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Figure © \Wrers noise processing c3n be invorporated into the propesed system

Ur speaker verification, sysler i dlustiate as a seguence of bock-ciagrams in Figure i Trere are three
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KALMAN FILTERING AND SMOOTHING
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RESULTS

W oroise sequence [+ ¢ 5 adced o a signa

! then tre signal 1o noise ratio [SNHY of the resu'ting signal
s glve- by

where both sigoal and ncise are maxe~ ‘o he of fength Lostarting at tmre & . 01

But the intellybil 1y of speesn signa s o not necessarily girect'y re.ated to standard mathematical reasures
sach as the SME improvernent nor does an -mprovemnent in SNR necessarily impiy that antomatic camgarnson

tecknigues wll zerform better  As a resy
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fnany normal environmient many types of nose sther thas white, Guaussian roise may be present cumman
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Fgares 2 4 and 4 pecl the dynamic tire-warping distamce measure versus SNHK for various najse sources
The nterfering signals used were. respect wrly  Haronic noise. 4 sinusoid of random {reaquency was used
to simulate harmonic rowe. Interfering sceach. ou- speech segments from four aifterent speakers dram
the database were mixed {added) tagetler 1o fo

n the interfaring speect s.gnzl, and Impulsive noise. an
exponentally Jecaving mipuise af duratica 00 wirples was used to simulale mpllsive nojse The feegth
was closen so that at least theer rares were aflectea by Lhe IRIFITEY
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Figure 3 SNR versus TW distance for the full order Kalman filter fsmoother [Crder — ].O] with impulsive
noise.
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Figurs 4 SNR versus {11W d'stance far the faii erder Kalman fiite fsmather f0Order — 10} with interfering
speech,
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Figure 5 Moiseless intra and i~ter spraker grababil'ty density functions using the dynamic time warping
d stanze measure
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Figure 6 Fxample 1 Reguired lrue Speaner Rejection Rate Versus Estimated False
Acceptance Rate — Dynamic Time Warping

Verification Algorithm Noise Performance Comparison
Fatensive testing using a smal! database was carried cut |n order to be consistent with previous tests carried

aut by the group. the anly feature sats used for verification were the [ P{ cepstral coefficients and their first
ard secong gifferences

Iz compare the verification algarithms. we sstimate the false-speaker acceptance error rate for vatious true
speaker acceplance rates. [his means that the intraspeaker variability (an example of which is plotted as
Lthe salid iine in Figure 4] and intarspeaker wariahility {plotted as the dashed line in Figure %) must first be
estimated  brom these. the fa'sespeaker acceptance rate for any given true speaker rejection rate may be
abtamed

Eynamic Time-Warping

The graph plotted here snows an exarple of dynam'c time-warping noise perfarmance warking in eenjunciion
with Kalman filtening (Fgore &)

Hemark % The Kulman filterng pedorrance ol the dynamic time-warping techruque {and, n fagt. ali
tecan quest is greatly aitered depending on the quality of the reference temolate ysed L
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Recurrent Neural Network

[ or the lechnical detaiis of this appreach see [1i] A networs of 82 neurons was used 0 the resuts presented
FP 1 P

here  @he recurrens neural relwerk aprears o combioe some goed ang some bad serformance characteristizs

of the other algarithms

In Figure /. the aciseless performasce of tre recarienl net W opome == soopaor, in fact tnat the addition af
noise appears to enhance the performance  This may he exglaned by noting that the additien of a statianary
white noise sequesce ta the signa may wel have the etfect of reducing the mtra speaker (and intes speaker)
distribution variances, reducing the averiap of the twe density funclions and Yence reducing the error rates

Oince the s:igral is Kalman {iltersd and smoothes in this example a+d even more marked improvement s
naticed

Rernark B In the examples shown and atbers trieg the neurs’ network approach would apprar to bersefit
the most from Kalmar smaotkirg or fillering 3

Vector Quantization
Far the techricul and other deta’ls of <mis apzroacs see (120 ane [/]

Figure d shows the noise perfurmance of vertor quanlsahion aarang ‘noronouscbion with Kalman filttening
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misleled. Lhe veclar quantization approach yielded the best noiseless

tleariz here ang 0 oatnes Lewls
pedarrrance ol ol the systens examnines

Ilewever 35 .0 Lhe dynamic tirme warping rase since the degradation of the noisy case s not as extreme as
using the dynamic time warpiog ar recurcent aeural retwark approaches the rose perfarmance s relatively
gaood

Rerark ¢ The perfarmance of vacior quartzatier -0 the nowsrless case is most instances the best of all
the syslerms exartined I
Femare ¥ While vecior guantizat'en undergaes a marked Segradatinn in performance in the presence of
rane cbs s pertarmance sostloef the same order of or better than the other two systems [

CONCLUSIONS

Kaman biltering Because of the special form of cur signas model cormputational simplifications arise
Fhe grder of the model used with the Kalman fiter has a marked affect on the computatian time.

? Iypesof Noise Farthe dyrarric tirme-warping distance measure used the most performance degrading
furry of rose is Lhe interfering speech  These Farmonic naise resu.ts may be somewhat misleading and

a worst-case simulation as discissed above shauld be mase in oreer 1o verify these resuits  [mpulsive
[hbut not necessarily rezetitve and -repualsive] noise does not apgear to greally affect the dynamic

LiTIe warping distdnce medaLires

Venfication performance A satisfactory means of using multiple reference tempiates to produce 3
improved  average reference temolate must be found  In the examples shown and others tried. the
nearal network spproach would appear te benefin the most from Kalman smoothing ar filtering. The
performance of vector quantization in the noseless case 15 most instances, the best of all the systems
examned While vectar quantization undergaes s marked degradation in perfarmance in the presence
of noise "ts noise performance is still of the same ordar of or better than the other two systems
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