

The Egret Platform for Reconfigurable System on Chip

Neil W. Bergmann, John Williams

School of ITEE, The University of Queensland, Brisbane Australia
{ n.bergmann, jwilliams}@itee.uq.edu.au

Abstract

Embedded systems are an appealing application
domain for reconfigurable System-on-Chip (rSoC)
technology. However, rSoC design is inherently a
complex task with enormous freedom in design
parameters such as processor, operating system, and
backplane buses. Design efficiency can potentially be
improved by the use of an rSoC platform which constrains
these choices, and allows new designs to leverage much
of the expertise of previous designs. This paper explains
and justifies the design decisions for the first version of
Egret, which is an rSoC prototyping platform being
developed at the University of Queensland, Australia.

1. Introduction

Embedded systems are a key enabling technology for
the next generation of distributed, networked computing
systems variously called pervasive computing, ubiquitous
computing, invisible computing or organic computing.

Ubiquitous computing may well lead to a new “design
crisis”, with new product development not being limited
by technological advances, but rather by the availability
of embedded systems engineers who are able to
“productise” these new technological developments.

A clear response to the design crisis is re-use of
software and hardware designs from one application to
the next. This design re-use naturally implies the
development of some standard embedded system
platforms (processor choices, standard peripherals, a
standard operating system, and even some standard
modular circuit boards) for use within a design group.

The power of the standard platform is illustrated by the
wide use of so-called Wintel (Windows + Intel) platforms
in many high-end embedded platforms such as
information kiosks – the platforms are generally overkill
in terms of hardware speed and software flexibility, but
the broad knowledge-base and availability of desktop
machines as prototyping environments provides a quick
and relatively risk-free path to market.

This paper describes the work at the University of
Queensland to develop an embedded systems platform
called Egret, based on reconfigurable System-on-Chip
(rSoC) technology, and aimed at low-end embedded
systems applications.

2. Reconfigurable System-on-Chip

System-on-chip (SoC) technology has evolved as the

predominant circuit design methodology for custom
ASICs. As FPGAs reach mega-gate size, it now becomes
feasible to implement a complete microcontroller,
consisting of CPU, peripherals, and a limited amount of
program and data memory on a single FPGA. We call
such a system a reconfigurable System-on-Chip (rSoC).

The concept on an rSoC can be extended to include
systems where a hardwired CPU is incorporated on the
die along with the FPGA circuitry, such as those offered
by Xilinx, Altera, Atmel and Triscend [1-4].
Additionally, we extend this concept of rSoC to include
those systems where external memory chips (RAM, CPU
program ROM, FPGA configuration ROM, Flash) are
added to the integrated CPU-plus-peripherals chip.

Lysaght [5] argues that successful use of rSoC
technology will be enabled by the development and use of
design platforms, in the same way that platforms have
supported embedded system design.

3. Platform Specifications

The primary objectives for our platform design are to
further our research into reconfigurable system-on-chip
for embedded and real-time systems, and to provide a
platform that students can use to rapidly prototype new
reconfigurable, embedded computing applications.

Secondary objectives for our platform design are to
provide a straightforward path to commercialisation of
prototyped designs, and to encourage collaboration with
other research and commercial developers worldwide.

Based on these objectives, we have devised the
following platform specifications.

Modularity: In the case of Egret, we desire
modularity in three domains. Logical Hardware
Modularity means the required hardware functions for the
embedded system can be readily assembled from
available modules, either in the form of FPGA-based IP
blocks, or in the form of specific special-purpose ICs.
Physical Hardware Modularity means circuit board
modules can be plugged together to meet the particular
interfacing, memory, transducer, networking and power
supply needs of the system. Software Modularity means
software modules can be added to meet device driver,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981400?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

networking, data management and application specific
code requirements of the system.

Flexibility and Extensibility: We require that the
hardware and software design of the platform should be
easily extensible to handle systems which require
different amounts of memory, different amount of
processing power, different networking options, and
different external signal interfacing.

Plug and Play: Modules should be able to be
connected together in such a way that the addition of a
physical hardware module should also instantiate the
appropriate FPGA-based interface IP blocks, and the
appropriate software drivers.

Vendor Independence: The platform should not
mandate the choice of a single vendor’s FPGAs, although
initially the first instantiation of the platform is likely to
be for one particular vendor.

Simple Design Tool Chain: We require that our
platform support a simple design tool chain, so that
simple real-time embedded system designs can be
accomplished on the platform without very extensive
lead-times.

Reconfigurability: As far as is practical, the platform
should take advantage of the design flexibility offered by
the use of a central reconfigurable system-on-chip. The
platform must be supportive of future research
endeavours such as dynamic run-time reconfiguration,
self-reconfiguration and other advanced topics.

Research Support: The platform is not primarily a
platform for prototyping commercial designs. Instead, it
needs to be able to support our current and planned
research projects, as described later in Section 5.

 Ease of Manufacture: A final minimal PCB netlist
should be easily derived from the prototype system, and
the physical chips present on the final design should be
similar, and preferably identical, to those on the modular
prototype design. Modules must therefore generally be
fine grained (just a few chips each), and single-purpose.

4. Platform Design

4.1. Processor Choice

The space of potential processors for an rSoC platform,
with a processor embedded on the FPGA includes the
following: PowerPC405 (Xilinx Virtex Pro), Microblaze
softcore (Xilinx FPGAs), ARM922 (Altera Excalibur),
Nios softcore (Altera), ARM7 (Triscend), 8051 (Triscend)
AVR (Atmel), and third party softcores.

To encourage research into specialised processor
architectures for real-time systems, and research into
multi-processor rSoC architectures, our initial preference
is for a soft-core processor. Specifically, we are using the
Microblaze processor in our first version of Egret.

4.2. Operating System

The major choice here was to use a small real-time kernel,
or to use a full-functional operating system with real-time
support.

In order to leverage the availability of a wide range of
Unix-based device drivers and software applications, our
operating system choice is to use a version of Unix
suitable for embedded applications on the Microblaze.
More specifically, our first operating system will be an
embedded version of Linux for processors (such as
Microblaze) without an MMU, called uClinux. We have
completed the porting of the operating system kernel to
Microblaze.

4.3. Physical and Logical Structure

The Egret platform will consist of a modular set of PCB
building blocks that can be assembled into a complete
working system. Boards will be connected together with
stack-through connectors, similar in principle to the
PC104 form factor.

Each board has four connectors, arranged in a square
around the edge of the board. The connector structure is
symmetrical, permitting boards to be plugged under any
of four 90 degree rotations. We are still evaluating the
optimal size of these connectors – somewhere between 32
and 120 pins per edge.

A system will consist of at least one core module
containing the system FPGA with the controlling CPU,
and additional peripheral modules. The core module
FPGA is connected to all of the data and control pins on
all of the connectors. Individual peripheral cards
generally restrict their connections to one “active”
connector edge, while signals on other edges are merely
passed through via the connector (see Figure 1).

Across the platform are three broad classes of signals:
• Global Special Purpose (GSP) signals are distributed

globally to all modules in a system, with a predefined
purpose. These include power, test (e.g. JTAG), a
global communications protocol (such as I2C), and a
global system clock.

• Module Special Purpose (MSP) signals are dedicated
resources available to each module. For example,
modules may have access to two pins that are
connected to dedicated clock buffer circuitry on the
core FPGA, permitting local clocks to be defined on
a module by module basis; and

• Finally, Module General Purpose (MGP) signals are
generic user IO from the FPGA that are available to
each module to be used as required.

More than four peripherals can be added, provided that
there are not pin conflicts. We do not expect many
systems to have more than four peripherals, and we
expect many peripheral cards to have fairly low
interconnection width, such as a single SPI connection.

One simple expansion approach is the use of a
“gender-bending” connector board would permit modules
to be flipped, resulting in a total of 8 permissible
orientations. Experience with the first version of Egret
will provide further insights into the advantages and
pitfalls of this flexible stacking approach.

In general, as much of the digital logic as practicable
will be pushed onto the core FPGA. Typical peripherals,
such as a serial port or Ethernet connection, would consist
of a Media Access Controller (MAC) which implements
the data protocol, and a Physical device interface (PHY),
which produces the correct voltage and current
transformations for a particular standard. We would
typically expect the MAC to be implemented as an IP
block on the FPGA, and just the PHY to be on the
peripheral board.

Figure 2 shows a typical modular embedded system,
where modules are interconnected by an external system
bus which appears on the card connectors.

In Egret, we wish to avoid a standardised off-chip
logical bus architecture to which peripheral modules must

conform. Rather, the system bus (or other interconnection
network) is pushed back onto the core FPGA, and each
external peripheral chip communicates directly to its own
controller on the FPGA. Controllers communicate with
one or more CPUs using the internal FPGA system
interconnection network, which can be customised for
individual applications. This new logical structure is
shown in Figure 3.

One attribute of this approach is to confine high-speed
bus clocks, address and data lines within the chip, and
only “export” the necessary, and probably low-bandwidth
digital signals through the connector structure and out to
the applicable module. This simplifies module design for
Electromagnetic Compliance (EMC) and Signal Integrity
(SI) by reducing the high-frequency spectral content of
external signal lines.

Once cards have been connected together into a
physical Egret stack, it is necessary to instantiate the
required peripheral interface cores on the FPGA,
including customisation of the particular FPGA pins that
the core needs to connect to. Additionally, peripheral

 Figure 2. Typical bus-based system
interconnection structure

Peripheral module

Peripheral
device

rSoC Core Module

FPGA

CPU (hard or
soft core)

Peripheral
interface

core

Peripheral
interface

core
Internal CPU bus

Peripheral module

Peripheral
device

Figure 3. Egret system interconnection structure
with thin peripheral interfaces

Figure 1. Visualisation of Egret’s rotationally symmetrical stack-through module architecture. Global
Special Purpose (GSP), Module Special Purpose (MSP) and Module General Purpose (MGP) regions of the

connectors are identified.

MSP

GSP

MGP

interface registers need to be mapped into appropriate
CPU addresses, and appropriate device drivers loaded into
the operating system.

This process of system configuration will initially be a
manual process, but it should be a relatively simple
process of running through a standard system design flow.
Once configured, standard software development tools
can be used to build applications. The aim is to specify
the system at a very high level – the choice of core and
peripheral modules, and their physical orientation – and
have the design tool automatically assign FPGA pins to
signals, detect conflicts, configure operating system
drivers, and so on.

5. Research Issues

A key requirement of our Egret platform is that it
should be able to expose new research questions, and
provide a convenient platform for the exploration of
answers to these questions. The following sub-sections
describe some of our current and future research
directions around Egret.

rSoC Communication Structures: rSoC products
from vendors typically consist of a CPU design (soft or
hardcore), a system bus interconnection structure, and a
set of peripherals compatible with that system bus. Such
systems provide little design flexibility. A parallel system
bus is not necessarily the most appropriate
interconnection structure – schemes such as serial buses,
network-on-chip, or packet-switched networks may be
more appropriate. In a companion paper, Andy Lee [6]
explains our work in investigating alternative
interconnection schemes that could be used on Egret.

Portable IP Blocks: New interconnection schemes,
such as those proposed above, are most useful if existing
IP blocks can be re-used with this new scheme. Tim Lee
[7] is investigating an interface adaption logic scheme,
which adds an appropriate wrapper to a raw IP block to
allow it to work with multiple communication schemes.

Hardware Assist for Real-Time: Reconfigurable
logic allows application-specific design of peripheral
interface cores. In particular, parts of a software task can
be moved to application-specific hardware modules,
which might be thought of as intelligent peripheral
controllers. Peter Waldeck [8] investigates how real-time
performance of a signal processing task can be improved
by such a hardware-software codesign approach.

Custom Processors and Peripherals: rSoC allows
both processor and peripherals to be customised to
support a specific mix of real-time tasks in a way that
conventional embedded systems cannot. One of our
previous papers [9] explores the range of possible
customisations that are possible.

Avionics Applications: The modular approach of
Egret can be extended to application specific domains

with specific reliability and interface requirements, such
as avionics and aerospace applications. We investigate
this in [10].

6. Conclusions

This paper very much describes work in progress, and
results are limited to an exposition of our research
motivations and initial design choices. We are currently
working on the development of the Egret platform, which
meets this need, and intend to have a working prototype
by early 2004.

7. Acknowledgements

The support of the Australian Research Council, and
the Xilinx University Programme are gratefully
acknowledged.

8. References

[1] Xilinx, "Xilinx FPGA Product Tables," 2003,

<http://www.xilinx.com/products/tables/fpga.htm>
[accessed 30th Sept., 2003].

[2] Altera, "Excalibur Devices," 2003, <http://www.
altera.com/products/devices/arm/arm-index.html>
[accessed 30th Sept., 2003].

[3] Atmel, "Field Programmable System Level Integrated
Circuits," 2003, <http://www.atmel.com/products/
FPSLIC/> [accessed 30th Sept., 2003].

[4] Triscend, "A7 Configurable System-on-Chip," 2003,
<http://www.triscend.com/products/a7.htm> [accessed
30th Sept., 2003].

[5] P. Lysaght, "FPGAs as Meta-Platforms for Embedded
Systems," presented at IEEE International Conference on
Field Programmable Technology (FPT '02), Hong Kong,
2002.

[6] A.S. Lee, N.W. Bergmann, “Communication Architectures
for Reconfigurable System-on-Chip”, IEEE Conference on
Field Programmable Technologies, Tokyo Japan,
December 2003.

[7] T-L. Lee, N.W. Bergmann, “An Interface Methodology for
Retargettable FPGA Peripherals”, International
Conference on Engineering of Reconfigurable Systems and
Algorithms, Las Vegas USA, June 2003.

[8] P. Waldeck, N.W. Bergmann, “"Dynamic Hardware-
Software Partitioning on Reconfigurable System-on-Chip”,
International Workshop on System-on-Chip for Real-Time
Applications, Calgary Canada, June 2003.

[9] N.W. Bergmann, P. Waldeck, J.A. Williams, “A Catalog
of Hardware Acceleration Techniques for Real-Time
Reconfigurable System on Chip”, International Workshop
on System-on-Chip for Real-Time Applications, Calgary
Canada, June 2003.

[10] N.W. Bergmann, J.A. Williams, “Avionics Upgrade
Management using Reconfigurable Logic”, Australian
International Aerospace Congress, Brisbane, July 2003.

