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Abstract. An algebraic curve is defined as the zero set of a multivariate poly-
nomial. We consider the problem of fitting an algebraic curve to a set of vectors
given an additional set of vectors labelled as interior or exterior to the curve. The
problem of fitting a linear curve in this way is shown to lend itself to a support
vector representation, allowing non-linear curves and high dimensional surfaces
to be estimated using kernel functions. The approach is attractive due to the sta-
bility of solutions obtained, the range of functional forms made possible (includ-
ing polynomials), and the potential for applying well understood regularisation
operators from the theory of Support Vector Machines.

1 Motivation

Algebraic curves provide a powerful basis for a range of geometrical analysis prob-
lems, including shape recognition and non-iterative shape registration, largely due to
the capacity for deriving geometric invariants [5, 3, 6]. Geometric invariants are those
properties of an algebraic curve that are not affected by a particular group of transfor-
mations, for example the affine group.

The fitting of an algebraic curve to a set of vectors has proven to be a difficult prob-
lem, with simple approaches such as least squares having little practical value due to
the instability of the solutions obtained. In an attempt to improve stability a number
of improvements have been made to the least squares approach. Two of the more suc-
cessful approaches are the so-called 3L method of Lei, Blane and Cooper [2], and the
Gradient-1 algorithm of Tasdizen, Tarel and Cooper [7]. Both of these methods require
some geometrical knowledge in addition to the known set of points on the curve. The
3L method requires a sets interior and exterior points equidistant to the curve of inter-
est. The Gradient-1 method requires the normal vector of the desired curve to be given
for each data vector on the curve. Our method requires similar information to the 3L
method, but without the equidistance constraint. Our approach is equivalent to a com-
bination of Support Vector Machine (SVM) classification [9] of the interior/exterior
points, in combination with a least squares penalty on the vectors that lie on the curve.
Various classes of functions can be produced by the method, including the implicit
polynomials considered by the 3L and Gradient-1 algorithms.
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2 Least Squares Fitting

Perhaps the simplest approach to algebraic curve fitting is the minimisation of the least
squares criterion. That is, given a set of points{z̃i}1≤i≤n (subject to noise) that are
known to lie on a curve, and a set of functionsF , the least squares heuristic chooses
the function defined byminf∈F

∑n
i=1(f(z̃i))2. The main problem with this method

is that it does not penalise extraneous parts of the curve that lie far from the data. Our
modification to this simple and largely ineffective formulation turns out to be a variation
of the standard hard-margin SVM classifier, and we begin by reviewing this method.

3 Support Vector Machines

The formulation of Vapnik’s hard-margin SVM classifier is derived by first consid-
ering the problem of two-class linear data classification [9]. That is, given a data set
{(x̃i, yi)}1≤i≤n of training samples̃xi ∈ Rd belonging to classes labelled byyi ∈
{−1, 1}, we wish to find a hyper-plane that separates the two classes. The SVM ap-
proach to this problem finds the separating hyper-plane with maximum distance to the
x̃i, while preserving the separation of the two classes. If we denote the hyper-plane by
the set{x̃ ∈ Rd| < w̃, x̃ > +b = 0}, then finding the optimal parameters̃w ∈ Rd and
b ∈ R is equivalent to minimising< w̃, w̃ > subject toyi(< w̃, x̃i > +b) ≥ 1, i =
1 . . . n.

The most important property of this formulation is that the derivation of the Wolfe
dual [1] results in an equivalent optimisation problem, but one in which the data vec-
tors only appear in the form of inner products with one another. As a result of this,
the so-called “kernel trick” [9] can be applied in order to find non-linear separating
hyper-surfaces. We now demonstrate how this approach can be combined with the least
squares criterion in order to perform algebraic curve fitting.

4 Kernel Based Algebraic Curve Fitting

Here we have a set of points,{z̃1, z̃2, . . . z̃Nz} ⊂ Rd that lie on our hyper-surface,
as well as a set{(x̃j , yj)}1≤j≤Nx of labelled points̃xj ∈ Rd with associated labels
yj ∈ {1,−1}, wherex̃j is interior to the hyper-surface of interest ifyj = 1, and
exterior ifyj = −1.

Our proposed method of utilising this information is to perform SVM classification
of thex̃j with a squared error penalty on the value of the function at thez̃i. To this end,
we begin with the following optimisation problem, which is equivalent to hard-margin
linear SVM classification of thẽxj , with a penalty proportional toc associated with the
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square of the functional value (f(z̃i) =< w̃, z̃i > +b) at each̃zi:

Minimise w̃,b

< w̃, w̃ > +c
∑Nz

i=1 ξ2
i

Subject To:
< w̃, z̃i > +b ≤ ξi, i = 1 . . . Nz

< w̃, z̃i > +b ≥ −ξi, i = 1 . . . Nz

yj(< w̃, x̃j > +b) ≥ 1, j = 1 . . . Nx

Note that choosingc = 0 makes the first two constraints superfluous, and we are left
with the standard hard-margin SVM. We now proceed to derive the Wolfe dual problem
[1]. In the following equations, the summations overi are to be taken from1 to Nz, and
those overj from 1 to Nx. The Lagrangian function is then:

L = 1
2 < w̃, w̃ > + 1

2c
∑

i ξ2
i −

∑
i αi(ξi− < w̃, z̃i > −b)

−∑
i α∗i (ξi+ < w̃, z̃i > +b)−∑

j γj [yj(< w̃, x̃j > +b)− 1] (1)

By the convexity of the problem, at the optimal solution we have:

∂L
∂w̃ = 0̃ = w̃ +

∑
i(αi − α∗i )z̃i −

∑
j γjyj x̃j (2)

∂L
∂b = 0 =

∑
i(αi − α∗i )−

∑
j γjyj (3)

∂L
∂ξi

= 0 = cξi − (αi + α∗i ) (4)

Sow̃ has the “support vector expansion”:

w̃ =
∑

j γjyj x̃j −
∑

i βiz̃i

where we have writtenβi = αi − α∗i . We now use the above relations to eliminate the
primal variables from (1). Putting (2) and (3) into (1) leads to:

L = ẽTγ̃ + 1
2c

∑
i ξ2

i −
∑

i(αi + α∗i )ξi − 1
2 β̃THzβ̃ − 1

2 γ̃THxγ̃ + γ̃THxzβ̃

whereẽ is a vector of ones, and we have defined the matricesHx, Hz andHxz with
elements defined as follows:

[Hx]j,j′ = yjyj′ < x̃j , x̃j′ >

[Hz]i,i′ = < z̃i, z̃i′ >

[Hxz]i,j = yj < z̃i, x̃j >

Now we use (4), which implies12c
∑

i ξ2
i −

∑
i(αi + α∗i )ξi = − 1

2

∑
i(αi + α∗i )ξi,

and we have:

L = ẽTγ̃ − 1
2

∑
i

(αi+α∗i )2

c − 1
2 β̃THzβ̃ − 1

2 γ̃THxγ̃ + γ̃THxzβ̃

(5)
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Since the solution depends onαi−α∗i rather than either of theαi or α∗i individually,
the positivity constraint on the Lagrange multipliersαi andα∗i allows us to remove an
unnecessary degree of freedom by constrainingαiα

∗
i = 0, and so that we can write

(αi+α∗i )2

c = |βi|2
c = β2

i

c , and the expression forL becomes:

L = ẽTγ̃ − 1
2 β̃T(Hx + C)β̃ − 1

2 γ̃THz γ̃ + γ̃THxzβ̃

(6)

whereC is a diagonal matrix with entries1c .
The final matrix form of our dual problem is then:

Minimise β̃,γ̃
1
2 β̃T(Hx + C)β̃ + 1

2 γ̃THz γ̃ − γ̃THxzβ̃ − ẽTγ̃
Subject To:

ẽTβ̃ − ỹTγ̃ = 0,
γ̃ ≥ 0̃

As is the case with the primal problem, settingc to zero leads to an equivalence
with the standard hard-margin SVM. To see this, note that as thec approaches zero,
any non-zeroβi will cause the objective function above to approach the value∞. This
guarantees that at the optimal solution all theβi will equal zero. The remainder of the
problem (containing only thẽγ terms) is equivalent to the Lagrangian dual form of the
standard hard-margin SVM problem, as can be seen by comparing with [9].

Note that the optimal value ofb can be found directly from the Karush-Kuhn-Tucker
(K.K.T.) optimality conditions [1], which are in this case:

αi(ξi− < w̃, z̃i > −b) = 0
α∗i (ξi+ < w̃, z̃i > +b) = 0

γj [yj(< w̃, x̃j > +b)− 1] = 0

Since only the inner products of the data appear in the dual problem, we can find
non-linear hyper-surfaces by using a kernel functionK that corresponds to an inner
product after mapping underΦ to some feature spaceH, that is,

K(x̃, x̃′) =< φ(x̃), φ(x̃′) >H, ∀x̃, x̃′ ∈ Rd

The point, familiar to the SVM community, is that we do not need to know explic-
itly the mappingΦ : Rd → H in order to find non-linear hyper-surfaces, we simply
replace the inner products< x̃, x̃′ > in our dual problem with kernel function evalua-
tionsK(x̃, x̃′), and the corresponding hyper-surface is the set{∀x̃|f(x̃) = 0}, where
f(x̃) has become:

f(x̃) =
∑

j

γjyjK(x̃j , x̃)−
∑

i

βiK(z̃i, x̃) + b
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5 Results and Discussion

The method has been implemented using Platt’s Sequential Minimal Optimisation algo-
rithm [4] to solve the Quadratic Programming (QP) problem. First, we construct from
our data set the matrices appearing in the final form of our dual problem. These matri-
ces are passed to the QP solver, which returns the optimal values of theβi andγj . Next,
we solve forb, which is attained directly from the K.K.T. conditions (see Sec. 4), and
we have completely defined our implicit function according to the final equation given
in Sec. 4. In each of the two following subsections, we investigate the results obtained
using one of two different kernel functions.

5.1 Polynomial Kernel Function

The kernel function used in this subsection is the so-called “polynomial kernel” [9]:

K(x̃, x̃′) = (< x̃, x̃′ > +1)d

The free parameterd ∈ N+ corresponds to the order of our implicit polynomial. In
general, choosing a greater value ofd makes possible a more complex family of curves.

In the first test, simple morphological operations were used to preprocess the binary
image of Figure 1 into sets of interior, exterior, and edge points, as marked in Figure 2 by
the crosses, plus-signs and dots, respectively. The figure also includes the zero contours
of the resultant function for various values ofc. An 8th order polynomial kernel was
used for all the curves of Figure 2, that is, we chosed = 8. Note that the same image
was used in a similar test in both [2] and [7]. We have added noise to thex̃j in order
demonstrate robustness with respect to the location of these vectors. We note in passing
however that an equidistant set ofx̃j (as required by the 3L method) would result in
further improvements of stability and accuracy.

Fig. 1. Original shoe test image.
Fig. 2.Results for the polynomial kernel, degree
8, as a function ofc (c values - dashed line: 0,
dotted: 0.02, dash-dot: 10, solid: 10,000).
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Fig. 3.Results for the polynomial kernel, degree 12, as a function ofc (c values – left-hand side –
dotted line: 0, solid line: 0.00042184; right-hand side – dotted line: 0.042184, solid line: 42.184).

Fig. 4.3-Dimensional rendering of the implicit polynomials corresponding to thec = 0 (left-hand
side) andc = 0.00042184 (right-hand side) solutions of Figure 3



7

A more complex data set is depicted in Figure 3, which demonstrates our obser-
vation that the desired manifold tends to be approximated poorly by the polynomial
kernel (as we increasec) in those regions where thec = 0 solution is not already close
to the desired manifold. Correspondingly, choosing a “tighter” set ofx̃i in the neigh-
bouring region tends to improve the performance. In general we found that continually
increasing thec value eventually results in the appearance of extraneous components
of the zero set, as is the case in Figure 3 for thec = 0.00042184 solution, which is
also rendered in Figure 4. Note the correspondence between the extraneous parts of the
zero set shown in Figure 3, with the three dimensional rendering of the same function
in Figure 4.

5.2 Rational Polynomial Kernel Function

In this subsection we improve upon the results in the previous subsection by using
instead the following kernel function:

k(x̃, x̃′) =
1

ε + ‖x̃− x̃′‖2 =
1

ε+ < x̃− x̃′, x̃− x̃′ >
, ε ∈ R+

This kernel function, which does not appear to have been used previously in the
context of the SVM, has for our application several advantages over the polynomial
kernel of the previous subsection. In particular, it is trivial to show that using this ker-
nel guarantees the boundedness of the resultant algebraic curve, a property which has
previously been imposed by more direct means, as for example by Taubin et. al. [8].
Additionally, the kernel function (and therefore the resultant algebraic curve) is inde-
pendent of the absolute position of the data vectors. Finally the kernel function can be
considered (for smallε), as an approximation to the inverse square of Euclidean dis-
tance. This is desirable according to the widely held view within the SVM community
that a kernel function should represent a good similarity metric for the problem it is
being applied to.

Although the kernel function is a rational polynomial, since the denominator is non-
zero, we can rewrite our implicit equation as an implicit (non-rational) polynomial. To
do this, we simply multiply the original equation by the product of the denominators of
each of the summands. That is, as an alternative to the original equation (for simplicity
we writeξi instead of bothβi andγjyj):

f(x̃) =
∑

i

ξi
1

ε+ < x̃− x̃i, x̃− x̃i >
+ b

we have the following non-rational polynomial equation, which has an identical zero
set:

f ′(x̃) =
∑

i

ξi

∏

j 6=i

(ε+ < x̃− x̃j , x̃− x̃j >) + b
∏

i

(ε+ < x̃− x̃i, x̃− x̃i >)
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Fig. 5. Results for the rational polynomial kernel,ε = 0.05, as a function ofc (c values – left-
hand side – dotted line: 0, solid line: 0.012296; right-hand side – dotted line: 0.12296, solid line:
122.9618).

It is important to note that the order of the above polynomial depends on the number
of non-zero Lagrange multipliers, rather than being chosen a priori as is the case with
the polynomial kernel of Sec. 5.1. In fact, the order of the polynomial will be equal
to twice the number of non-zero Lagrange multipliers, typically resulting in very high
order polynomials.

The improvement in performance afforded by the rational polynomial kernel func-
tion is evident in Figure 5, in which the solutions are well behaved under the variation
of the c parameter. We have found that the solutions are well behaved under a wide
range ofc values. As a result, ac value can easily be found that produces good results
on a wide range of different data sets. This is demonstrated in Figure 6, where we have
used identical processing for all of the test images. The interior and exterior points were
obtained from the input image by taking the edges of six-pixel morphological erosions
and dilations of the original binary image, respectively. Two thirds of these interior and
exterior points were then selected at random and discarded.

Although this simplistic approach produced a relatively poor set of points on the
guitar image (ie. the “hole” in the guitar is unaccounted for), the method succeeded in
producing the correct topology. The only image which resulted in a solution with an
incorrect topology was the butterfly image, however it could be argued that this is the
fault of the preprocessing step, and that the cluster of points around the abdomen of the
butterfly are nonsensical in terms of defining a contour. Note that the correct topology
would be produced for somec ≤ 30. Moreover, the butterfly example is included here
for illustrative purposes only - such errant input data could easily be avoided with a
slightly more sophisticated preprocessing step.

6 Conclusions

One of the major difficulties faced by algebraic curve fitting algorithms is the topolog-
ical instability of the solutions. We have met this problem with the inherent regularisa-
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Fig. 6.Results for the rational polynomial kernel,ε = 0.05. The original binary images are on the
left-hand side. The same parameters were used for all of the results shown on the right-hand side:
dash-dot line -c = 0, solid line -c = 30. Thec = 30 solutions are largely obscured by the data
points.NB: This figure is best viewed by “zooming in” on an electronic copy of the document.
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tion of the SVM classifier in conjunction with a least squares penalty on the data points.
We have given two main options for fitting algebraic polynomial curves.

The first, using the polynomial kernel of Sec. 5.1, allows the order of the polynomial
to be chosen a priori. While this approach is useful in simple cases, it is unsuitable
for complex shapes that are not coupled with a suitably precise set of interior/exterior
points, as the incorrect topology may result.

The second method involves using the rational kernel of Sec. 5.2. This method al-
lows the accurate estimation of complex shapes, with minimal requirements on the ac-
curacy of the interior/exterior points. In this case, the order of the polynomial is deter-
mined by the complexity of the data at hand, often resulting in high order polynomials.

Finally, it is interesting to compare the algorithm with the standard hard-margin
SVM, in the problem domain of machine learning (data classification). In this perspec-
tive thez̃i could be considered as training vectors that an expert has labelled “too hard
to classify”. The algorithm uses this information by trying to find a decision function
that places the class membership boundary near thez̃i. A possible application for the
algorithm as a data classifier is in the domain of handwriting recognition, in which a
human could label some sample characters as being, say, “either an eight or a six”.
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