
A Catalog of Hardware Acceleration Techniques for Real-Time Reconfigurable
System on Chip

Neil Bergmann, Peter Waldeck, John Williams
School of ITEE, University of Queensland

{n.bergmann; waldeck; jwilliams}@itee.uq.edu.au

Abstract

The new technology of reconfigurable System-on-Chip
is shown to be a good match to the requirements of real-
time embedded systems. In particular, the judicious use of
specialised data processing peripherals can reduce the
CPU load significantly and greatly ease the task of
guaranteeing that real-time deadlines are met in complex
multi-processing real-time systems. A catalog of other
possible uses for the reconfigurable logic resources on
such a chip which can assist in improving real-time system
performance is also presented.

1. Introduction

As FPGAs reach mega-gate size, it now becomes
feasible to implement a complete microcontroller,
consisting of CPU, peripherals, and a limited amount of
program and data memory on a single FPGA. We call
such a system a reconfigurable System-on-Chip (rSoC).

The concept on an rSoC can be extended to include
systems where a hardwired CPU is incorporated on the die
along with the FPGA circuitry, such as those offered by
Xilinx [1], Altera [2], Atmel [3] and Triscend [4].
Additionally, we extend this concept of rSoC to include
those systems where external memory chips (RAM, CPU
program ROM, FPGA configuration ROM, Flash) are
added to the integrated CPU-plus-peripherals chip.

RSoC technology is seen as being particularly useful
for a number of different scenarios:
• Embedded systems where a single chip microcontroller

is unavailable with the required set of peripherals, eg. a
system requiring a microcontroller with 32 PWM
outputs.

• For prototyping of ASIC SoC solutions in embedded
applications.

• For cases where the range of peripherals changes in
different operating modes.

• For implementation of real-time embedded systems,
where custom hardware peripherals can improve real-
time response rates.
We are particularly interested in the last of these.

2. Real-time System-on-Chip

A useful distinction is to define three types of
computer systems [5] – transformational, interactive and
reactive (or real-time). We have argued in an earlier paper
[6] that reconfigurable computing can provide significant
advantages for real-time computing, and we summarise the
core of the argument here.

For conventional “transformational” and “interactive”
computer systems, the goal is to complete each individual
task or sub-task in as short a time as possible. Since each
sub-task is usually a relatively long and complex set of
operations, overall performance is greatly improved by
techniques which increase the average rate at which
instructions are executed. Such tasks include pipelining,
memory caching, and multiple instruction issue.

The goal of real-time systems, especially hard real-
time systems is quite different: to guarantee that a
response can be made to an input signal by a fixed
deadline, even in the worst case situation. Average
instruction execution rates tend to be less important than
worst case calculation times. For complex real-time
systems with many tasks, many signals, and many
deadlines, a software solution to a real-time multi-tasking
environment leads to a very conservative computing
solution. A powerful processor is needed to guarantee that
response times always are met, even for very rare
conjunctions of events.

Being able to respond to inputs with specific hardware
modules has obvious advantages. Many hardware units
can all operate in parallel, so that individual response
times are much less variable and easier to guarantee, even
as the number of tasks increases. Parallel hardware is not
so affected by issues such as task swapping, scheduling,
interrupt service, and critical sections, which complicate
real-time software solutions.

While we can easily argue the potential advantages of
reconfigurable real-time systems, our eventual research
goal is to clearly demonstrate and prove these advantages
through theoretical analysis and practical case studies.

One key step in our research program is identifying
different ways in which the characteristics of
reconfigurable system-on-chip technology can be used

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

advantageously for real-time system implementation.
That is the purpose of this paper.

We will catalog a large number of different possible
mechanisms for enhancing the implementation of real-time
systems through the use of rSoC technology.

3. A model of RT system implementation

Figure 1 shows a simplified framework for describing
multiple real-time tasks. We will use this framework to
reason about how different tasks can be assisted by rSoC
technology.

For a given set of tightly coupled inputs and outputs
(whose processing constitutes a single ‘task’), data needs
to be input from external sensors or communication
channels, it needs to be assembled into meaningful words,
packets or streams of signals, these signals are then
processed into meaningful output sets, which are
disassembled and sent to actuators or other systems.

In addition, there is a need to transmit data between
cooperating tasks, and also between individual I/O
processing tasks and a global controlling task which sets
overall system parameters, and collects overall system
status information.

Conventionally, a real-time system consists of a CPU,
memory, plus a number of different I/O peripherals such
ADCs, DACs, UARTs, GPIO, and timers.

In such systems, using the framework above, the
hardware peripherals typically handle signal I/O and some
initial signal formatting (eg. converting RS232 bits into
words). Once a meaningful signal is received or sent, an
interrupt is sent to initiate software to deal with additional
signal formatting and to signal the appropriate software
task that there is data for processing. Other software tasks
deal with global signal processing. A Real-time Operating
System (RTOS) coordinates and schedules the tasks and
assists with interprocess communication.

rSoC technology can improve real-time system
performance by providing additional hardware support for
these operations.

4. RSoC support for real-time systems

The rest of the paper describes some of our early ideas
about how rSoC technology can be used to enhance the
implementation of real-time embedded systems. All of
these techniques have the potential to improve system
performance. Much of our research in the near future will
be trying to determine if these potential advantages can be
realised.

4.1. Customised peripherals

Ordinary peripherals (timers, UARTs etc) necessarily
tend to be general purpose. RSoC technology allows
individual peripherals to be customised to the data and the
tasks that they deal with. This can reduce the overall gate
count of peripherals by removing any unused features, or
alternatively improve overall system performance by
adding non-standard features.

For example, if a UART is used for a communications
channel which uses neither parity checking or hardware
handshaking, and which operates at a fixed baud rate, then
the UART can be much simplified.

Alternatively, if digital samples are received through
an ADC from a transducer at a regular sample rate, and
these need to be tested to ensure that they are within an
allowable operating range, then a customised ADC
interface can do this range-checking with a small number
of extra gates, and only signal the CPU when data is out of
range.

Customising peripherals extends not just to individual
peripherals, but also to the mix of peripherals provided.
Microcontroller manufacturers provide a large range of

Global control,
initialisation and
coordination task

Task 1:

High Level
Signal
Processing

Low Level
Signal
Formatting

Signal
Input

Low Level
Signal
Formatting

Signal
Output

Figure 1: A Hierarchy of communicating real-time tasks

Global
communications

Network

Task N:

High Level
Signal
Processing

Low Level
Signal
Formatting

Signal
Input

Low Level
Signal
Formatting

Signal
Output

different microcontroller models for the same CPU, each
with a different mix of peripherals (eg. Motorola offer
more than 20 variations on their 68HC11 processor [7]).
Usually, on any given microcontroller in a system, many
of these peripherals are unused. Alternatively, unusual
mixtures of peripherals (say 6 UARTS and 12 PWM
outputs) mean that no microcontroller has the right set.

4.2. Hardware data formatting

For specific applications, there may be higher levels of
information organisation than just single input and output
samples which conventional peripherals deal with. For
example, communications over a particular RS232 channel
might always be used within a higher communications
protocol, with specific packet structures. Customised
rSoC peripherals can do the front-end data processing to
group bytes into packets, and only signal the CPU when a
whole packet is available for processing, reducing the
CPU load. In such cases the “Low Level Signal
Formatting” operations of Figure 1 are done in
programmable hardware.

4.3. Hardware signal processing

Often, real-time processing of repetitive data streams
consists of several layers of processing. There is some
simple processing that needs to be done on every sample,
and then higher level processing which needs to be done
less frequently on larger sets of data. For example, in a car
ignition system, a spark needs to be generated at a specific
interval after a crankcase sensor signals that a piston is at
TDC (Top Dead Centre). This spark signal needs to be
generated on every combustion cycle. The particular
timing interval for the spark may change as a function of
engine speed, engine temperature, but this does not need to
be updated every cycle.

Hardware is well suited to simple, fast, regular
computation, whilst software is more suited to slower,
more complex, variable computation.

In rSoC technology we can build custom signal
processing hardware to deal with the very simple, regular
high-speed signal processing, and leave the more complex
processing for software. This migrates some of the “High
Level Signal Processing” modules in Figure 1 from
hardware to software.

4.4. Customised CPUs

If the rSoC has either a soft processor core, or a hard
processor core which is extensible with reconfigurable
logic, then another option is to explore new architectural
features in the CPU to better support real-time system
operation. We list some possibilities below.

4.4.1. Customised interrupt handlers. A major cause of
unpredictable response times for real-time software tasks
involves servicing interrupts. Typically, interrupts are

used to signal the arrival of new input data, to signal the
need for new output data, or to signal the end of a
specified scheduling time slice. Servicing an interrupt
requires a context switch upon entry and typically a
scheduling operation upon exit. Multiple levels of
interrupts, and disabling of interrupts during critical
sections adds to processing delays in responding to
interrupts. Novel interrupt handlers might include, for
example, delayed interrupt handling to allow for more
efficient handling of incoming and outgoing data when the
appropriate task is next scheduled, or parallel interrupt
processing hardware which can deal with moving data
samples to memory buffers and marking pending I/O tasks
as ready without interrupting the main CPU tasks through
a context switch.

4.4.2. Customised schedulers. Implementing efficient
scheduling algorithms can have a major effect on real-time
system performance at meeting deadlines. Static
scheduling algorithms (eg. implemented with fixed
priorities) provide quick but inflexible scheduling.
Dynamic scheduling, such as deadline monotonic [8],
provides good scheduling orders, but incurs additional
software overhead.

Implementing complex scheduling algorithms in
hardware has only been practical in the past for high
volume ASICs with fixed function. RSoC technology
provides a mechanism where hardware scheduling
algorithms can be altered to meet the particular process
mix at a specific time. Additional hardware timers, for
example, can provide accurate measures of parameters
such as time to next deadline. Hardware algorithms can
also pre-empt a task at any time that another task becomes
more urgent, not just at the end of fixed time slices.

4.4.3. Specialised multi-processing support. Guarantees
of real-time performance become harder as more and more
tasks are added to a system, because of the larger number
of context switches, which are effectively wasted overhead
time on the CPU.

Another fruitful area of exploration would be to
investigate fast context-switching algorithms. RISC
processors typically use register windowing to reduce the
context switch time during subroutine calls. A similar
approach can be taken with real-time systems, but using an
array of internal register banks, one per process. A single
register, perhaps under the control of a hardware
scheduler, would control the currently active context. A
change to this register would make a new context
(including PC, stack pointer, etc) available to the CPU,
effectively giving a zero-cycle context switch. In a
conventional processor, it would be problematic to decide
how many context banks to have – in an rSoC the number
can be decided precisely for each different application.

4.4.4. Specialised instruction sets. A soft processor core
can be customised with a unique instruction set, depending
on the mix of processes which it is running. DSP
algorithms, for example, might require instructions for 12
bit arithmetic. A limiting-addition instruction might limit
the answer to MAXINT if there is an overflow. Special
instructions might be used to add or scale A-law
companded PCM voice samples. If any instructions in the
“standard” instruction set are unused, then some hardware
savings can be made.

4.4.5. Customised memory address decoding. Address
decoding hardware is needed in a microcontroller to select
appropriate addresses for peripherals and memory blocks.
In an rSoC, one can gain some additional flexibility by
adding specialised address decoding to speed up some
operations. For example, if a CPU has hardware support
for multiple contexts, then the same context index could
be used to provide context-dependent memory addressing.

Important addresses for a process, such as data and
status registers for peripherals, could be mapped into
CPU-register addresses, which can be accessed in a single
cycle, rather than via a slower memory or peripheral
addresses. Context-mapped addresses could also allow
many tasks to each run within a small memory address
space (64 k) and take advantage of smaller address
calculation even though the overall system memory is
significantly larger. Such context-mapped addresses would
also allow for separate module compilation, even in the
absence of a conventional MMU.

4.4.6. Multiple CPUs. We have so far assumed a single
multi-tasked CPU assisted by parallel hardware modules
processing peripheral data. Moving tasks to hardware
improves the predictability of their timing, but this is as
much a result of the fact that a processing unit is dedicated
to that one task, as it is to the fact that the task is
implemented in hardware rather than software. These same
tasks implemented in parallel hardware can also be
implemented in parallel software through the use of
multiple, small CPUs rather a single larger, faster CPU. In
an rSoC, each small CPU could be customised to its
individual task, and also customised to deal with the
specific inter-processor communications required for this
specific application.

4.4.7. Customised memory structures. To accompany
multiple CPUs, there might need to be a shared memory
system which allows different tasks to share data in an
efficient way. In a general purpose multi-processor
architecture, memory architectures tend to be very
symmetric and regular. There is no need for such
regularity with an application specific system, which can
have combinations of multi-port and single port memories
as needed.

5. Conclusions

Conventional desktop CPUs use techniques such as
very high speed (>1GHz) CPU clocks, pipelining, multi-
level caching, branch prediction and multiple instruction
issue in order to produce very high average instruction per
second figures. A simple rSoC processor cannot hope to
compete with this raw, average computation rate.

Unfortunately, these same techniques which speed up
average instruction rate of desktop CPUs also tend to
make the worst case execution rate for individual tasks
many times slower than the average. These systems do
not handle large numbers of unpredictable context
switches well. For this reason, rSoC processors are better
able to compete with conventional processors in the real-
time domain, and this is seen as a fruitful area for research
exploration. In particular, there are many avenues for
exploring how the additional programmable hardware
resources on an rSoC can be used to advantage to improve
real-time system performance.

This paper has identified many areas for additional
research. It still remains for each of these areas to be more
fully explored, and this will be the basis for significant
research in the future. We are currently building a
prototyping platform for real-time rSoC experiments that
will allow us to pursue more of these ideas [9]. It is hoped
that this paper might provide some insights so that others
might also investigate what appears to be a very promising
new research domain.

Acknowledgment. The support of the Australian Research
Council for this work is gratefully acknowledged.

6. References
[1] Xilinx, “Xilinx FPGA Product Tables”, on-line at
www.xilinx.com

[2] Triscend, “A7 Configurable System-on-Chip” on-line at
www.triscend.com

[3] Altera, “About Excalibur Embedded Processor Solutions”
on-line at www.altera.com

[4] “FPSLIC – Field Programmable System Level Integrated
Circuits” at www.atmel.com

[5] G. Berry, "The Esterel v5 Language Primer" at
ftp://ftp.esterel.org/esterel/pub/papers/primer.pdf

[6] N. W. Bergmann, G. Brebner, and J.P. Gray,
“Reconfigurable Computing and Reactive Systems” Proceedings
of the Australasian Workshop on Parallel and Real-Time
Systems: PART ‘00, Newcastle, November, 2000

[7] “M68HC11 Family”, on-line at e-www.motorola.com

[8] K. Tindell, “Deadline Monotonic Analysis”, Embedded
System Programming, 13(6), June 2000

[9] N.W. Bergmann, J.A. Williams, Peter Waldeck, “Egret: A
Flexible Platform for Real-Time Reconfigurable Systems-on-
Chip”, Engineering of Reconfigurable Systems and Algorithms:
ERSA ’03, Las Vegas, June 2003.

