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Abstract

An algebraic curve is defined as the zero set of a multivariate
polynomial. We consider the problem of fitting an algebraic
curve to a set of vectors given an additional set of vectors
labelled as interior or exterior to the curve. The problem of
fitting a linear curve in this way is shown to lend itself to
a support vector representation, allowing non-linear curves
and high dimensional surfaces to be estimated using kernel
functions. The approach is attractive due to the stability of
solutions obtained, the range of functional forms made pos-
sible (including polynomials), and the potential for applying
well understood regularisation operators from the theory of
Support Vector Machines.

1. Motivation
Algebraic curves provide a powerful basis for a range of geo-
metrical analysis problems, including shape recognition and
non-iterative shape registration, largely due to the capacity
for deriving geometric invariants [3, 5, 6]. Geometric invari-
ants are those properties of an algebraic curve that are not
affected by a particular group of transformations, for exam-
ple the affine group.

The fitting of an algebraic curve to a set of vectors has
proven to be a difficult problem, with simple approaches such
as least squares having little practical value due to the insta-
bility of the solutions obtained. In an attempt to improve sta-
bility a number of improvements have been made to the least
squares approach. Two of the more successful approaches
are the so-called 3L method of Lei, Blane and Cooper [2],
and the Gradient-1 algorithm of Tasdizen, Tarel and Cooper
[7]. Both of these methods require some geometrical knowl-
edge in addition to the known set of points on the curve. The
3L method requires sets of points that are interior and exte-
rior to, as well as equidistant to the curve of interest. The
Gradient-1 method requires the normal vector of the desired
curve to be given for each data vector on the curve. Our
method requires similar information to the 3L method, but
without the equidistance constraint. Our approach is equiv-
alent to a combination of Support Vector Machine (SVM)

classification [9] of the interior/exterior points, in combina-
tion with a least squares penalty on the vectors that lie on
the curve. Various classes of functions can be produced by
the method, including the implicit polynomials of the 3L and
Gradient-1 algorithms.

2. Least Squares Fitting
Perhaps the simplest approach to algebraic curve fitting is
the minimisation of the least squares criterion. That is,
given a set of points{x̃i}1≤i≤n (subject to noise) that
are known to lie on a curve, and a set of functionsF ,
the least squares heuristic chooses the function defined by
minf∈F

∑n
i=1(f(x̃i))2. The main problem with this method

is that it does not penalise extraneous parts of the curve that
lie far from the data. Our modification to this simple and
largely ineffective formulation turns out to be a variation of
the standard hard-margin SVM classifier, and we begin by
reviewing this method.

3. Support Vector Machines
The formulation of Vapnik’s hard-margin SVM classifier
is derived by first considering the problem of two-class
linear data classification [9]. That is, given a data set
{(x̃i, yi)}1≤i≤n of training samples̃xi ∈ Rd belonging to
classes labelled byyi ∈ {−1, 1}, we wish to find a hyper-
plane that separates the two classes. The SVM approach
to this problem finds the separating hyper-plane with maxi-
mum distance to thẽxi, while preserving the separation of
the two classes. If we denote the hyper-plane by the set
{x̃ ∈ Rd| < w̃, x̃ > +b = 0}, then finding the optimal
parameters̃w ∈ Rd andb ∈ R is equivalent to minimising
< w̃, w̃ > subject toyi(< w̃, x̃i > +b) ≥ 1, i = 1 . . . L.

The most important property of this formulation is that the
derivation of the Wolfe dual [1] results in an equivalent op-
timisation problem, but one in which the data vectors only
appear in the form of inner products with one another. As a
result of this, the so-called “kernel trick” [9] can be applied
in order to find non-linear separating hyper-surfaces. We
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now demonstrate how this approach can be combined with
the least squares criterion in order to perform algebraic curve
fitting.

4. Kernel Based Algebraic Curve Fit-
ting

Here we have a set of points,{z̃1, z̃2, . . . z̃Nx
} ⊂ Rd that lie

on our hyper-surface, as well as a set{(x̃j , yj)}1≤j≤Nz of
labelled points̃xj ∈ Rd with associated labelsyj ∈ {1,−1},
wherex̃j is interior to the hyper-surface of interest ifyj = 1,
and exterior ifyj = −1.

Our proposed method of utilising this information is to
perform SVM classification of thẽxj with a squared error
penalty on the value of the function at thez̃i. To this end,
we begin with the following optimisation problem, which
is equivalent to hard-margin linear SVM classification of
the x̃j , with a penalty proportional toci associated with the
square of the functional value (f(z̃i) =< w̃, z̃i > +b) at
eachz̃i:

Minimise w̃,b

< w̃, w̃ > +
∑Nz

i=1 ciξ
2
i

Subject To:
< w̃, z̃i > +b ≤ ξi, i = 1 . . . Nz

< w̃, z̃i > +b ≥ −ξi, i = 1 . . . Nz

yj(< w̃, x̃j > +b) ≥ 1, j = 1 . . . Nx

Note that setting theci above to0 makes the first two con-
straints superfluous, and we are left with the standard hard-
margin SVM. We now proceed to derive the Wolfe dual prob-
lem [1]. In the following equations, the summations overi
are to be taken from1 to Nz, and those overj are from1 to
Nx. The Lagrangian function is then:

L = 1
2 < w̃, w̃ > + 1

2

∑
i ciξ

2
i

− ∑
i αi(ξi− < w̃, z̃i > −b)

− ∑
i α∗i (ξi+ < w̃, z̃i > +b)

− ∑
j γj [yj(< w̃, x̃j > +b)− 1] (1)

Where theαi, α∗i , γj andξi are Lagrange multipliers [1].
By the convexity of the problem, at the optimal solution we
have the following stationarity conditions:

∂L
∂w̃ = 0̃ = w̃ +

∑
i(αi − α∗i )z̃i −

∑
j γjyj x̃j

∂L
∂b = 0 =

∑
i(αi − α∗i )−

∑
j γjyj

∂L
∂ξi

= 0 = ciξi − (αi + α∗i )

Sow̃ has the “support vector expansion”:

w̃ =
∑

j γjyj x̃j −
∑

i βiz̃i

where we have writtenβi = αi − α∗i . Unlike the SVM case,
we also need the Karush-Kuhn-Tucker (K.K.T.) optimality

conditions [1] in order to derive the dual problem:

αi(ξi− < w̃, z̃i > −b) = 0
α∗i (ξi+ < w̃, z̃i > +b) = 0
γj [yj(< w̃, x̃j > +b)− 1] = 0

Substituting both the stationarity and the K.K.T. relations
into (1) eventually leads to the following, equivalent dual
problem:

Minimise β̃,γ̃

γ̃THxγ̃ + β̃THzβ̃ − 2γ̃THxzβ̃ − 2ẽTγ̃
Subject To:

ẽTβ̃ − ỹTγ̃ = 0,
γ̃ ≥ 0̃

where ẽ is a vector of ones, and we have defined the
matricesHx, Hz andHxz with elements defined as follows
(δ(i, i′) is the “Kronecker delta” function):

[Hx]i,i′ =< x̃i, x̃i′ > + δ(i,i′)
ci

[Hz]j,j′ = yjyj′ < z̃j , z̃j′ >
[Hxz]i,j = yj < x̃i, z̃j >

As usual, the primal variables do not appear in the dual
formulation [1], so the optimal value ofb must be found
by returning to the K.K.T. conditions, above. Note also that
choosingci = 0, ∀i implies that the optimal solution satisfies
βi = 0, ∀i, which makes the dual problem equivalent to the
dual SVM problem (as given in [9]). A similar equivalence
is noted above, with regard to the primal problem.

Since only the inner products of the data appear in the
dual problem, we can find non-linear hyper-surfaces by
using a kernel functionK that corresponds to an inner
product after mapping underΦ to some feature spaceH, that
is, K(x̃i, x̃i′) =< φ(x̃i), φ(x̃i′) >H ∀x̃i, x̃i′ ∈ Rd. The
point, familiar to the SVM community, is that we do not
need to know explicitly the mappingΦ : Rd → H in order
to find non-linear hyper-surfaces, we simply replace the
inner products< x̃i, x̃i′ > in our dual problem with kernel
function evaluationsK(x̃i, x̃i′), and the corresponding
hyper-surface is the set{∀x̃|f(x̃) = 0} where f(x̃) has
become:

f(x̃) =
∑

i βiK(z̃i, x̃) +
∑

j γjyjK(x̃j , x̃) + b

5. Results and Discussion
The method has been implemented using Platt’s Sequential
Minimal Optimisation algorithm [4] to solve the Quadratic
Programming (QP) problem. First, we construct from our
data set the matrices appearing in the final form of our dual
problem. These matrices are passed to the QP solver, which



Figure 1: Results for the polynomial kernel, degree 8, as a
function ofcall (call values - dashed line: 0, dotted: 0.02, dash-
dot: 10, solid: 10,000).

returns the optimal values of theβi andγj . Next, we solve for
b, which is attained directly from the K.K.T. conditions (see
Sec. 4), and we have completely defined our implicit function
according to the final equation given in Sec. 4. In each of the
two following subsections, we investigate the results obtained
using one of two different kernel functions.

5.1. Polynomial Kernel Function
The kernel function used in this subsection is the so-called
“polynomial kernel” [9]:

K(x̃, x̃′) = (< x̃, x̃′ > +1)d

The free parameterd ∈ N+ corresponds to the order of
our implicit polynomial. In general, choosing a greater value
of d makes possible a more complex family of curves.

In the first test, simple morphological operations were
used to preprocess the binary image on the left-hand side of
Figure 1 into sets of interior, exterior, and edge points, as
marked on the right-hand side by the crosses, plus-signs and
dots, respectively. The figure also includes the zero contours
of the resultant function for various values ofcall. An 8th or-
der polynomial kernel was used for all the curves of Figure 1,
that is, we chosed = 8. Note that the same image was used
in a similar test in both [2] and [7]. We have added noise to
thex̃j in order demonstrate robustness with respect to the lo-
cation of these vectors. We note in passing however that an
equidistant set of̃xj (as required by the 3L method) would
result in further improvements of stability and accuracy.

A more complex data set is depicted in Figure 2, which
demonstrates our observation that the desired manifold tends
to be approximated poorly by the polynomial kernel (as we
increasecall) in those regions where thecall = 0 solution
is not already close to the desired manifold. Correspond-
ingly, choosing a “tighter” set of̃xi in the neighbouring re-
gion tends to improve the performance. In general we found
that continually increasing thecall value eventually results in
the appearance of extraneous components of the zero set, as
is the case in Figure 2 for thecall = 0.00042184 solution.

Figure 2: Results for the polynomial kernel, degree 12, as
a function ofcall (call values – left-hand side – dotted line:
0, solid line: 0.00042184; right-hand side – dotted line:
0.042184, solid line: 42.184).

Figure 3: Results for the rational polynomial kernel,ε =
0.05, as a function ofcall (call values – left-hand side – dotted
line: 0, solid line: 0.012296; right-hand side – dotted line:
0.12296, solid line: 122.9618).

5.2. Rational Polynomial Kernel Function
In this subsection we improve upon the results in the previous
subsection by using instead the following kernel function:

k(x̃, x̃′) =
1

ε + ‖x̃− x̃′‖2 =
1

ε+ < x̃− x̃′, x̃− x̃′ >

for someε ∈ R+. This kernel function, which does not ap-
pear to have been used previously in the context of the SVM,
has for our application several advantages over the polyno-
mial kernel of the previous subsection. In particular, it is
trivial to show that using this kernel guarantees the bound-
edness of the resultant algebraic curve, a property which has
previously been imposed by more direct means, as for exam-
ple by Taubin et. al. [8]. Additionally, the kernel function
(and therefore the resultant algebraic curve) is independent
of the absolute position of the data vectors. Finally the kernel
function can be considered (for smallε), as an approximation
to the inverse square of Euclidean distance. This is desirable
according to the widely held view within the SVM commu-
nity that a kernel function should represent a good similarity
metric for the problem it is being applied to.

Although the kernel function is a rational polynomial,
since the denominator is non-zero, we can rewrite our im-



plicit equation as an implicit (non-rational) polynomial. To
do this, we simply multiply the original equation by the prod-
uct of the denominators of each of the summands. That is, as
an alternative to the original equation (for simplicity we write
ξi instead of bothβi andγjyj):

f(x̃) =
∑

i

ξi
1

ε+ < x̃− x̃i, x̃− x̃i >
+ b

we have the following non-rational polynomial equation,
which has an identical zero set:

f ′(x̃) =
∑

i

ξi

∏

j 6=i

(ε+ < x̃− x̃j , x̃− x̃j >)

+b
∏

i

(ε+ < x̃− x̃i, x̃− x̃i >)

It is important to note that the order of the above poly-
nomial depends on the number of non-zero Lagrange multi-
pliers, rather than being chosen a priori as is the case with
the polynomial kernel of Sec. 5.1. In fact, the order of the
polynomial will be equal to twice the number of non-zero
Lagrange multipliers, typically resulting in very high order
polynomials.

The improvement in performance afforded by the rational
polynomial kernel function is evident in Figure 3, in which
the solutions are well behaved under the variation of thecall

parameter. We have found that the solutions are well behaved
under a wide range ofcall values. As a result, we have found
that acall value can easily be found that produces good results
on a wide range of different data sets.

6. Conclusions and Future Work
One of the major difficulties faced by algebraic curve fitting
algorithms is the topological instability of the solutions. We
have met this problem with the inherent regularisation of the
SVM classifier in conjunction with a least squares penalty on
the data points. We have given two main options for fitting
algebraic polynomial curves.

The first, using the polynomial kernel of Sec. 5.1, allows
the order of the polynomial to be chosen a priori. While this
approach is useful in simple cases, it is unsuitable for com-
plex shapes that are not coupled with a suitably precise set of
interior/exterior points, as the incorrect topology may result.

The second method involves using the rational kernel of
Sec. 5.2. This method allows the accurate estimation of com-
plex shapes, with minimal requirements on the accuracy of
the interior/exterior points. In this case, the order of the poly-
nomial is determined by the complexity of the data at hand,
often resulting in high order polynomials.

Finally, it is interesting to compare the algorithm with the
standard hard-margin SVM, in the problem domain of ma-
chine learning (data classification). In this perspective the

z̃i could be considered as training vectors that an expert has
labelled “too hard to classify”. The algorithm uses this infor-
mation by trying to find a decision function that places the
class membership boundary near thez̃i. A possible applica-
tion for the algorithm as a data classifier is in the domain of
handwriting recognition, in which a human could label some
sample characters as being, say, “either an eight or a six”.
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