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Abstract 

Embedded systems are an appealing application 
domain for reconfigurable System-on-Chip (rSoC) 
technology.  However, rSoC design is inherently a 
complex task with enormous freedom in design 
parameters such as processor, operating system, and 
backplane buses.  Design efficiency can potentially be 
improved by the use of an rSoC platform which constrains 
these choices, and allows new designs to leverage much 
of the expertise of previous designs. This paper explains 
and justifies the design decisions for the first version of 
Egret, which is an rSoC prototyping platform being 
developed at the University of Queensland, Australia.   

 
1. Introduction 
 

Embedded systems are a key enabling technology for 
the next generation of distributed, networked computing 
systems variously called pervasive computing, ubiquitous 
computing, invisible computing or organic computing.   

Ubiquitous computing may well lead to a new “design 
crisis”, with new product development not being limited 
by technological advances, but rather by the availability 
of embedded systems engineers who are able to 
“productise” these new technological developments. 

A clear response to the design crisis is re-use of 
software and hardware designs from one application to 
the next.  This design re-use naturally implies the 
development of some standard embedded system 
platforms (processor choices, standard peripherals, a 
standard operating system, and even some standard 
modular circuit boards) for use within a design group.   

The power of the standard platform is illustrated by the 
wide use of so-called Wintel (Windows + Intel) platforms 
in many high-end embedded platforms such as 
information kiosks – the platforms are generally overkill 
in terms of hardware speed and software flexibility, but 
the broad knowledge-base and availability of desktop 
machines as prototyping environments provides a quick 
and relatively risk-free path to market. 

This paper describes the work at the University of 
Queensland to develop an embedded systems platform 
called Egret, based on reconfigurable System-on-Chip 
(rSoC) technology, and aimed at low-end embedded 
systems applications. 

2. Reconfigurable System-on-Chip 
 
System-on-chip (SoC) technology has evolved as the 

predominant circuit design methodology for custom 
ASICs.  As FPGAs reach mega-gate size, it now becomes 
feasible to implement a complete microcontroller, 
consisting of CPU, peripherals, and a limited amount of 
program and data memory on a single FPGA.  We call 
such a system a reconfigurable System-on-Chip (rSoC).   

The concept on an rSoC can be extended to include 
systems where a hardwired CPU is incorporated on the 
die along with the FPGA circuitry, such as those offered 
by Xilinx, Altera, Atmel and Triscend [1-4].  
Additionally, we extend this concept of rSoC to include 
those systems where external memory chips (RAM, CPU 
program ROM, FPGA configuration ROM, Flash) are 
added to the integrated CPU-plus-peripherals chip. 

Lysaght [5] argues that successful use of rSoC 
technology will be enabled by the development and use of 
design platforms, in the same way that platforms have 
supported embedded system design. 

 
3. Platform Specifications 

 
The primary objectives for our platform design are to 
further our research into reconfigurable system-on-chip 
for embedded and real-time systems, and to provide a 
platform that students can use to rapidly prototype new 
reconfigurable, embedded computing applications. 

Secondary objectives for our platform design are to 
provide a straightforward path to commercialisation of 
prototyped designs, and to encourage collaboration with 
other research and commercial developers worldwide. 

Based on these objectives, we have devised the 
following platform specifications.   

Modularity: In the case of Egret, we desire 
modularity in three domains.  Logical Hardware 
Modularity means the required hardware functions for the 
embedded system can be readily assembled from 
available modules, either in the form of FPGA-based IP 
blocks, or in the form of specific special-purpose ICs.  
Physical Hardware Modularity means circuit board 
modules can be plugged together to meet the particular 
interfacing, memory, transducer, networking and power 
supply needs of the system. Software Modularity means 
software modules can be added to meet device driver, 
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networking, data management and application specific 
code requirements of the system. 

Flexibility and Extensibility:  We require that the 
hardware and software design of the platform should be 
easily extensible to handle systems which require 
different amounts of memory, different amount of 
processing power, different networking options, and 
different external signal interfacing. 

Plug and Play:  Modules should be able to be 
connected together in such a way that the addition of a 
physical hardware module should also instantiate the 
appropriate FPGA-based interface IP blocks, and the 
appropriate software drivers.   

Vendor Independence: The platform should not 
mandate the choice of a single vendor’s FPGAs, although 
initially the first instantiation of the platform is likely to 
be for one particular vendor.   

Simple Design Tool Chain:  We require that our 
platform support a simple design tool chain, so that 
simple real-time embedded system designs can be 
accomplished on the platform without very extensive 
lead-times.   

Reconfigurability: As far as is practical, the platform 
should take advantage of the design flexibility offered by 
the use of a central reconfigurable system-on-chip.  The 
platform must be supportive of future research 
endeavours such as dynamic run-time reconfiguration, 
self-reconfiguration and other advanced topics. 

Research Support:  The platform is not primarily a 
platform for prototyping commercial designs.  Instead, it 
needs to be able to support our current and planned 
research projects, as described later in Section 5. 

 Ease of Manufacture: A final minimal PCB netlist 
should be easily derived from the prototype system, and 
the physical chips present on the final design should be 
similar, and preferably identical, to those on the modular 
prototype design.   Modules must therefore generally be 
fine grained (just a few chips each), and single-purpose. 
 
4. Platform Design 

4.1. Processor Choice 

The space of potential processors for an rSoC platform, 
with a processor embedded on the FPGA includes the 
following:  PowerPC405  (Xilinx Virtex Pro), Microblaze 
softcore (Xilinx FPGAs), ARM922 (Altera Excalibur), 
Nios softcore (Altera), ARM7 (Triscend), 8051 (Triscend) 
AVR (Atmel), and third party softcores. 

To encourage research into specialised processor 
architectures for real-time systems, and research into 
multi-processor rSoC architectures, our initial preference 
is for a soft-core processor.  Specifically, we are using the 
Microblaze processor in our first version of Egret. 

4.2. Operating System 

The major choice here was to use a small real-time kernel, 
or to use a full-functional operating system with real-time 
support.   

In order to leverage the availability of a wide range of 
Unix-based device drivers and software applications, our 
operating system choice is to use a version of Unix 
suitable for embedded applications on the Microblaze.  
More specifically, our first operating system will be an 
embedded version of Linux for processors (such as 
Microblaze) without an MMU, called uClinux.  We have 
completed the porting of the operating system kernel to 
Microblaze. 

4.3. Physical and Logical Structure 

The Egret platform will consist of a modular set of PCB 
building blocks that can be assembled into a complete 
working system.  Boards will be connected together with 
stack-through connectors, similar in principle to the 
PC104 form factor. 

Each board has four connectors, arranged in a square 
around the edge of the board.  The connector structure is 
symmetrical, permitting boards to be plugged under any 
of four 90 degree rotations.  We are still evaluating the 
optimal size of these connectors – somewhere between 32 
and 120 pins per edge.   

A system will consist of at least one core module 
containing the system FPGA with the controlling CPU, 
and additional peripheral modules. The core module 
FPGA is connected to all of the data and control pins on 
all of the connectors.  Individual peripheral cards 
generally restrict their connections to one “active” 
connector edge, while signals on other edges are merely 
passed through via the connector (see Figure 1).   

Across the platform are three broad classes of signals: 
• Global Special Purpose (GSP) signals are distributed 

globally to all modules in a system, with a predefined 
purpose.  These include power, test (e.g. JTAG), a 
global communications protocol (such as I2C), and a 
global system clock. 

• Module Special Purpose (MSP) signals are dedicated 
resources available to each module.  For example, 
modules may have access to two pins that are 
connected to dedicated clock buffer circuitry on the 
core FPGA, permitting local clocks to be defined on 
a module by module basis; and 

• Finally, Module General Purpose (MGP) signals are 
generic user IO from the FPGA that are available to 
each module to be used as required. 

More than four peripherals can be added, provided that 
there are not pin conflicts.  We do not expect many 
systems to have more than four peripherals, and we 
expect many peripheral cards to have fairly low 
interconnection width, such as a single SPI connection. 



One simple expansion approach is the use of a 
“gender-bending” connector board would permit modules 
to be flipped, resulting in a total of 8 permissible 
orientations.  Experience with the first version of Egret 
will provide further insights into the advantages and 
pitfalls of this flexible stacking approach.   

In general, as much of the digital logic as practicable 
will be pushed onto the core FPGA.  Typical peripherals, 
such as a serial port or Ethernet connection, would consist 
of a Media Access Controller (MAC) which implements 
the data protocol, and a Physical device interface (PHY), 
which produces the correct voltage and current 
transformations for a particular standard.  We would 
typically expect the MAC to be implemented as an IP 
block on the FPGA, and just the PHY to be on the 
peripheral board.   

Figure 2 shows a typical modular embedded system, 
where modules are interconnected by an external system 
bus which appears on the card connectors. 

In Egret, we wish to avoid a standardised off-chip 
logical bus architecture to which peripheral modules must 

conform.  Rather, the system bus (or other interconnection 
network) is pushed back onto the core FPGA, and each 
external peripheral chip communicates directly to its own 
controller on the FPGA.  Controllers communicate with 
one or more CPUs using the internal FPGA system 
interconnection network, which can be customised for 
individual applications.  This new logical structure is 
shown in Figure 3. 

One attribute of this approach is to confine high-speed 
bus clocks, address and data lines within the chip, and 
only “export” the necessary, and probably low-bandwidth 
digital signals through the connector structure and out to 
the applicable module.  This simplifies module design for 
Electromagnetic Compliance (EMC) and Signal Integrity 
(SI) by reducing the high-frequency spectral content of 
external signal lines. 

Once cards have been connected together into a 
physical Egret stack, it is necessary to instantiate the 
required peripheral interface cores on the FPGA, 
including customisation of the particular FPGA pins that 
the core needs to connect to.  Additionally, peripheral 

 

 Figure 2.  Typical bus-based system 
interconnection structure 
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Figure 1.  Visualisation of Egret’s rotationally symmetrical stack-through module architecture.  Global 
Special Purpose (GSP), Module Special Purpose (MSP) and Module General Purpose (MGP) regions of the 

connectors are identified. 
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interface registers need to be mapped into appropriate 
CPU addresses, and appropriate device drivers loaded into 
the operating system. 

This process of system configuration will initially be a 
manual process, but it should be a relatively simple 
process of running through a standard system design flow.  
Once configured, standard software development tools 
can be used to build applications.  The aim is to specify 
the system at a very high level – the choice of core and 
peripheral modules, and their physical orientation – and 
have the design tool automatically assign FPGA pins to 
signals, detect conflicts, configure operating system 
drivers, and so on. 

 
5. Research Issues 
 

A key requirement of our Egret platform is that it 
should be able to expose new research questions, and 
provide a convenient platform for the exploration of 
answers to these questions.  The following sub-sections 
describe some of our current and future research 
directions around Egret. 

rSoC Communication  Structures: rSoC products 
from vendors typically consist of a CPU design (soft or 
hardcore), a system bus interconnection structure, and a 
set of peripherals compatible with that system bus.  Such 
systems provide little design flexibility.  A parallel system 
bus is not necessarily the most appropriate 
interconnection structure – schemes such as serial buses, 
network-on-chip, or packet-switched networks may be 
more appropriate.  In a companion paper, Andy Lee [6] 
explains our work in investigating alternative 
interconnection schemes that could be used on Egret. 

Portable IP Blocks: New interconnection schemes, 
such as those proposed above, are most useful if existing 
IP blocks can be re-used with this new scheme. Tim Lee 
[7] is investigating an interface adaption logic scheme, 
which adds an appropriate wrapper to a raw IP block to 
allow it to work with multiple communication schemes. 

Hardware Assist for Real-Time: Reconfigurable 
logic allows application-specific design of peripheral 
interface cores.  In particular, parts of a software task can 
be moved to application-specific hardware modules, 
which might be thought of as intelligent peripheral 
controllers.  Peter Waldeck [8] investigates how real-time 
performance of a signal processing task can be improved 
by such a hardware-software codesign approach. 

Custom Processors and Peripherals: rSoC allows 
both processor and peripherals to be customised to 
support a specific mix of real-time tasks in a way that 
conventional embedded systems cannot. One of our 
previous papers [9] explores the range of possible 
customisations that are possible. 

Avionics Applications: The modular approach of 
Egret can be extended to application specific domains 

with specific reliability and interface requirements, such 
as avionics and aerospace applications.  We investigate 
this in [10]. 

6. Conclusions 

This paper very much describes work in progress, and 
results are limited to an exposition of our research 
motivations and initial design choices.  We are currently 
working on the development of the Egret platform, which 
meets this need, and intend to have a working prototype 
by early 2004. 
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