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Abstract 

The new technology of reconfigurable System-on-Chip 
is shown to be a good match to the requirements of real-
time embedded systems.  In particular, the judicious use of 
specialised data processing peripherals can reduce the 
CPU load significantly and greatly ease the task of 
guaranteeing that real-time deadlines are met in complex 
multi-processing real-time systems.  A catalog of other 
possible uses for the reconfigurable logic resources on 
such a chip which can assist in improving real-time system 
performance is also presented. 

1. Introduction 

As FPGAs reach mega-gate size, it now becomes 
feasible to implement a complete microcontroller, 
consisting of CPU, peripherals, and a limited amount of 
program and data memory on a single FPGA.  We call 
such a system a reconfigurable System-on-Chip (rSoC). 

The concept on an rSoC can be extended to include 
systems where a hardwired CPU is incorporated on the die 
along with the FPGA circuitry, such as those offered by 
Xilinx [1], Altera [2], Atmel [3] and Triscend [4].  
Additionally, we extend this concept of rSoC to include 
those systems where external memory chips (RAM, CPU 
program ROM, FPGA configuration ROM, Flash) are 
added to the integrated CPU-plus-peripherals chip. 

RSoC technology is seen as being particularly useful 
for a number of different scenarios: 
• Embedded systems where a single chip microcontroller 

is unavailable with the required set of peripherals, eg. a 
system requiring a microcontroller with 32 PWM 
outputs. 

• For prototyping of ASIC SoC solutions in embedded 
applications. 

• For cases where the range of peripherals changes in 
different operating modes. 

• For implementation of real-time embedded systems, 
where custom hardware peripherals can improve real-
time response rates. 
We are particularly interested in the last of these. 

2. Real-time System-on-Chip 

A useful distinction is to define three types of 
computer systems [5] – transformational, interactive and 
reactive (or real-time).  We have argued in an earlier paper 
[6] that reconfigurable computing can provide significant 
advantages for real-time computing, and we summarise the 
core of the argument here. 

For conventional “transformational” and “interactive” 
computer systems, the goal is to complete each individual 
task or sub-task in as short a time as possible.  Since each 
sub-task is usually a relatively long and complex set of 
operations, overall performance is greatly improved by 
techniques which increase the average rate at which 
instructions are executed.  Such tasks include pipelining, 
memory caching, and multiple instruction issue. 

The goal of real-time systems, especially hard real-
time systems is quite different: to guarantee that a 
response can be made to an input signal by a fixed 
deadline, even in the worst case situation. Average 
instruction execution rates tend to be less important than 
worst case calculation times. For complex real-time 
systems with many tasks, many signals, and many 
deadlines, a software solution to a real-time multi-tasking 
environment leads to a very conservative computing 
solution.  A powerful processor is needed to guarantee that 
response times always are met, even for very rare 
conjunctions of events. 

Being able to respond to inputs with specific hardware 
modules has obvious advantages.  Many hardware units 
can all operate in parallel, so that individual response 
times are much less variable and easier to guarantee, even 
as the number of tasks increases.  Parallel hardware is not 
so affected by issues such as task swapping, scheduling, 
interrupt service, and critical sections, which complicate 
real-time software solutions. 

While we can easily argue the potential advantages of 
reconfigurable real-time systems, our eventual research 
goal is to clearly demonstrate and prove these advantages 
through theoretical analysis and practical case studies. 

One key step in our research program is identifying 
different ways in which the characteristics of 
reconfigurable system-on-chip technology can be used 
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advantageously for real-time system implementation.   
That is the purpose of this paper. 

We will catalog a large number of different possible 
mechanisms for enhancing the implementation of real-time 
systems through the use of rSoC technology. 

3. A model of RT system implementation 

Figure 1 shows a simplified framework for describing 
multiple real-time tasks. We will use this framework to 
reason about how different tasks can be assisted by rSoC 
technology.  

For a given set of tightly coupled inputs and outputs 
(whose processing constitutes a single ‘task’), data needs 
to be input from external sensors or communication 
channels, it needs to be assembled into meaningful words, 
packets or streams of signals, these signals are then 
processed into meaningful output sets, which are 
disassembled and sent to actuators or other systems.  

In addition, there is a need to transmit data between 
cooperating tasks, and also between individual I/O 
processing tasks and a global controlling task which sets 
overall system parameters, and collects overall system 
status information. 

Conventionally, a real-time system consists of a CPU, 
memory, plus a number of different I/O peripherals such 
ADCs, DACs, UARTs, GPIO, and timers. 

In such systems, using the framework above, the 
hardware peripherals typically handle signal I/O and some 
initial signal formatting (eg. converting RS232 bits into 
words).  Once a meaningful signal is received or sent, an 
interrupt is sent to initiate software to deal with additional 
signal formatting and to signal the appropriate software 
task that there is data for processing.  Other software tasks 
deal with global signal processing.  A Real-time Operating 
System (RTOS) coordinates and schedules the tasks and 
assists with interprocess communication. 

rSoC technology can improve real-time system 
performance by providing additional hardware support for 
these operations. 

4. RSoC support for real-time systems  

The rest of the paper describes some of our early ideas 
about how rSoC technology can be used to enhance the 
implementation of real-time embedded systems.  All of 
these techniques have the potential to improve system 
performance.  Much of our research in the near future will 
be trying to determine if these potential advantages can be 
realised.  

4.1. Customised peripherals 

Ordinary peripherals (timers, UARTs etc) necessarily 
tend to be general purpose. RSoC technology allows 
individual peripherals to be customised to the data and the 
tasks that they deal with.  This can reduce the overall gate 
count of peripherals by removing any unused features, or 
alternatively improve overall system performance by 
adding non-standard features. 

For example, if a UART is used for a communications 
channel which uses neither parity checking or hardware 
handshaking, and which operates at a fixed baud rate, then 
the UART can be much simplified. 

Alternatively, if digital samples are received through 
an ADC from a transducer at a regular sample rate, and 
these need to be tested to ensure that they are within an 
allowable operating range, then a customised ADC 
interface can do this range-checking with a small number 
of extra gates, and only signal the CPU when data is out of 
range. 

Customising peripherals extends not just to individual 
peripherals, but also to the mix of peripherals provided.  
Microcontroller manufacturers provide a large range of 
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different microcontroller models for the same CPU, each 
with a different mix of peripherals (eg. Motorola offer 
more than 20 variations on their 68HC11 processor [7]).  
Usually, on any given microcontroller in a system, many 
of these peripherals are unused.  Alternatively, unusual 
mixtures of peripherals (say 6 UARTS and 12 PWM 
outputs) mean that no microcontroller has the right set. 

4.2. Hardware data formatting 

For specific applications, there may be higher levels of 
information organisation than just single input and output 
samples which conventional peripherals deal with.  For 
example, communications over a particular RS232 channel 
might always be used within a higher communications 
protocol, with specific packet structures.  Customised 
rSoC peripherals can do the front-end data processing to 
group bytes into packets, and only signal the CPU when a 
whole packet is available for processing, reducing the 
CPU load.  In such cases the “Low Level Signal 
Formatting” operations of Figure 1 are done in 
programmable hardware. 

4.3. Hardware signal processing 

Often, real-time processing of repetitive data streams 
consists of several layers of processing.  There is some 
simple processing that needs to be done on every sample, 
and then higher level processing which needs to be done 
less frequently on larger sets of data.  For example, in a car 
ignition system, a spark needs to be generated at a specific 
interval after a crankcase sensor signals that a piston is at 
TDC (Top Dead Centre).  This spark signal needs to be 
generated on every combustion cycle.  The particular 
timing interval for the spark may change as a function of 
engine speed, engine temperature, but this does not need to 
be updated every cycle. 

Hardware is well suited to simple, fast, regular 
computation, whilst software is more suited to slower, 
more complex, variable computation.   

In rSoC technology we can build custom signal 
processing hardware to deal with the very simple, regular 
high-speed signal processing, and leave the more complex 
processing for software.  This migrates some of the “High 
Level Signal Processing” modules in Figure 1 from 
hardware to software. 

4.4. Customised CPUs 

If the rSoC has either a soft processor core, or a hard 
processor core which is extensible with reconfigurable 
logic, then another option is to explore new architectural 
features in the CPU to better support real-time system 
operation.  We list some possibilities below. 

 
4.4.1. Customised interrupt handlers. A major cause of 
unpredictable response times for real-time software tasks 
involves servicing interrupts.  Typically, interrupts are 

used to signal the arrival of new input data, to signal the 
need for new output data, or to signal the end of a 
specified scheduling time slice.  Servicing an interrupt 
requires a context switch upon entry and typically a 
scheduling operation upon exit.  Multiple levels of 
interrupts, and disabling of interrupts during critical 
sections adds to processing delays in responding to 
interrupts.  Novel interrupt handlers might include, for 
example, delayed interrupt handling to allow for more 
efficient handling of incoming and outgoing data when the 
appropriate task is next scheduled, or parallel interrupt 
processing hardware which can deal with moving data 
samples to memory buffers and marking pending I/O tasks 
as ready without interrupting the main CPU tasks through 
a context switch. 
 
4.4.2. Customised schedulers. Implementing efficient 
scheduling algorithms can have a major effect on real-time 
system performance at meeting deadlines.  Static 
scheduling algorithms (eg. implemented with fixed 
priorities) provide quick but inflexible scheduling.  
Dynamic scheduling, such as deadline monotonic [8], 
provides good scheduling orders, but incurs additional 
software overhead. 

Implementing complex scheduling algorithms in 
hardware has only been practical in the past for high 
volume ASICs with fixed function.  RSoC technology 
provides a mechanism where hardware scheduling 
algorithms can be altered to meet the particular process 
mix at a specific time.  Additional hardware timers, for 
example, can provide accurate measures of parameters 
such as time to next deadline.  Hardware algorithms can 
also pre-empt a task at any time that another task becomes 
more urgent, not just at the end of fixed time slices. 

 
4.4.3. Specialised multi-processing support.  Guarantees 
of real-time performance become harder as more and more 
tasks are added to a system, because of the larger number 
of context switches, which are effectively wasted overhead 
time on the CPU.  

Another fruitful area of exploration would be to 
investigate fast context-switching algorithms.  RISC 
processors typically use register windowing to reduce the 
context switch time during subroutine calls.  A similar 
approach can be taken with real-time systems, but using an 
array of internal register banks, one per process. A single 
register, perhaps under the control of a hardware 
scheduler, would control the currently active context.  A 
change to this register would make a new context 
(including PC, stack pointer, etc) available to the CPU, 
effectively giving a zero-cycle context switch. In a 
conventional processor, it would be problematic to decide 
how many context banks to have – in an rSoC the number 
can be decided precisely for each different application. 

 



4.4.4. Specialised instruction sets.   A soft processor core 
can be customised with a unique instruction set, depending 
on the mix of processes which it is running.  DSP 
algorithms, for example, might require instructions for 12 
bit arithmetic.  A limiting-addition instruction might limit 
the answer to MAXINT if there is an overflow.   Special 
instructions might be used to add or scale A-law 
companded PCM voice samples. If any instructions in the 
“standard” instruction set are unused, then some hardware 
savings can be made. 
 
4.4.5. Customised memory address decoding.  Address 
decoding hardware is needed in a microcontroller to select 
appropriate addresses for peripherals and memory blocks.  
In an rSoC, one can gain some additional flexibility by 
adding specialised address decoding to speed up some 
operations. For example, if a CPU has hardware support 
for multiple contexts, then the same context index could 
be used to provide context-dependent memory addressing. 

Important addresses for a process, such as data and 
status registers for peripherals, could be mapped into 
CPU-register addresses, which can be accessed in a single 
cycle, rather than via a slower memory or peripheral 
addresses. Context-mapped addresses could also allow 
many tasks to each run within a small memory address 
space (64 k) and take advantage of smaller address 
calculation even though the overall system memory is 
significantly larger. Such context-mapped addresses would 
also allow for separate module compilation, even in the 
absence of a conventional MMU. 

 
4.4.6. Multiple CPUs.   We have so far assumed a single 
multi-tasked CPU assisted by parallel hardware modules 
processing peripheral data. Moving tasks to hardware 
improves the predictability of their timing, but this is as 
much a result of the fact that a processing unit is dedicated 
to that one task, as it is to the fact that the task is 
implemented in hardware rather than software. These same 
tasks implemented in parallel hardware can also be 
implemented in parallel software through the use of 
multiple, small CPUs rather a single larger, faster CPU. In 
an rSoC, each small CPU could be customised to its 
individual task, and also customised to deal with the 
specific inter-processor communications required for this 
specific application. 
 
4.4.7. Customised memory structures.  To accompany 
multiple CPUs, there might need to be a shared memory 
system which allows different tasks to share data in an 
efficient way. In a general purpose multi-processor 
architecture, memory architectures tend to be very 
symmetric and regular.  There is no need for such 
regularity with an application specific system, which can 
have combinations of multi-port and single port memories 
as needed. 

5. Conclusions  

Conventional desktop CPUs use techniques such as 
very high speed (>1GHz) CPU clocks, pipelining, multi-
level caching, branch prediction and multiple instruction 
issue in order to produce very high average instruction per 
second figures.  A simple rSoC processor cannot hope to 
compete with this raw, average computation rate. 

Unfortunately, these same techniques which speed up 
average instruction rate of desktop CPUs also tend to 
make the worst case execution rate for individual tasks 
many times slower than the average.  These systems do 
not handle large numbers of unpredictable context 
switches well. For this reason, rSoC processors are better 
able to compete with conventional processors in the real-
time domain, and this is seen as a fruitful area for research 
exploration. In particular, there are many avenues for 
exploring how the additional programmable hardware 
resources on an rSoC can be used to advantage to improve 
real-time system performance. 

This paper has identified many areas for additional 
research.  It still remains for each of these areas to be more 
fully explored, and this will be the basis for significant 
research in the future.  We are currently building a 
prototyping platform for real-time rSoC experiments that 
will allow us to pursue more of these ideas [9]. It is hoped 
that this paper might provide some insights so that others 
might also investigate what appears to be a very promising 
new research domain.  
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