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Enhanced adaptive array performance via DOA
detection

John Homer, Vigneswaran Selvaraju, Peter J. Kootsookos

Abstract—In various communications-based adaptive array ap-
plications, the directions of arrival (DOAs) of the desired user sig-
nal are sparsely separated. As such, the desired beam-pattern has
a sparse structure. We propose an NLMS based adaptive algo-
rithm which exploits this sparse DOA structure and provides sig-
nificantly improved convergence speeds.

Index Terms—Sparse, least mean square, least squares, estima-
tion.

I. I NTRODUCTION

Adaptive arrays find applications in many areas, and particu-
larly within the communications field. Examples include base-
station arrays in cellular communications, and microphone ar-
rays in acoustic communication systems. The primary objec-
tive of the array is to spatially suppress noise and interference,
which in turn allows for higher data rates, lower signal band-
widths, and/or provides improved quality of communications
(e.g. lower bit error rates (BER)). Increasingly, arrays within
these applications are being made adaptive. This enables the
array to track time variations within the ‘spatial channel’ and
allows for the array elements/weights to be initialised (essen-
tially) arbitrarily.

The performance of an adaptive array is commonly measured
by its steady state error (under time invariant conditions), con-
vergence speed, tracking speed, computational cost, as well as
its stability. The least mean square LMS, or its normalised
equivelent NLMS algorithm, is the most commonly used al-
gorithm for adaptation [1], [2]. This is due to its relatively low
computational cost and very good stabilty properties. However,
its main drawback is its relatively slow convergence and track-
ing speeds when the adaptive filter length is ‘large’ [2], [3].
In communications-based adaptive array applications this may
occur, for example, with densely populated cellular communi-
cations cells, where long arrays are required to produce highly
directional beam-patterns.

An approach to combat this ‘parameter dimension’ effect
(within any adaptive application), is to incorporate dimension
reduction techniques within the adaptive LMS/NLMS algo-
rithm. This may be realised in a number of ways, depend-
ing on the characterstics of the system/channel being estimated
or equalised. In the case of communications-based adaptive
arrays, the spatial channel is often characterised by having a
‘sparse’ structure. That is, the desired user signal typically has
only a small number of sparsely separated directions of arrival
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(desired-DOAs). Accordingly, a possible approach to dimen-
sion reduction involves transforming the adaptive system into
the spatial (beampattern) domain and subsequently adaptively
estimate only the dominant or ‘active’ desired-DOAs. In this
paper we follow this approach. The key idea is the use of a cri-
terion for accurately detecting the active desired-DOAs (DOAs
of the desired user signal). Following the work of Homeret. al.
[4], [5], we propose an activity criterion which is based on the
minimisation of a structurally consistent least squares (SC-LS)
cost function. Ultimately, we propose an NLMS based adap-
tive array algorithm which, for spatially sparse communications
channels, demonstrates significantly higher convergence and
tracking speeds than the standard NLMS algorithm. Further-
more, this is achieved with only a moderate increase in com-
putational cost and without compromising the (time-invariant
channel) steady state error.
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Fig. 1. N− element adaptive array.

In this paper we assume the communication temporal chan-
nel is a zero delay non-time disersive (narrowband) channel.
Accordingly, we consider only adaptive arrays with a (complex
valued) scalar weight applied to each array element, as illus-
trated in Figure 1. Current research is investigating the exten-
sion of the proposed adaptive algorithm to nonzero delay and/or
time dispersive (broadband) channels; that is to adaptive arrays
with a temporal (adaptive) filter applied to each array element.

This paper is organised as follows. The next section intro-
duces notation and describes the standard NLMS and spatial
beampattern domain NLMS algotithms. Section III uses the
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notion of a structurally consistent least squares cost function
to derive an activity measure in the beampattern domain. Sec-
tion IV describes the implementation of the algorithm. Sec-
tion V presents some simulation results and we conclude in
Section VI.

II. PRELIMINARIES

The configuration we consider throughout this paper is
shown in Figure 1. We consider anN element uniformly spaced
linear array and assume only a 2-dimensional spatial system.
That is, all the received user signals (desired and interfering) lie
in the same 2-dimensional plane, and that the linear adaptive
array lies within this plane. We assume: the uniform antenna
element spacing isd ≤ λ/2 whereλ is the wavelength of the
narrowband transmitted user signals; and each antenna element
is isotropic.

We consider an ‘equivalent sampled complex baseband’ sys-
tem. That is, we assume all signals are sampled and complex
basebanded. At sampling instantt: u0(t) is the transmitted de-
sired user signal;ui(t), i = 1, 2, ..., n is the transmittedith

interfering user signal;rj(t), j = 0, 1, ..., N − 1 is the sig-
nal received at thejth antenna array element;sj(t) is the noise
signal at thejth antenna array element.

We assume: each user transmitted signalui(t), i =
0, 1, 2, ..., n is described by a zero mean, bounded, wide sense
stationary process of varianceσ2

u; the different user transmit-
ted signals are uncorrelated with each other; the noise signal
of each antenna element is a zero mean, bounded, wide sense
stationary white process of varianceσ2

s ; the noise signals are
uncorrelated with each other and uncorrelated with the user sig-
nals.

We assume that theith (i = 0, 1, 2, ..., n) user transmitted
signal arrives from a ‘small’ numbermi of sparsely separated
directions; and each of these directions is characterised by an
angle of arrivalθi,k, k = 1, 2, ...,mi and a complex valued gain
gi,k. We choose the direction perpendicular to the linear array
line as the zero angle (θ = 0 radians) direction.

Note: for the sake of simplicity (notation and algorithm de-
velopment), we have assumed the spatial characteristics of the
communication channel are time-invariant. It needs to be em-
phasised that the proposed detection guided adaptive array al-
gorithm is suitable for time-varying spatial channels, as well as
for time-invariant spatial channels.

Accordingly, the complex baseband signal received at thejth

array element is:

rj(t) =
n∑

i=0

mi∑

k=1

ui(t)gi,k exp(−j2πdj sin[θi,k]/λ+φi,k)+sj(t)

(1)
whereφi,k is the phase at thej = 0 element of theith user
signal arriving from directionθi,k.

The signal output by the adaptive array is:

v(t) =
N∑

j=1

wj(t)rj(t) = WT (t)R(t),

W (t) = [w1(t), w2(t), ..., wN (t)]T ,

R(t) = [r1(t), r2(t), ..., rN (t)]

and wherewj(t) is the scalar weight applied at thejth array ele-
ment at sample timet. The standard NLMS adaptation equation
for the array weight vector is:

W (t + 1) = W (t) +
µ

RT (t)R(t) + ε
R∗(t)e(t).

where:∗ denotes complex conjugate,e(t) = u0(t) − v(t) and
µ, ε are small positive constants.

As discussed earlier, in order to exploit the sparse spatial
characteristics of the desired user’s signal DOAs, we carry out
the NLMS adaptation in the spatial beampattern domain. The
corresponding NLMS algorithm is:

Wf (t + 1) = Wf (t) +
µ

RT
f (t)Rf (t) + ε

Rf (t)e(t),

whereRf (t) = [rf,1(t), rf,2(t), ..., rf,N (t)]T = FT [R∗(t)],
Wf (t) = [wf,1(t), wf,2(t), ..., wf,N (t)]T = FT [W (t)],
FT [X(t)] denotes the Fourier transform of the vectorX at time
t, ande(t) = u0(t)− v(t) = u0(t)−RT (t)W (t).

We defineW (0) = [w(0)
0 , w

(0)
1 , ..., w

(0)
N−1] as the desired

weight-domain vector, that is the weight vector which min-
imises the cost function of (2) below. Similarly, we define
W

(0)
f = FT [W (0)] = [w(0)

f,0, w
(0)
f,1, ..., w

(0)
f,N−1] as the desired

beampattern-domain vector. In many cases,W
(0)
f will show a

sparse structure. The same is not generally true forW (0). The
desired vectorW (0) or W

(0)
f depends both on the DOAs of the

desired user signal and the interfering user signals.

III. A CTIVITY DETECTION

As discussed earlier, our proposed NLMS based adaptive ar-
ray algorithm incorporates an activity criterion for detecting the
active (or existing) desired-DOAs. We begin by developing an
activity criterion in the array weight domain. We then develop
an equivalent activity criterion in the array beampattern domain
via application of appropriate Fourier transformations.

A. Array Weight-Domain

Following on from the work of Homeret. al [4], [5], the ac-
tivity criterion we employ is derived from the following struc-
turally consistent least squares based cost function [4]:

VSCLS(T ) = VLS(T ) + mσ2
u log T (2)

where: VLS(T ) =
∑T

t=1 |u0(t) − WT R(t)|2; σ2
u = variance

of u0(t); W = estimated array weight-domain vector, which
contains onlym active/nonzero elements.

In general, minimisation ofVSCLS(T ) requires examination
and comparison of a large number

(
N
m

)
of weight index sets with(

N
m

)
=

∑N
m=1

N !
(N−m)!m! . To circumvent this large comparison

problem, we begin by introducing an assumption, which is not
generally valid in the weight vector domain, but which greatly
simplifies the cost function analysis. We then include a number
of modifications to offset the effects of the simplifying assump-
tion.
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Assume the received signal vectorR(t) has uncorrelated el-
ements. Then, for sufficiently largeT , we may approximate
VSCLS(T ) of (2) by [4]:

ṼSCLS(T ) =
T∑

t=1

v2(t)−
m∑

k=1

[Xak
(T )− σ2

u log T ] (3)

Xak
(T ) =

|∑T
t=1 u0(t)r∗ak

(t)|2
∑T

t=1 |rak
(t)|2

(4)

where∗ denotes conjugate,|.| denotes modulus, andak(k =
1, 2, ...m) are the unknown indices of the active elements of the
desired weight vectorW (0).

It is apparent that̃VSCLS(T ) is minimised by (and hence the
indices of the desired active elements correspond to) those in-
dicesj which satisfy:

Xj(T ) > L(T ) (5)

where

L(T ) = σ2
u log T ≈ log T

T

T∑
t=1

|u0(t)|2.

Equation 5 provides us with a suitable activity criterion for
the (unrealistic) case in which the elements ofR(t) are uncor-
related. This activity criterion, however, is not suitable for the
(more realistic) case in which the received signal vector ele-
ments are correlated. This is because the correlation causes
neighbouring indices to contribute significantly to the numer-
ator term ofXj(T ).

To reduce this coupling effect from neighbouring indices, we
propose the following three modifications.
Modification 1: ReplaceXj(T ) by:

XXj(T ) =
|∑T

t=1{e(t) + wj(t)rj(t)}r∗j (t)|2
∑T

t=1 |rj(t)|2
. (6)

Modification 2: ReplaceL(T ) by:

LL(T ) =
log T

T

T∑
t=1

|e(t)|2. (7)

Modification 3: Include an exponentially forgetting factor:
(1 − γ), 0 < γ ¿ 1 within the summation terms ofXXj(T )
andLL(T ).

The reasons for the three modification are described below.
For the sake of clarity, we assume for the discussion below that
all the interfering user signals are absent, so that:

rj(t) =
m0∑

k=1

g0,k exp(−j2πdj sin[θ0,k]/λ+φ0,k)+sj(t). (8)

In this case, the desired weight vectorW (0) is given by:

W (0) = [w(0)
0 , w

(0)
,2 , ..., w

(0)
N−1]

T

w
(0)
j = β

m0∑

k=1

g0,k exp(j2πdj sin[θ0,k]/λ− φ0,k)

where β is a positive scaling constant, such thatu0(t) =
RT (t)W (0) + s̃(t), with s̃(t) a residual noise signal which is
uncorrelated with the elements ofR(t). It needs to be empha-
sised that the above assumption is not a requirement for the
proposed DOA detection guided NLMS adaptive algorithm.

Modification 1 is based on the following. The cause of neigh-
bour coupling inXk(T ) arises from the following numerator
term:

numXj(T )
4
=

1
T

T∑
t=1

u0(t)rj(t)

=
1
T

[
T∑

t=1

∑

p6=j

(w(0)
p rp(t)rj(t)

+ w
(0)
j rj(t)rj(t) + s̃(t)rj(t)].

The first component in the summation is the cause of neigh-
bour coupling. This becomes more significant with an increase
in the correlation amongst the received signal elements.

The equivalent numerator term ofXXj(T ) is:

numXXj(T )
4
=

1
T

[
T∑

t=1

{e(t) + wj(t)rj(t)}rj(t)]

=
1
T

[
T∑

t=1

∑

p 6=j

(w(0)
p − wp(t))rp(t)rj(t)

+ w
(0)
j rj(t)rj(t) + s̃(t)rj(t)].

Here the coupling effect of the first term should be significantly
weakened, assumingwp(t) converges towardsw(0)

p (for p =
0, ..., N − 1.)

Modification 2 stems from the realisation that forinactive
elements (and assumingwinactive ≈ 0) the numerator term
numXXj(T ) is approximately:

numXXj(T )) ≈ 1
T [

∑T
t=1 e(t)rj(t)].

Consequently, combining this with the LS theory on which
the original activity criterion (5) is based, then suggests this
second proposed modification. This reasoning for Modifica-
tion 2, however, is only relevant if the estimation error vector

∆W (t)
4
= W (0) −W (t) is non-time-varying.

Clearly, this is not the case. Modification 3 reduces the effect
of the time-varying nature of∆W .

Note: The inclusion of Modification 3 also improves the ap-
plicability of the detection guided NLMS adaptive array to spa-
tially time-varying systems. This capability of the proposed
adaptive array is not explored in this paper.

B. Array Beampattern-Domain

Transformation of the above weight-domain activity criterion
to the beampattern domain involves replacing the numerator
and denominator ofXXj(T ) with Fourier transform equiva-
lents:

(i) Let NumXXf (T ) = FT [NumXX(T )] where
NumXX(T ) = [numXX0(T ), ..., numXXN−1(T )]
NumXXf (T ) = [numXXf,0(T ), ..., numXXf,N−1(T )].
Replace the numerator termnumXXj(T ) with
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numXXf,j(T ).

(ii) Replace the denominator termrj(T ) with rf,j(T ).

IV. D ETECTION GUIDED NLMS ADAPTIVE ALGORITHM

The proposed DOA detection guided NLMS adaptive algo-
rithm is as follows.
Initialisation:

(a) For each array element indexj, initialise
bj(0) = wf,j(0) = 0 anddj(0) = ε1, 0 < ε1 ¿ σ2

r ,
whereσ2

r is the variance of the received signals.

(b) Initialise: q(0) = C(0) = 0.

At each sample intervalT :
(a) Standard signal operations:

Rf (T ) = FT [R(T )]
W (T ) = IFT [Wf (T )]

v(t) = WT (t)R(t)
e(t) = u0(t)− v(t).

(b) Activity threshold calculation:

q(T ) = (1− γ)q(T − 1) + |e(T )|2
C(T ) = (1− γ)C(T − 1) + 1

LL(T ) = q(T ) log{C(T )}/C(T )

(c) Activity measure calculation, for element indexj:

bj(T ) = (1− γ)bj(T − 1)
+[e(T ) + wj(T )rj(T )]]rj(T )

dj(T ) = (1− γ)dj(T − 1) + |rf,j(T )|2
B(T ) = [b0(T ), b1(T ), ..., bN−1(T )]T ,

Bf (T ) = FT [B(T )]
= [bf,0(T ), bf,1(T ), ..., bf,N−1(T )]

XXf,j(T ) =
|bf,j(T )|2

dj(T )
.

(d) Application of activity criterion, for elementj:
If XXf,j(T ) > LL(T ) then labelj as an active element
indexak; otherwise labelj as an inactive element index.

(e) NLMS adaptation, for elementj:
If j = ak (that is, corresponds to a detected active index)
then:

wf,j(T ) = wf,j(T − 1)

+
µ∑

ak
|rf,ak

(T )|2 + ε
rf,j(T )e(T )

where
∑

ak
=summation over all detected active indices.

If j 6= ak then

wf,j(T ) = 0.

TABLE I
DESIRED SIGNAL AND INTERFERING SIGNAL PARAMETERS

Desired Signal
Angles,{θ0,k}4k=1 −75o −35o +20o +55o

Gains,{g0,k}4k=1 0.5ejπ/3 1.0ejπ 0.3ejπ/9 0.5

First Interfering signal DOAs:
Angles,{θ1,k}3k=1 −55o −5o +70o

Gains,{g1,k}3k=1 1.0ejπ/3 1.0ejπ/7 0.5

Second Interfering signal DOAs:
Angles,{θ2,k}5k=1 −50o −10o +5o +35o +75o

Gains,{g2,k}5k=1 1.2ejπ/3 0.8ejπ 1.6 0.9 0.8ejπ

A. Choice ofγ Value

The parameter decoupling capabilities provided by the mod-
ifications depend largely on the value ofγ: a larger value leads
to a faster forgetting rate, and subsequently faster decoupling
and a greater convergence rate. On the other hand, a largerγ
value corresponds to each of the summations (within the active
tap criterion) providing a poorer ‘averaging’ effect. As such,
when a largerγ is used, there is a greater tendency for fail-
ure to detect the smaller active taps. Alternatively,γ could be
periodically tuned, such that it is increased/decreased until an
unacceptable/acceptable level of estimation error occurs. This
would be indicated by, for example, a general increase in the
power of the error signalu0(t)− v(t).

V. SIMULATIONS

Simulations were conducted to compare the performance of
the standard NLMS adaptive array with that of the proposed
DOA detection guided NLMS adaptive array.

The simulation conditions were as follows.
Signal wavelengthλ = 20mm; Array element spacingd =

λ/2; Number of array elementsN = 64; Adaptation constants:
µ = 0.02, ε = 0.1, ε1 = 0.01.

Desired signalu0: random binary real valued signal (gener-
ated using Matlab:u0 = sign(randn(1, 25600))).

Firts interfering signalu1: random binary real valued sig-
nal with amplitude twice that of desired signal (generated using
Matlab:u1 = 2 ∗ sign(randn(1, 25600))).

Second interfering signalu2: random binary real valued sig-
nal with amplitude equal to that of desired signal (generated
using Matlab:u2 = sign(randn(1, 25600))).

Antenna element noise signalsj : complex valued random
Gaussian signal with varianceσ2

s = 2 (generated using Matlab:
sj = randn(1, 25600) + j ∗ randn(1, 25600)).

Table I shows the simulation multipath parameters of the de-
sired and interfering signals.

Figure 2 shows the results of the simulation. [Shown are the
average of ten similar simluations.) Figure 2(a) is a plot of the
squared error|e(t)|2 over time (sample number), for both the
DOA detection guided NLMS adaptive array and the standard
NLMS adaptive array. Figure 2(b) is a plot over time of the
number of desired-DOA indices detected as being active ... via
the proposed activity criterion.
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Fig. 2. Simulation results: (a) Plot of squared error|e(t)|2 over time (sample
number); (b) Plot of number of desired-DOA indices detected as being active
over time.

VI. CONCLUSIONS

We have proposed a detection guided NLMS adaptive ar-
ray algorithm that works in the spatial beampattern domain.
Simulation results show that this algorithm converges consid-
erably more quickly than the standard NLMS adaptive array
algorithm. Many other simulations, not presented here, also in-
dicate the same significantly superior performance.
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