that the notion of a semi-deterministic specification is more general than that of
a state-deterministic specification. Consider the specification SE1 shown in Figure 3. It
is similar to SB1, but it contains one additional state variable stuck and one additional
operation zero. Initially, the value of v is 0 and stuck is false. As long as stuck is false,

12

—_SFE1

v
stuck : B

_InrT

v =20

- stuck

__random

A(v)

- stuck = v =v+1

__wval

out! : Z

stuck = out! =0 A = stuck = out! = v

— ZETo

A(stuck)

stuck’

Figure 3. Object-Z specification SE1 for Lg

13

the value of v is incremented each time random is called. Note that no value for v’ is
specified in random when stuck is true, which means that SE1 is not state-deterministic.
The operation wval returns 0 if stuck is true, and the value of v otherwise. Finally, the
operation zero sets the value of stuck to true, thereby ensuring that val will always return
0 after that.

As explained above, SE1 is not state-deterministic. It is semi-deterministic, because
no matter what the value of v is after a call to random when stuck is true, the future
behaviour of SE1 does not depend in any way on this value of v’. Clearly it is easy to
change SE1 so that it is state-deterministic and still specifies the same behaviour, by
specifying a specific value for v' in random when stuck is true. However, such a specifi-
cation would unnecessarily restrict the value of v'. Although this is a contrived example,
it shows a class of specifications that are semi-deterministic, but not state deterministic:
whenever the future behaviour of the specification depends on only part of the state of
the specification (for example, in SE1, the future behaviour does not depend on the value
of v if stuck is true).

Proposition 3 Let S be a semi-deterministic specification. S is demonic iff Lg is a
demonic language.

Proof. One direction of the implication follows from Proposition 1. For the other
direction, assume that Lg is demonic and a trace t € Tr(Lg) \ {e} with last(t) = (¢, op).
We have to prove

ptraces(front(t)) C pres({c, op))

So let us assume a state s € ptraceg(front(t)) and a history h € Lg with Z(h) = front(t)
and s € finalg(h). Then it is sufficient to prove s € preg({¢, op)) Lg is demonic and so
we know that there exists an output w € Out such that h((s, op),w) € Lg. Hence, by the

definition of a semi-deterministic specification, s € preg((c, op)).
O

4. Refinement

Data-refinement proofs [6,2,12,17] are used to verify that a specification (or implemen-
tation) S¢ with a concrete state representation is correct with respect to a specification
S4 with an abstract state representation.

There are various well-explored refinement techniques. The refinement of specifications
or state machines is often defined as subset relation on observable behaviours [8,1,13,15].
In other words, refinement means that the observable behaviour of $¢ must be a subset
of the observable behaviour of S4.

In the following we are going to define an ordering relation on the languages that are
generated by specifications and we will use this ordering as the semantics for refinement
proofs. Thus we are gaining a refinement semantics that is different to the refinement
notions cited above. Briefly, a specification S refines a specification S4 if every input
that was possible for S is valid for S and if the corresponding outputs are in a subset
relation. With this semantics the notion of forward refinement of VDM and Z [12,18,17]
will prove to be a sound refinement method.

14

Definition 8 Given two specifications S4 = (Op, St4, In, Out,]NITA,_SA) and S¢ =
(Op, StY, In, Out,]NITC,_SC), a relation

abs : St¢ « St

and operation op € Op, we say that opSA forward data-refines to opSC (opSA C abs opsc)
iff the following obligations are fulfilled [12,17].

(DR1) YieIn,se Sth t e St° .
(t,s) € abs A s € prega((t,0p))) = t € pregc({t, op))
)

1

(
(DR2) Vi€ In,we Out,se€ Sttt t' € 5t :

(3 € presa({t, op)) A (£.5) € abs A (1. 1). () € 0p®) =

(s’ € St1 1 ({1, 8),(s',w)) € op®" A (t,5") € abs)

(DR1) asserts that all possible inputs for op5™ are also possible inputs for op®". In
(DR2) we do not claim that all transitions of opSA can be simulated. Instead, we require
that every possible input of opSA must be accepted by opSC with outputs that were
possible for opSA. The relation C defines a preorder on operations in the above context,
l.e., on operations with input in In and output in Out.

With this notion of operation refinement we can state the corresponding technique of
specification refinement [17].

Definition 9 We say that a specification S* = (Op, St*, In, Out,]NITA,_SA) can be for-
ward refined to specification S¢ = (Op, StY, In, Out,]NITC,_SC) and write S4 T SY if
there exists an abstraction relation abs as above such that

(SR1) Yop € Op : 0p®" T, op*
(SR2) ¥Vt e Init®Is € Inirt : (t,8) € abs

We write S4 Caps S if we want to explicitly indicate the abstraction relation abs.

Obligation (SR1) requires that every abstract operation can be refined to a concrete
one and obligation (SR2) states that, via abs, every concrete initial state corresponds to
at least one abstract state. Note that we overload the semantics of the symbol C. It will
be obvious from the context whether we mean operation or specification refinement.

For the example specifications in Appendices A and B, note that SA1 T SB1 with the
abstraction relation

abs ={(i,i) : i € Z}

However, SB1 does not refine to SA1 using the same abstraction relation, because there
are many after states for random in SAl and there is only a single one in SB1. In fact,
as we will see below, there is no abstraction relation so that SB1 forward refines to SA1.

Proposition 4 Forward refinement T defines a preorder on specifications S as defined
above.

15

Proof. This follows directly from the fact that forward refinement for operations is
a preorder. Reflexivity follows from using the identity as the abstraction relation. For
specifications S4, $% and S with

SA Eabsl SB EabSQ SC

we have S4 T, S with the relation-composition abs = abs, o abs;.

O
To provide a semantics for refinement proofs on specifications and to ultimately generalise
the results from [9], we define a partial ordering on languages.

Definition 10 Let £ and L' be languages in H,
L el ’Lﬁ T’I“(,C) C T’I“(,C/) AVitc T’I“(/J) : V£/(t) C V£(t)

The above ordering on languages corresponds to the intuition behind obligations (DR1)
and (DR2). For languages £ and L', L' € L if all traces of Tr(L) occur in Tr(L') and if
every history in £’ corresponding to a trace in £ is also a history in L.

For L 4 and L p from the appendices, we have L € L 4 because the set of histories for Lp
is a subset of the histories for £ 4 and all traces that occur in £ 4 also occur in Lp. However,
we do not have L4 € Lp because (random){val) € Tr(Lp), but (random, L){val,2) is in
Ve, ((random)(val)) and not in V, ((random)(val)).

Note that the ordering € is different from the subset ordering on languages. For exam-
ple, to find two languages that are ordered by &, but that are not in a subset relation,
we define the language L obtained by changing the specification of two in SC1 from

two

e

to

__ two

in SF1. Note that two in SF1 does not have a precondition (i.e., the operation can
always be applied) and always changes the value of v to 2; as a result, Lr is demonic.
Now L @ L¢, even though Lp contains more histories than L¢.

In the subsequent discussion we are going to identify the poset (partially ordered set)

(Lany;, €)

as a domain for the characterisation of refinement proofs with forward refinement and a
notion of backward refinement. We will also see that the partial ordering @ on demonic
languages characterises forward refinement proofs on demonic, semi-deterministic specifi-
cations. Note that (Lany, €) and (/Jcm;ll, €) when extended with a bottom element are
complete lattices similar to the complete lattice (Langy, C).

We pointed out that the intersection of demonic languages is not necessarily demonic.
However, for demonic languages £’ € L, the intersection £ N L’ is demonic.

16

Proposition 5 For languages L, L', L" C H we have:
YL EeEL = TrNnLYy=Tr(O)NTr(L)Y=Tr(L), L €L'NL
WL el (LNLelLANLULEL)
i) L"el el = L'NLCL
w) (L' demonic NL' €@ L) = L' NL demonic
Proof. For i): For any two languages £ and £’
Tr(LnL)yCTr(L)yn Tr(l) C TrL)

Assume £ @ L. Then, Tr(L) C Tr(L)N Tr(L'). For t € Tr(L) N Tr(L') we have
Vie(t) € Ve(t), hence t € Tr(L£L N L) and furthermore

Ve(t) CVL(t)NVe(t) = Viene(t)
For ii): Assume £ @ £. Then, Tr(£) C Tr(£L U £') and for t € Tr(L),
Veoe(t) = Ve(t)UVe(t) = Ve(t)
Therefore, £'U £ € L. Part 4) and Tr(£) C Tr(£') imply
Tr(LN L) = Tr(L) N Tr(L') = Tr(L)
For t € Tr(L),
Viene(t) = Ve(t) NV e(t) = Vel(t)

Hence, L'N L € L.
Now assume L'NL € L and LU L € L. Tt follows

Tr(L) S Tr(LN L) C Tr(L)

and for t € Tr(L), Ve(t) C Veue(t) € Ve(t). Hence, £ € L.
For 4i): Let t € Tr(L"NL). Then, t € Tr(L) and because of L' € L we obtain
t € Tr(L'). Hence,

VQ/rw(t) VQ/(t) ﬂVﬁ(t)
Ve ()N Ve(t)

Ve(t)

NNl

For w): For t € Tr(L' N L)\ {e} we conclude

Viene(front(t)) = Ve(front(t)) NV e(front(t))
= V(front(t))
= {h{l,.. #t L1} | h e Vu(t)}
= {h{l,..,#t L1} | h € Vene(t)}

17

Definition 11 Given two specifications S4 = (Op, St4, In, Out,]NITA,_SA) and S¢ =
(Op, StY, In, Out,]NITC,_SC), we define the restricted-use specification

SC[S4] = (Op, §t°, In, Out, IniT©, _S°157])
of S¢ under S as follows. For every operation op € Op,
op® B = {({t, 1), (¢, 0)) € 0p®" | presa((r, op)) # @}

In the case of a forward refinement, S¢[S4] specifies the behaviour of S for traces
accepted by S4. We can think of this as projecting S4 on S and then using S as we
would have S4.

Proposition 6 For specifications S and S :
i) SC[SA] Cig SC with the identity id on St©
i) SA Caps SY & 54 Cope SY[S4]

i) SC demonic = SY[S4] demonic

Proof. Part ¢) follows from the definition of refinement. From ¢) and the transitivity
of refinement, it follows that S4 C,, SC[SA] implies S4 Cu, S¢. For the converse,
assume S4 5, SY. We prove S4 C o, SE[S4]: let op € Op.

(DR1): Let s € p'l“@gAg<L, op)) and r € St with (r,s) € abs. With (DR1) for the
refinement op®”* s 0p®* we find r € presc({t, op)). Hence, r € pregegal({t, op)).

(DR2): Let ({¢,r)(r",w)) € op® 157 with (r,s) € abs and s € prega((c,op)). Hence,
(¢, 7)(r",w)) € op® and from (DR2) for the refinement op®”" Cups 0p°° we find &' € StA
such that ((¢,s)(s',w)) € op®” and (v, s') € abs.

The remaining obligation (SR2) is satisfied becanse Inr5 15" = InirS©.

For ii): Note that if prega({¢, op)) # O, then pregc({t,0p)) = prescpsa({¢, op)).
Therefore, for t € Tr(S[S*])\ {}, we have ptracesc(t) = ptracescsa(t).

[54]

O

If we use the ordering € as the underlying semantics of specification refinement and

forward refinement with obligations (SR1) and (SR2) as the refinement technique, then

Theorem 1 below proves the soundness of forward refinement for demonic specifications.
We first prove two lemmas.

Lemma 1 Assume specifications S* and S¢. If S4 is demonic and there exists an ab-
straction relation abs : St© < St such that S4 T, SC, then for every h € Lga N Lgo:

Vr € finalse(h) s € finalga(h) : (r,s) € abs

Proof. = We prove this by induction on the length of the histories h € L4 N Lgc.
Base case (h = ¢): We have finalga(c) = Init#4 and finalse () = Ivir©. In this case,
the assertion is exactly (SR2).
Induction step: Assume h((¢, op),w) € Lga N Lgc and ' € finalge (h{{c, op),w)). We
find r € finalge(h) such that ({¢,r),{r',w)) € op®“. The induction hypothesis gives us

18

s € finalga(h) with (r,s) € abs. Since S% is demonic, s € prega({s, op)). Applying
(DR2) we find s’ € St with (+/,s') € abs and ({¢,s),(s’,w)) € op®". Therefore, s’ €

finalga(h({t, op),w)).
O

Lemma 2 Assume specifications S* and S¢. If S4 is demonic and there exists an ab-
straction relation abs : St© « St4 such that S4 C 4, S©, then for every t € Tr(Lga)\{c}:

a) @ # ptracege(front(t)) C prege(last(t))

b) ¥ r € ptracesc(t) s € ptracega(t) : (r,s) € abs

Proof. We prove the assertion by induction on the length of traces t € Tr(Lg4)\ {¢}:

Base case (t = (1, 0p)): Since we assume there exists at least one initial state for each
specification, Ini7 is non-empty and so @ # INiTY = ptracege(c) = ptracege(front(t)).
Let r € ptracego(front(t)). Because of (SR2), we find s € Inir? with (r,s) € abs.
54 is demonic and so Inrt4 C prega({t, 0p)). Hence, s € presa((¢,0p)) and condition
(DR1) implies r € prege({¢, op)). This proves a). To prove b), assume 1’ € ptracegc(t).
Then there exists » € Inir” and w € Out such that ({¢, 7){r',w)) € op®“. Then (SR2)
implies that there exists s € Inr#4 with (r,s) € abs. Since S# is demonic, we have
s € prega(t) and (DR2) ensures the existence of s’ € ptracega(t) with ((¢, s)(s',w)) € op®”
and (', s’) € abs.

Induction step: Let t(c,0p) € Tr(Lga) with ¢ # . By the induction hypothesis
a), we find @ # ptracege(front(t)) C prege(last(t)). Hence, @ # ptracege(t). Let
r € ptracegc(t). Because of induction hypothesis b) we find an element s € ptracega(t)
with (7, s) € abs. S4 is demonic and so, s € prega({t, 0p)). The condition (DR1) implies
r € prege({¢, op)) which concludes the proof of a). For b), let ' € ptracesc(t(c, op)).
Then, there exists r € ptracese(t) and w € Out such that ((¢, r), (r',w)) € op®" . The
induction hypothesis b) ensures the existence of s € ptracega(t) with (r,s) € abs. S4 is
demonic, hence s € prega({t, op)). With (DR2) we find s’ € St# such that (+/,s') € abs
and ({¢,s), (s ,w)) € op®”. Hence, s' € ptracega(t(c, op)).

O

We can now prove the soundness of forward refinement for demonic specifications.

Theorem 1 Assume specifications S4 and SC. If S* is demonic and there exists an
abstraction relation abs : St < St4 such that S4 Cu, S©, then

i) SY[S4] is demonic and Lgopgay = Lga N Lge.
ii) Lsc @ Lga.

Proof. To prove Lgc @ Lga, we show the following properties:
1) Tr(Lga) C Tr(Lsc)

2) Vh € ESA,h/ € EsC . I(h) :I(h/) = h/ € £5A

19

Observe that part a) of Lemma 2 implies 1). We prove assertion 2) by induction on
the length of the histories h € Lga and b’ € Lgo.

Base case (h = b’ = ¢): This follows from the fact that € belongs to every language.

Induction step: Assume h((¢, 0p),w) € Lga and A'{{¢, op), ") € Lgc with Z(h) = Z(h').
Because of the induction hypothesis, A’ € Lga N Lge. Let r € finalge (h') and +' € St°
with ({¢,), {r,w")) € op®°. Tt follows from Lemma 1 that there exists s € finalga(h')
such that (r,s) € abs. S# is demonic, hence s € presa({¢, 0p)). (DR2) gives us s’ € St4
with ((¢, s),(s",w')) € op®”. Hence, R'({t, 0p),w') € Lga.

To prove i), first we show Lgopga) = Lga N Lgo. The inclusions Lga N Lge C Lgopga
and Lgepga) © Lgo are obvious. We prove Lgepga) © Lga by induction on the length of
h e /:'SC[SA]-

Base case (h = ¢): Again, this follows from the fact that ¢ belongs to every language.

Induction step: Let A((c,0p),w) € Lgcrga). Then, h € Lga N Lgc according to our
induction hypothesis. We find r € finalgogaj(h) with » € pregepga)({c, op)). Then,
prega({t, op)) # @ and r € finalgc(h). Because of Lemma 1 we find s € finalga(h) with
(r,s) € abs. S4 is demonic, hence s € prega({¢, op)). Applying (DR2) we find s’ € St4
such that (¢, s),(s',w)) € op®”. Hence, h{{t,op),w) € Lga.

To prove that S[S*] is demonic we take a trace t € Tr(Lgcsa)) \ {¢}. From what we
proved before it follows t € Tr(Lga N Lgc) \ {e}. Because of prega(last(t)) # & we have
presc(last(t)) = prescigar(last(t)). Hence, by Lemma 2 a),

ptracege(front(t))
pregc(last(t))
pregopsa)(last(t))

ptracegcpgay(front(t))

1N 1N

O

We have seen that Lgc @ Lga is a necessary condition for forward refinement as defined

above. It is not sufficient for forward refinement of nondeterministic specifications in

general. With respect to our semantics we have a sound, but not a complete refinement

technique. Nevertheless, forward refinement is a complete method if we restrict ourselves
to semi-deterministic specifications.

Theorem 2 Assume a demonic, semi-deterministic specification S and a demonic spec-
ification S¢. Then the following two conditions are equivalent.

Z) Lgc @ Lga
i) SACS¢

Proof. i) = i) is a consequence of Theorem 1 ii).
i) = 1i): For demonic specifications S4 and S we define a relation abs : St < St4
by

(r,s) € abs it Ih € LscNLga = 7 € finalge(h) A s € finalga(h)

We are going to prove the refinement relation S4 C, S¢. Assume a certain operation
op € Op.

20

(DR1) and (DR2) : Let (r,s) € abs and s € prega({(¢, op)). There exists a history
h € LgaN Lgo with s € finalga(h) and r € finalge (h). Therefore Z(h){c, op) € Tr(Lga).
Since Lgc € Lga we have Z(h){(t,0p) € Tr(Lsc). Because S is demonic we may
conclude ptracege(Z(h)) C prege({¢, 0op)), and so r € pregc((c, op)).

Assume now ' € StY and w € Out with ((¢,7),(r",w)) € op®“. Hence we get
h{{t,op),w) € Lgc and 7' € finalgc(h{{t, 0p),w)). From Lgc € Lga we may conclude
h{{t, 0p),w) € Lgc N Lga and so finalsa(h{{c, 0p),w)) # @. S is semi-deterministic and
so we can find a state s’ € finalga(h{{c, 0p),w)) such that ({¢,s)(s",w)) € op®”, and we
have (7, s") € abs according to our definition.

(SR2) : This is satisfied because for 7 € Nt = finalge(c) and s € Init? = finalga(c)
we have (r,s) € abs.

O

Note that the implication ¢) = i) of Theorem 2 holds without the assumption that
54 is demonic. Note also that if condition 7) or condition %) holds, that we can always
use the abstraction relation

(r,s) € abs iff Ih € LgcNLga : r € finalge(h) A s € finalga(h)

to show that S4 C ., S©.

For the specifications and languages in the appendices, since SA2 is semi-deterministic
and both £, and Lp are demonic, and Lg € L4, we can conclude SA2 T SB1. The
abstraction relation that can be used to show this is

abs ={(i,L) : i € Z}U{(i,4) : 1 € Z}

Similarly, we can use the above theorem to prove SA2 C SAl and the same abstraction
relation applies in this case.

The theorem also proves that there is no abstraction relation so that SB1 forward
refines to either SA1 or SA2. Similarly, since it is not the case that L+ @ Lp, Theorem 1
proves that there is no abstraction relation so that SEF'1 forward refines to SC1. Note
that we cannot use Theorem 2 for the last case, because SC'1 is not demonic.

5. State-abstraction for semi-deterministic specifications

We now formalise our notion of state abstractness for demonic, semi-deterministic spec-
ifications. We show that languages and semi-deterministic specifications define right con-
gruences in a natural way. Moreover, a partial ordering on these right-congruences char-
acterises forward refinement with abstraction functions. This reflects our understanding
of refinement proofs with respect to state abstraction.

Definition 12 a) For any equivalence relation R on a set M and r € M we denote
the corresponding equivalence class by 7= {m € M | rRm} and the quotient space
{7 | re€ M} by M/R. For equivalence relations Ry, Ry on M and subsets My, M,
of M, Ry > My = Ry > M, (read “relation Ry restricted to My refines relation Ry
restricted to My”) if each equivalence class of Ry restricted to My is a subset of some
equivalence class of Ry restricted to My. If no restriction occurs we write Ry < Rs.
Note that = defines a partial ordering on pairs of equivalence relations and subsets

of M.

21

b) A relation R : H < H is right invariant if (Vz € H)(zRy = zzRyz). An equiva-
lence relation that is right invariant is called a right congruence. In this case the
concatenation of any equivalence class h € R with a history z € H s well-defined

by hz = hz.

¢) We say that a right congruence R : H < H defines language L if L = H or L = H\T,
for some y € H.

d) For a language L CH and z,y € H, zRey iff (Vz € H)(zz € L & yz € L).

e) For a specification S we define a reflexive and symmetric relation Ry,

Ry iff (z,y € Lg A finals(z) N finals(y) # D)V (z,y & L)

on histories ©,y € H. Its transitive closure will be denoted by Rg.

An arbitrary right congruence R typically defines more than one language, and every
right congruence R on H trivially defines the language H. Consider the language £ 4 and
specifications SA1 and SA2 in the appendix. The equivalence relation R., contains one
equivalence class for all © ¢ L4, one equivalence class for all histories # € L4 ending in
(random, L), and one equivalence class for every v € Z containing all histories ending in
(val,v) (the equivalence class for the integer 0 also contains the empty history ¢). The
equivalence relation Rg4; contains two equivalence classes: one for all z ¢ L4 and the
second one for all z € L£4. To see that all z € L4 belong to one equivalence class, note that
(random, L) € L4 and that finalsa; ((random, L)) = Z. Therefore, since finalsai(z) € Z
for all z € L4, we have

finalsar () N finalgar ((random, L)) # @

For SA2, on the other hand, we have Rgas = R, .
The following proposition states the correspondence between R, and Rg.

Proposition 7 i) For every language L, R is a right congruence that defines L.
ii) Let R be a right congruence that defines a language L. Then R < R..

iii) For every semi-deterministic specification S, Rg is a right congruence that defines
the language Lg with Rg = R, .

Proof. Assertion i) follows directly from the definition.

For ii): Let uRw for w,w € H. Assume further z € H with uz € £. R is a right
congruence and therefore uzRwz. Furthermore, R is a right congruence that defines L,
which means that we cannot have uz € L, uwzRwz, and wz ¢ L. Hence, wz € L and
therefore uR,w.

For 4ii): We prove Rg is right invariant. Let zRgy with 2,y € Lg. This means that
there exist elements z; € Lg, ¢ =0, ..., n with

T =1, &y =y, final(z;) N final(zi41) #D, i =0,...,n L1

22

S 1s semi-deterministic and so we get for z € H, 2z € L3 & yz € Lg, and if zz € Lg
final(z;z) N final(412) # D, 1 =0,...,n L1

and hence zzRgyz. Finally, since Rg is a right invariance that defines Lg it follows from
’L’L) that RS j Rgs.
O

SA1 is an example of a specification where Rg4; is not right invariant and does not
refine R ,, which is because SA1 is not semi-deterministic.

We are going to reduce the nondeterminism of a semi-deterministic specification to
real determinism in the state space, i.e., we transform the specification into a state-
deterministic one. This will be done by using the equivalence relation that is induced on
the state space via the above introduced equivalence relation Rg.

Definition 13 Given a semi-deterministic specification

S = (Op, St, In, Out, IniT,)
we define an equivalence relation Eg on the state space St by sEgs’ iff

dh e Ly : s,8 € Wfinals(h') | WRsh} V s,8 € St \ U{finals(h') | ' € Ls}
We denote the corresponding quotient spaces by

St = St/Es , Init = IniT/Es

In addition, we get a corresponding specification S = (Op, St, In, Out,]NIT,_g) if we
define,

0p§ = {(<L7§>7 <§/7w/>) | (<L7 S>7 <S/7w/>) S OpS } , for all op € Op

For the specification SE1 from the appendix, the state space of SE'1 consists of equiv-
alence classes of states of SE'1. Thus, each state of SE1 contains a set of states of type

sel defined by
sel
v:4
stuck : B

For example, the initial state of SE1 is the equivalence class with the singleton set con-
taining the element s € sel such that s.v = 0 and — s.stuck. Moreover, the states of
SE1 contain all equivalence classes that are a singleton set with one element s such that

- s.stuck, plus the one equivalence class consisting of all elements s such that s.v is any
integer and s.stuck is true. The latter equivalence class is a state in SE1 because all these
states in SE'1 really represent the same abstract state (i.e., they are indistinguishable with
respect to future behaviour).

In general, the correspondence between S and § is formulated in the following Propo-
sition.

23

Proposition 8 Let S be a semi-deterministic specification. Then,
a) S is state-deterministic with Lz = Ls and Rz = Ry
b) S is state-deterministic iff S = S
c¢) S is demonic iff S is demonic

Proof. We first prove the following two properties:
i)Vs€eSt,heLs : s € finals(h) = 5= U{finals(h') | M Rsh}
i) Vs € St,he Ly :35€ finalg(h) = 5= U{finals(h') | MRsh}

Assertion 7) is an immediate consequence from the definition of Rg and Eg. We prove i)
by induction on the length of h € L.

Base case (h = ¢): Let 3 € finalz(¢). Because of finalz(c) = Inir we find sy € IniT with
sEgsg. From 1) and sy € finalg(¢) we conclude

5 =3 = U{finals(h') | h'Rse}
Induction step: Assume h € Ly, last(h) = ({¢, 0p),w) and 5 € finalz(h). Then we

find 55 € finalz(front(h)) with ({¢,%),(3,w)) € op®. Our induction hypothesis gives
us 5o = U{finals(h') | ' Rs front(h)}. The definition of op® guarantees the existence of
sh € 5 and s’ € 3 with ((¢, s'), (s',w)) € op®. Hence, we find hy € L with s}, € finals(ho)
and hoRg front(h). Note that s € finals(ho({¢, 0p),w)) and because of i) and the right

invariance of Rg,

5 = § = U{finals(h') | K Rsho({t, 0p),w)}
= U{finals(h') | W' Rsh}

This finishes the proof of 4), which shows that S is state-deterministic. The inclusion
Ls C Lz is obvious. For h € Lz we find 5§ € finalg(h); from i) we can conclude
5 = U{finals(h’) | K’'Rgh} and therefore finalsg(h) # @. Hence, h € Lg.

To see Ry = Rz we take hy, hy € H. Note the following equivalences:

hiRshy N by, hy € Lg & s € finalg(hy) : 5 = U{finals(h') | WRsh} A
s = U{ﬁnalg(h’) | h/RShz}
& ds e St finalg(hy) = finalg(hy) = {5}
A= h1R§h2 A hl, hy € L‘g

The first equivalence follows from), the second from L£g = Lg and), and the third
from the fact that S is state-deterministic.
The assertion b) follows from 4) and it), and c) follows from Proposition 3 and Lg = L5

S demonic & Lg demonic & Lz demonic & S demonic

O
For the specifications in the appendix, note that SE1 is semi-deterministic, but not
state-deterministic, and hence SE1 # SET.
We now introduce a relation on pairs (R, L) where R : H <> H is a right congruence
that defines a language L.

24

Deﬁnition 14 (Rl,ﬁl) S (Rz,ﬁz) ’Lﬁ ,Cl < ,Cz A Rl > (,Cl N ,Cz) j Rz

Ry > (L4 N Ly) is an equivalence relation on £4 N Ly, and the above definition requires
that every equivalence class of Ry > (£1NL3) is a subset of an equivalence class of Ry. Note
that the restriction of By to £, N Ly can be canonically extended to a right congruence on
‘H that defines £; N Ly. Note also that if £; = £ then the relation (Rq,L1) < (R2, L2)
reduces to R; < R,.

Proposition 9 The relation < defines a partial ordering on pairs (R, L) as above.

Proof. The reflexivity and antisymmetry of < are immediate from the definition. For
the transitivity assume (Ry, £1) < (R2, L) < (Rs, L3). Then, £, € Ly € L5 and so, with
Proposition 5 dit), £ N L3 C L,. Hence,

Rl > (,Cl N ,63) Rl > (,Cl N ,Cz N ,63)
Rz > (,Cz N ,63)
Rs

LATA

|
We will use this partial ordering to generalise the main results of [9] to demonic, semi-
deterministic specifications.

Definition 15 Let £ be a language. We define the corresponding abstraction lattice by
AL; = {{R | R right congruence that defines L}, =)

Proposition 10 AL; is a complete lattice with greatest element Re and least element
R7,

hR; B iff (h,h' € LAR=h)Vh K eH\L
Proof. Note that inf{R; | ¢ € I} = NiesR; and sup{R; | i € I} = trel(U,er R;) for

any family R; € ALg, ¢ € I, where trcl denotes the transitive closure of a relation. In
this lattice, according to Proposition 7, R, is the greatest element; the least element is
the partition of £ consisting entirely of singleton sets, R .
O

We will see that the abstraction lattice characterises state abstraction on deterministic
languages and their semi-deterministic specifications. If states are viewed as history sum-
maries, then R, summarises the histories as much as possible, and the minimum element
does no summarisation at all. Proposition 7 tells us that the abstraction lattice for lan-
guage L contains an element for every semi-deterministic specification S with language
,C, i.e., RS.

Consider the specification SE1 from the appendix. It is semi-deterministic and fully
abstract in the sense that Rz, = Rsg1. To obtain a specification that is not fully abstract,
we can simply change the specification of random from

__random

A(v)
- stuck = vV =v+1

25

to

__random

A(v)
vv=v+1

The new specification SE2 always increments the value of v in random and is thus state-
deterministic. SE1 only increments the value of v when stuck is false, and leaves the value
of v unspecified when stuck is true. Note that this does not change the language defined
by the specification, because when stuck is true, the future behaviour does not depend
on the value of v any more. Now (Rggse, L) < (Rsg1, Lg) because every two histories
distinguished by Rgpy are also distinguished by Rggpo. However, the converse is not true,
since Rgpy distinguishes histories that Rgpy does not. Therefore, for L5 we have:

(Rz,.LE) < (Rsp2, L) < (Rsg1,LE) = (Rey, Lp)

Unfortunately, the lattice AL, is not sufficient as a domain for data refinement proofs
with nondeterministic languages. During a forward refinement, traces might lose corre-
sponding output sequences. This is the reason why we have to consider all languages £’

with £' € L.

Definition 16 We define the partially ordered set
ASy = ({(R,L) | R€ ALy N L € Lan} }, <)

and call it the state abstraction poset of H.

The greatest element of ASy is ({(z,y) | © =y =¢V z,y € H\ {e}}.{¢}). In
general, ASy is neither a lattice, nor a meet semi-lattice, nor a join semi-lattice, due to
the nondeterminism in the underlying refinement ordering. Note that by adding a bottom
element we obtain a chain complete poset, i.e. a poset where every chain has a supremum.
In this poset, the infimum of a chain exists if for each language in the chain there is a
smaller language in the chain which is finite, in the sense that the number of outputs for
a given input is always finite.

We propose that the abstraction poset is used to characterise state abstractness on de-
monic, semi-deterministic specifications. Specifically, for two demonic, semi-deterministic
specifications S4, S¢ we will say that S¢ is less state abstract than S4 if

(RsC,,CSC) S (RSA,,CSA)

For the language L from the appendix, we have shown a number of elements in the
state abstraction lattice. However, for all these, the language Lp is the same. For an
example of two elements in a state abstraction poset for which the languages are not
the same, consider the language SG1 obtained from SAl by adding the operation zero
and the state variable stuck that behave in the same way as in SE'1. SG1 is not semi-
deterministic. We therefore change SG1 to SG2 using the same technique that was used

26

to turn SA1 into a state-deterministic specification SA2 by introducing the special value
1 to indicate that random has been called without being followed by a call to val. Then

SG2 is state-deterministic and (Rsg1,Lr) < (Rsg2, L¢). Note that Lz # L, but that
Lg @Lg.

We have seen that every semi-deterministic specification defines a right-congruence in
a natural way. The converse is true as well. Every element of ASy determines a semi-
deterministic specification in the following sense.

Definition 17 For a right congruence R : H — H that defines a language L C H we
define a specification S(R,L) = (Op, St*FE) In, Out, InirS L) | _S(RL)Y with state and
initialisation spaces

StSBRL) = Ih | he L}, Inr® (B4 = (7}
Then, for each operation op € Op we define the following state transitions on St:
op L) = L1,), (#',w)) | t € In Aw € Out At ' € SEEEE) At =t ({1, 0p),w)}

Proposition 11 Let R : H — H be a right congruence that defines a language L C H.
Then the following properties hold.

i) S(R, L) is state-deterministic with Rspcy = R and Lsp,c)y = L.

ii) S(R, L) demonic & L demonic.

Proof. For i): By induction over the length of histories in Lg(r r), respectively L, we
prove

a)Vhe Lsrey : h€ LA ﬁndlS(R,ﬁ)(h) = {n}
b) £ C Lsr,c)

For a): Base case (h = ¢): finalg(p c)(c) = InirSUEL) = [7)
Induction step: Let h € Lg(rc) with last(h) = ({(¢, op),w). Since Lgp) is prefix-
closed, front(h) € Ls(r,cy and by the induction hypothesis,

finals(g y(front(h)) = {front(h)}

R is a right invariance, hence front(h)last(h) = h. We therefore have finals(g,c)(h) # @
and there exists ¢/ € St such that ({¢, front(h)),{t',w)) € op®(F€) The definition of
op BE) gives us ¢ = front(h)last(h) = h. Therefore, h € £ and finalsg,cy(h) = {h}.

For b): Induction step: Let h € L with last(h) = ({¢,0p),w). By the induction

hypothesis, we have front(h) € Ls(gr,c). Because of a), finalg(r cy(front(h)) = {front(h)}.
Hence, ((¢, front(h)), (h,w)) € op®F4) and we are done with

h = front(h) last(h) € Lg(r,c)

27

From a) follows it that S(R, L) is state-deterministic; a) and b) imply £ = Lg(r,c)-
Now, for hy, hy € H,

hRhy Ahihy € L & finalspey(h) = {I} = finalsir,c)(ha)
& hBRsrcyhs N hihy € Lsrey

and therefore, R = Rg (R r).
For ii): With ¢) and Proposition 3 we get that S(R, L) is demonic iff £ is demonic.
O
We next show that the ordering < on the state-abstraction poset ASyx has a concrete
interpretation in the context of demonic, semi-deterministic specifications.

Theorem 3 Assume demonic, semi-deterministic specifications S* and S¢. Then the
following properties are equivalent.

i) (Rgc,Lgc) < (Rga,Lga)

ii) gA C absy gc , with a partial function abs; : gc —+ §A

iii) S(Rga, Lga) Caps, S(Rgc, Lgc), with a function absy : (LgaNLgc)/Rgc — Lga/Rga
Proof. By Proposition 8 we get the demonic, state-deterministic specifications 5% and
S with La = Lga, Lgo = Lso, Rea = Rea and Rge = Rge.

i) = 4i): With Rge > (Lgc N Lga) = Rga and Lgc € Lga there exists a natural
embedding

dsz : ('CSC N EsA)/RSc‘ — ESA/RsA R dsz(%) = E (2)
Now we define a relation abs; : St o 5! , by

(t,8) € abs ifft Ih € Lga N Lge 1 {s} = finalza(h) A {t} = finalge(h)

From the remark following Theorem 2, we conclude gA C absy gc‘ It remains to prove

that abs; 1s a partial function from St to St'. Let (t,81), (t,82) € absy, then there exist
hl,hz € ,CSA N 'CSC with

a) finalze(hy) = {t} = finalzc(hy)
b) finalza(hy) = {s1} , finalga(hy) = {s:}

From a) it follows that hy Rgchy. Then, the embedding abs, in (2) gives us by Rgahy which

is equivalent to Ay RgA hy. Recall that gA is state-deterministic, and hence s = s;.

i) = 1): Assume g4 C abs S with a partial function abs; : St St By applying
Theorem 1 we get Lgec @ Lga. Then, because of Lemma 1 we know that the abstraction
function abs; satisfies for every h € Lgc N Lga the following condition:

c) Vt e St {t} = finalze(h) = t € dom(absi) A {absi(t)} = finalza(h)

28

Obligation ¢) asserts that the embedding (2) is well-defined. This finishes the proof of
i) = i),

i) < 1i): Because of Propositions 11, 8 we have S(Rga,Lg4) = S(Rga,Lga) and
S(Rgc,Lgc) = S(Rge,Lgc). Then, equivalence) < 44) is an immediate consequence
of equivalence 1) < i) with the specifications S(Rga,Lga) and S(Rgc,Lgc).

O

From statement ¢) it follows that any abstraction function abs, that satisfies i), is
uniquely determined on the set U{ finalzc(h) [h € Lga N Lgc } and satisfies

VheLoanLge t €St
{t} = finale(h) = (t € dom(abs;) A {absi(t)} = final-a(h))

Obviously, for two demonic, semi-deterministic specifications S4 and S, equality in
ASy means Rga = Rge and Lga = Lgc. From Theorem 3 we can now deduce what this
equality means in terms of the underlying state spaces: two demonic, semi-deterministic
specifications S# and S are equal in ASy iff there is a partial injection abs : St w5t
such that gA Cups gc Cps—1 ?A.

The following special case of Theorem 3 extends the main result of [9] for deterministic
and complete languages: for a demonic language £, two elements in the abstraction lattice
AL; are related if and only if there exists a functional refinement for the underlying
demonic, semi-deterministic specifications. Recall that a semi-deterministic specification
is demonic exactly if it defines a demonic language.

Corollary 1 Assume demonic, semi-deterministic specifications S* and S¢ that define
the same language. Then the following properties are equivalent.

i) Rgc = Rga

ii) There exists a partial function abs : gc —+ §A such that gA Cups gc

6. Completeness of refinement

We have seen that refinement with obligations (SR1) and (SR2) is a sound and complete
method for demonic, semi-deterministic specifications. But what happens if the specifi-
cations are not semi-deterministic? In this case, forward refinement is not complete. In
other words, there exist demonic specifications S4 and S with languages Lgc € Lga
where S4 cannot be refined to S$¢ with (SR1) and (SR2). For example, SAl does not
refine to SA2, even though both are demonic and define the same language.

This reflects the similarity with common forward refinement techniques which are not
complete, unless an adequate backward refinement technique is added [13,10,15].

In this section, we define a backward refinement technique to also obtain a complete
proof method in our framework. We show that this method together with forward refine-
ment is sound and complete, i.e., for specifications $4 and S with langunages Lgc € Lga
we have a refinement from S4 to S with a combination of forward and backward refine-
ment. To accomplish this, we construct intermediate specifications.

We first define a notion of backward refinement for operations in our context.

29

Definition 18 Given two specifications S4 = (Op, St4, In, Out,]NITA,_SA) and S¢ =
(Op, StY, In, Out,]NITC,_SC) with a relation

abs : St¢ « St4

and an operation op € Op, we say that op®” backward refines to op®" (opSA e opsc)
if the following obligations are fulfilled.

(DR1°) Yi € In : prega({t,0p)) # @ = (presc({t,0p)) #D A
(Yt € postge({t,op)) I s € postga({t,0p)) : (t,s) € abs) A
(Vt € postge({t,0p)), s € St : (t,s) € abs = s € postga((t,0p))))

(DR2’) Yi€In,we€ Out, s, s € St4, t e St :
((t,s) € abs A ({t,s),(s",w)) € 0p®") =
(3t € St7 : ((1,8), (t',w)) € 0p® A (,5') € abs)

(DR3) Yi€In,we Out, s € St*, ¢, t' € St .
((#,8") € abs A s' € postga((c, 0p)) A ({1, 8), (t,w)) € 0p®) =
(Fs e Stt @ ((1,8),(s",w)) € op”" A (t,s) € abs)

This relation defines a preorder on operations which is different from the common
backward refinement notions [8,13,10,11,15,17], as explained in Section 7.

Definition 19 We say that a specification S* can be backward refined to specification S©
if there exists an abstraction relation abs, as above, such that

(SR1’) Yope Op : op®" T, op®*

—abs

(SR2’) (Vs € Inr* 3t € Intr© : (t,8) € abs) A
(Vse Sttt e Ivir? @ (t,s) € abs = s € Ini7#)
In this case, we write SA T, S or simply 4 C' §°.
Note that we use the symbol C’ in different contexts for operation and specification
refinement.
As for forward refinement, backward refinement as defined above defines a preorder.

Proposition 12 The relation T’ defines a preorder on specifications S.

The following propositions and lemmas are used to show that forward refinement C and
backward refinement C’ together form a sound and complete proof method for specifica-
tion refinement. We first concentrate on the soundness of backward refinement and then
define the intermediate specifications that are needed to show that forward and backward
refinement together are complete.

Now, recall the restricted-use specification S°[S4] from Definition 11. Similar to for-
ward refinement, S “[S4] defines how S4 is simulated in ¢ under a backward refinement.

Proposition 13 For specifications S* and S°:

30

i) SC[SA] T, SY with the identity id on St°

7’7’) SA E/abs SC < SA E/abs SC[SA]
Proof. i) is straightforward and that S4 C/, S9[S4] implies S4 C/,, S is a
consequence of i) and the transitivity of C’. It remains to prove that S4 C’, S implies
SA !, SYS4]. We assume S4 C’,. S¢ and an operation op € Op:

—abs abs

For (DR1"): Let prega({t, op)) # @. Because of (DR1’) for the refinement $4 C/, S¢
we have prege((t, 0p)) # @ and hence by definition of S“[S4], prescisa)({t, op)) # @.
Now, assume r € postgcpsa)({, 0p)). Then, r € postgc({t, 0op)) and because of (DR1'),
there exists s € postga({s, op)) such that (r,s) € abs. But, if » € postgerga({¢, op)) and
s € St4 with (r,s) € abs, then r € postsc({t, op)). Again, because of (DR1’) we can
conclude that s € postga((c, op)).

For (DR2'): Let (r,s) € abs and ({s,s),(s",w)) € op®”. (DR2') implies the exis-
tence of 7/ € St such that ({¢,7), (+',w)) € op®“. Hence, by the definition of §°[54],
({¢,), (r",w)) € OPSC[SA]-

For (DR3'): Let (', ') € abs and ({7}, (r',w)) € op® 5] with s’ € postga({c, op)).
Then, ((¢,7),(r",w)) € op®” and by condition (DR3'), there exists s € St such that
((1,5), (s',0)) € op®" and (r,s) € abs.

(SR2') is fulfilled, because S¢ and S¢[S4] have the same initialisation sets.

O

The next theorem states the soundness of backward refinement. Before that, we prove
two lemmas.

Lemma 3 Assume specifications S and SC. If there exists an abstraction relation abs :
St9 s StA such that SA T, SY, then for every h € Lgopga:

—abs
i) Vs € finalga(h) 37 € finalgorgay(h) = (r,s) € abs
w) Vs € Sth, 1 € finalscigay(h) : (r,s) € abs = s € finalga(h)
iii) finalga(h) # @

Proof. = We prove our assertion by induction on the length of & € Lgcgay:

Base case (b = £): In this case 1) and i) follow from (SR2') and #i7) is fulfilled because
Inrtt + @.

Induction step: Let h({c, op),w) € Lgcrga.

For ¢): Assume s’ € finalga(h{{c,0p),w)). Let s € finalga(h) with ({¢,s),(s’,w)) €
op®”. From the induction hypothesis i) we can conclude r € finalgogaj(h), and thus
r € finalge(h), with (r,s) € abs. Because of (DR2') we find ' € St¢ such that
(e,), (', 0)) € op®, and hence ({¢,), (', w)) € op® 15" with (', s') € abs.

For ii): Let s’ € St4, ' € finalgerga)(h((t, op),w)) with (+',s") € abs. Hence, there
exists r € finalgogaj(h) with ((¢,7),{r",w)) € op 151 According to the definition of
SY[S4] we have prega({t, op)) # @. Because of (DR1') we get s’ € postga({t, 0p)). (DR3')
then leads to s € St4 with ({1, s), (s',w)) € op®" and (r, s) € abs. Our induction hypoth-
esis it) then allows us to conclude s € finalga(h) and hence, s’ € finalga (h({¢, op),w)).

31

For iii): From finalgcpgaj(h{(t, op),w)) ;é @, we can deduce prega({(¢, op)) # @. We then
fix r' € finalgcpga)(h({¢, 0p>,w>) Then, ' € postgcrsa)({t, op)). Because of (DR1') we find
s € postga((t, op)) with (7', s") € abs. From i) we conclude s’ € finalga (h{{c, op),w)).

O

Lemma 4 Assume specifications S and SC. If there exists an abstraction relation abs :
StY s St such that S4 C!,, S, then for every h € Lga:

Vs € finalga(h) 37 € finalgorga(h) : (r,5) € abs

Proof. @ We prove our assertion by induction on the length of A € Lga:

Base case (h = ¢): In this case our assertion is fulfilled because of (SR2').

Induction step: Let h{{c, 0p),w) € Lga. Let s’ € finalga(h((, 0p),w)). Then, we find
s € finalga(h) with ({¢, s), (s",w)) € op®”". By the induction hypothesis, we can find an
r € finalgcpsa(h) with (r,s) € abs. Because of (DR2') there exists ' € St¢ such that
(e,), (', w)) € 0p® B and (+,s') € abs.

|
Theorem 4 Let S and SY be specifications with S4 ', SY. Then,
i) Loo @ Lga and Lgopga) = Lga = Lga N Lgo
i) SY[S4] is demonic if
S4 is demonic and ¥t € Init© Is € St ¢ (¢,5) € abs (3)

Proof. For i): By the definition of S“[S4], Lscig4y € Lgo. Furthermore, from
Lemma 4, Lg4 € Lgcpga and from Lemma 3, Lgopga) € Lga. This proves Lgopga) =
Lea=LgaNLge.

For Lgc € Lga we prove

Vi€ Tr(Lga) : Ve, (t) C Ve, (1)

by induction on the length of the traces:

Induction step: Let t = t'(¢, op) € Tr(Lga) and h = h'({¢, op),w) € V¢ . (t). Then we
find r € finalge(B'), v € St9 with ({, r>,<r’,w>) € op°°. Since prega({t, op)) # @ and
(DR1’), there exists s’ € postga({¢, op)) with (,s') € abs. Then, (DR3') gives us the
existence of s € St4 with ({1, s),(s’,w)) € 0p®" and (r,s) € abs. Finally, our induction
hypothesis together with Lemma 3 7,7,) ensure that s € finalga(h'), and therefore h € Lga.

For i): Let t(c, op) € Tr(S°[S4]). We have to show ptracescsa)(t) C pregepsay({¢, op)).
Let 7 € ptracegcpga(t).

First case, t = &: Then, r € Ini7%. Because of condition (3) we find s € St4, and
(SR2') implies s € Init?. S4 is demonic and so, s € prega((¢,0p)). (DR2') implies
r € pregorsa)({t, op)).

Second case, t # ¢: Because of (DR1’) we find s € ptracega(t) with (r,s) € abs. S4 is
demonic, hence s € prega({c, op)) and with (DR2') we conclude r € pregcisai({¢, op)).

32

O

The above result proves the soundness of backward refinement with respect to the

ordering €. To prove the completeness of the combination of forward and backward
refinement, we construct two intermediate specifications.

Definition 20 Let S = (Op, St, In, Out, Init, _°) be a specification. We define the
corresponding tight specification S = (Op, St, In, Out, IntT, %) with

opg ={({,8),(s',w'")) € 0p® | AL € L5 : s € finals(h)}, for all op € Op

Each opg is created by restricting the pre- and postconditions of the operation op®
as much as possible without changing the overall behaviour of the specification S. It is
obvious that S has exactly the same behaviour as S.

Lemma 5 Assume a specification S. Then S T S and S C s S with
(r,s) € abs iff (r=sAN3JheLg: s€ finals(h))
Additionally, Ls = L and S is demonic iff S is.

Proof. The proof is a straightforward verification of the data refinement rules (DR1),
(DR2), and (SR2).

For (DR1) and (DR2): Let (r,s) € abs. Then, r = s and there exists h € Lg with
s € finals(h). By definition of S, we get s € pres((t, 0p)) & s € preg({¢, op)).

In addition, we have

({¢,8), (s w)) € opg A (s, s") € abs & ({1,8),(s,w)) € op® A (s',5") € abs

(SR2) is obvious because the same initialisation sets are used in S and S.

Obviously, L5 C Ls and to show Ls C Ly, we prove Vh € Ls : finals(h) = finaly(h)
by induction on the length of h € Lg:

Base case (h = ¢): finals(e) = INIT = finaly(<).

Induction step: Let h{{(c,op),w) € Lg. From the induction hypothesis, finals(h) =

finalz(h). The definition of opg then implies finals (h{(¢, op),w)) = finak;(h{{¢, op),w)).
Of course, this implies for every trace t € Tr(L,) that ptraces(t) = ptracey(t) and the
remaining assertion, S demonic iff S demonic, is an immediate consequence.
O

With the same notations as above we prove that S backward refines to S(Rz., Ls).
Recall that the state space St B2 £s) can be identified with the set LsU{H\ Ls}.

Lemma 6 Let S be a specification. Then S T/ S(Rz,, Ls) with

—abs

(h,s) € abs iff s € finals(h)

33

Proof. For (DR1'): Let s € postz({t,0p)). Because of the tight definition of opg
there exists a history h € Lg with last(Z(h)) = (¢, op) such that s € finalg(h). Hence
(h,s) € abs and h € postS(RZ«ﬁs)((L, op)).

It h € pOStS(RZq,»Cs)(<L7 op)), then h € Lg and thus there exists s € finalg(h). Therefore,
s € postz((t,0p)) and (h,s) € abs.

Let b’ € postS(RZ«ﬁs)((L, op)) and s' € St with (h',s") € abs. Thus, s’ € finalg(h') and
we find h € Lg, w € Out such that A’ = h{(¢, 0op),w). Hence, there exists s € finals(h)
with ({¢, 8}, (s',w)) € op®. Then, ({t,s),(s',w)) € op°.

For (DR2'): Assume (h,s) € abs and ({¢,s), (s’ ,w)) € 0p§. Therefore, s € finalg(h)
and hence h{{¢,op),w) € Lg. Hence, s € finals(h((t,0p),w)). We conclude that
(h{(c, 0p),w),s") € abs and ({¢, h), (h{{c, 0p),w),w)) € OpS(RZS’ﬁs).

For (DR3'): Let (h',s") € abs and ({t,h),(h',w)) € op®Fes#5) Then, &' € finalg(h')
according to our definition, and there exists s € finalg(h) such that ((¢, s), (s',w)) € 0p§.

For (SR2'): Note that finals(¢) = IniT and Inir* e s) = {e}. Hence, s € Inir iff
(e,s) € abs.

O

Lemma 7 Let S4 and S be specifications with demonic S¢ and let Lgc @ Lga. Then
there is a forward refinement S(RZqA,EsA) Caps SC with

(r,h) € abs iff h € LgaNLgc AT € finalge(h)

Proof. This follows from Proposition 11 and Theorem 2 where, as we remarked,
i) = ii) holds for not necessarily demonic S4.
O
Finally, we formulate the completeness Theorem of the combination of forward and
backward refinement which is a consequence of Lemmas 5, 6 and 7.

Theorem 5 Let S and S¢ be specifications, S¢ demonic with Lgc € Lga. Then there
exist abstraction relations abs;, ¢ = 1,2,3 such that

SA Eabsl ‘§A C! S(RZqAV/:’SA) Eab53 SC

—abso

If we restrict ourselves to demonic specifications, this completeness result together with
Theorems 1 and 4 shows that forward and backward refinement together form a sound
and complete proof method with respect to the ordering @ on demonic languages.

Theorem 6 Let S and S be demonic specifications. S* refines to S¢ by using forward
and backward refinement iff Lo € Lga.

This theorem shows that there is a refinement proof that SA1 T SA2 using a combina-
tion of forward and backward refinement. In fact, with the abstraction relation
abs ={(L,4) : 1 € Z}U{(i,7) : 1 € Z}

we can show that SA1 T’ SA2. Note that this abstraction relation is the inverse of the
abstraction relation that we used to show SA2 T SAl, and that there is no need to
construct any intermediate state machines in this case.

34

7. Conclusions and related work

In this paper, we have extended the abstraction lattice proposed by Hoffman and
Strooper [9] to cover languages that are not necessarily deterministic and complete (Def-
initions 15 and 16). We have defined a partially ordered set of languages and right
congruences that characterises state abstractness on demonic and semi-deterministic spec-
ifications and we have shown that the VDM and Z notion of (forward) refinement with
abstraction functions from the concrete to the abstract state spaces is sound and complete
with respect to this partial order for demonic, semi-deterministic specifications (Theorem
3). Finally, we have defined a notion of backward refinement (Definition 19), similar to the
common backward refinement notions, and shown that forward and backward refinement
together are sound and complete techniques for refining demonic specifications (Theorem
6).

The refinement relation we used on demonic specifications combines common forward
refinement as it is known from Z and VDM [12,17] with our notion of backward refinement,
which is a modification of the classical backward refinement [13,10,15]. The combination
leads to a refinement notion on the underlying demonic languages that is different from the
classical refinement semantics for the state machines generated by Z specifications [8,17]
or specifications with predicate transformer semantics [5,17]. In relational semantics [17],
operations in Z and VDM are interpreted as total operations, where the states that fulfill
the precondition are in their specified relation to the states fulfilling the postcondition
and the states that do not satisfy the precondition are related to every possible state in
the state space. With total operations every combination is possible and the semantics of
the underlying state machine is defined as the set of all behaviours that can be derived by
performing the extended operations in sequence. In this semantics, refinement is defined
as a selection process on the histories that belong to the same trace, and forward and
backward refinement are sound and complete refinement methods in this semantics [8,17].

By providing a different notion of backward refinement (Definition 19) and by limiting
ourselves to demonic specifications (Definition 6) we can ensure that traces never disap-
pear during the refinement. Refinement in this sense is a selection process on the histories
that belong to the same trace (Definition 10). This is not the case for refinements with for-
ward and backward refinement in the usual sense, where histories are selected, but traces
may disappear as a consequence of the refinement. Note that for demonic specifications,
54 refines to S with forward and backward refinement in the usual sense [17] does not
necessarily imply Lgc @ Lga: it is possible that the traces in Tr(Lga) are not a subset of
Tr(Lsc), and so traces can disappear during the refinements. In complete analogy to the
classical refinement result [8,10,11,17], forward and backward refinement in our context
build a sound and complete refinement method with respect to the ordering relation &
on the languages (Theorems 5 and 6).

By restricting the set of specifications to demonic and semi-deterministic specifications,
forward refinement in its own becomes even a sound and complete method (Theorem 2).
This corresponds to similar results in [8,10], for so-called canonical specifications.

In [10], inputs and outputs do not occur explicitly, a finite alphabet of operations with
bounded nondeterminism is assumed, and a special symbol L is introduced in the state
space to simulate divergences. The semantics of state machine refinement is the improved

35

failures model of CSP [3,7]: a process is represented as a pair (F, D) of failures F' and
divergences D. Thus, process (Fy, Dy) refines to process (Fy, Dy) iff Fy C Fy and Dy C D;.
This implies that the traces of the concrete process are a subset of the traces defined by
the abstract process. The refinement notions on the operation level are down-simulation
and up-simulation which are similar to forward and backward simulation, respectively.
Down-simulation achieves that the concrete traces are a subset of the abstract ones and
hence is stronger than forward simulation in our context. Neither down-simulation nor
up-simulation are complete refinement methods on their own, but it is shown that down-
simulation together with up-simulation are sound and complete with respect to state
machine refinement in the improved failures model.

In [11], the trace model for refinement relies on divergences and not on failures. Again
there is no occurrence of input and outputs and a special symbol L appears in the state
space to simulate divergences. A process is represented as a tuple (T, D) with traces
T and divergences D. The process (T1, D;) refines to process (Ty, Do) iff T C Ty and
D, C Dy. Downward and upward simulation define the two refinement notions at the
operation level. They are slightly different to the respective notions in [10]. This is due
to the missing notion of failures. But again the traces of the abstract process are a subset
of the traces of the concrete process. One of the main results of this paper is again
that downward and upward simulation together form a complete proof method when the
divergence model is used for state machine refinement.

Gardiner and Morgan [5] use predicate transformer semantics instead of relational se-
mantics [8]. The predicate transformer for a specification statement can be interpreted
as a relation on the state space that relates the states in the precondition with the cor-
responding states in the postcondition, and that relates all states that do not satisfy the
precondition with all possible states (this is called chaotic behaviour) [14,17]. Composi-
tion of predicate transformers then means composition of total operations which naturally
leads to a demonic specification and the refinement relation on operations with predicate
transformer semantics can be interpreted as subset relation on total operations, similar
as for the classical forward and backward refinement in relational semantics [8,17]. One
main difference with [8] is that Gardiner and Morgan prove that one single data refine-
ment method, which they call cosimulation, is sound and complete when all operations
are total. Cosimulation can be interpreted as refinement with an abstraction relation on
the power sets of the state spaces instead of an abstraction relation on the state spaces
in conventional forward and backward refinement. Our forward and backward refinement
notions are stronger and hence less expressive than cosimulation when used on their own,
but they lead to a complete refinement method when used in combination.

Acknowledgements
We thank Alena Griffiths and the anonymous referees for their suggestions on earlier
versions of the paper. Part of this research was funded by the Australian Research Council

Large Grants A49600176 and A49937045.

REFERENCES

1. M. Abadi and L. Lamport. The existence of refinement mappings. In Proc. of the 5rd
Annual Symposium on Logic in Computer Science, pages 165-175. IEEE Computer

36

10.

11.

12.

13.

14.

15.

16.

17.

18.

A.

Society, 1988.

R. J. R. Back. On correct refinement of programs. Journal of Computer and System
Sciences, 23:49-68, 1981.

S.D. Brookes and A.W. Roscoe. An improved failures model for communicating pro-
cesses. Lecture Notes in Computer Science, 197, 1985.

R. Duke and G. Rose. Formal Object-Oriented Specification and Design Using Object-
Z. Software Verification Research Centre, The University of Queensland, 1995.

P. H. B. Gardiner and C. Morgan. A single complete rule for data refinement. Formal
Aspects of Computing, 5(4):367-382, 1993.

C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271-281, 1972.

C.A.R. Hoare. Communicating sequential processes. Prentice-Hall, 1985.

C.A.R. Hoare, He Jifeng, and J. W. Sanders. Prespecifications in data refinement.
Information Processing Letters, 25:71-76, 1987.

D.M. Hoffman and P.A. Strooper. State abstraction and modular software develop-
ment. In G.E. Kaiser, editor, Proc. of the Third ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 53—61. ACM Press, 1995.

He Jifeng. Process simulation and refinement. Formal Aspects of Computing, 1:229—
241, 1989.

He Jifeng. Various simulations and refinements. In J.W. de Bakker, C., W.P. de
Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems: Mod-
els, Formalisms, Correctness, volume 430 of Lecture Notes in Computer Science, pages
340-360. Springer-Verlag, 1989.

C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall, second
edition, 1990.

M. B. Josephs. A state-based approach to communicating processes. Distributed
Computing, 3:9-18, 1988.

Steve King. Z and the refinement calculus. In Proceedings of VDM’ 90, Lecture Notes
in Computer Science 428, pages 308-312. Springer-Verlag, 1990.

N. Lynch and F. Vaandrager. Forward and backward simulation for timing-based
systems. In J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors,
Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science,
pages 397-445. Springer-Verlag, 1991.

D.L. Parnas and P.C. Clements. A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering, SE-12(2):251-257, February 1986.

J. Woodcock and J. Davies. Using Z: Specification, Refinement , and Proof. Prentice-
Hall, 1996.

J.C.P. Woodcock. The rudiments of algorithm refinement. The Computer Journal,
35(5):441-450, 1992.

Language £, and specifications SA1 and SA2

The language L4 contains two operations: random generates a random integer value,

and val returns the value generated by the last call to random as an output. If no call to
random has been made, val returns 0.

37

— SA1

_InrT
v =0

__random

A(v)

true

__wval
out! : Z

out!l = v

_ SA2

v:ZU{Ll}

_InrT
v =0

__random

A(v)
v =1

__wval
A(v)
out! : Z

(v=LAV EZNout!l=v)V(vEZLNV =0vAout! =0

B. Language L5 and specification SB1

The language Lp is a subset of L4. The behaviour of random is changed so that it
is now deterministic and acts like a counter, incrementing the value of the counter each
time random is called.

SB1

38

_InrT
v =
__random
A(v)
vV=v+1
__wval
out! : Z
out!l = v

C. Language L. and specification SC1

The language L ¢ is like £ 4 except that it has the additional operation two, which does
not affect the behaviour of the other operations, but which does have a precondition that
states that the value generated by the last call to random should be 2.

—S5C1

_InrT
v =

__random

A(v)

true

__wval
out! : Z

out!l = v

_two

D. Language £, and specification SD1

The language L is like Lp except that the operation val has been removed.

39

—_SD1

_InrT
v =0

__random

A(v)

true

_two

v =

E. Language L5 and specifications SE1 and SE?2

The language L is obtained from L£p by adding a call zero that ensures that the output
parameter out! of val is always 0 after a call to zero has been made. When zero has not
been called yet, val returns the number of calls to random that have been made.

—_SFE1

v:4
stuck : B

_InrT
v =0

- stuck

__random

A(v)
- stuck = v =v+1

__wval
out! : Z

stuck = out! = 0 A = stuck = out! = v

— ZETo

A(stuck)

stuck’

40

—_SE2

v
stuck : B

_InrT
v =20

- stuck

__random

A(v)
vV=v+1

__wval
out! : Z

stuck = out! =0 A = stuck = out! = v

— ZETo

A(stuck)

stuck’

F. Language Ly and specification SF1

The language Lr is like L except that instead of testing that the value of v is 2 in
two it sets the value of v to 2.

—_SF1

_InrT
=

__random

A(v)

true

__wval
out! : Z

out!l = v

41

_two

G. Language L and specifications SG1 and SG2

The language L is obtained from L4 by adding a call zero that ensures that the output
parameter out! of val is always 0 after a call to zero has been made. When zero has not
been called yet, val returns the value generated by the last call to random (or 0 if val has
never been called).

—S5G1

v:4
stuck : B

_InrT
v =0

- stuck

__random

A(v)

true

__wval
out! : Z

stuck = out! = 0 A = stuck = out! = v

— ZETo

A(stuck)

stuck’

SG2

v:ZU{Ll}
stuck : B

42

_InrT
v =20

- stuck

__random

A(v)

= stuck = v =1

__wval
A(v)
out! : Z

stuck = out! =0
— stuck = (v =LAV EZNout! =0)V (v EZ NV =v A outl = v'))

— ZETo

A(stuck)

stuck’

