-

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by University of Queensland eSpace

A Catalog of Hardwar e Accdleration Techniquesfor Real-Time Reconfigurable
System on Chip

Neil Bergmann, Peter Waldeck, John Williams
School of ITEE, University of Queensland
{n.bergmann; waldeck; jwilliams}@itee.uq.edu.au

Abstract 2. Real-time System-on-Chip

i . A useful distinction is to define three types of
. The new technology of reconfigurable .System-on-Chlpcomputer systems [5] — transformational, interactand
is shown to be a good match to the requirementeaif reactive (or real-time). We have argued in anieaplaper
time _embedded systems. _In partl_cular, the judciose of [6] that reconfigurable computing can provide siigaint
specialised data processing peripherals can redtiee advantages for real-time computing, and we summis
CPU load significantly and greatly ease the task of .gre of the argument here.
guaranteeing that real-time deadlines are met imptex For conventional “transformational” and “interaetiv
multi-processing real-time systems. A catalog #fep computer systems, the goal is to complete eachvithdil
possible uses for the reconfigurable logic resosro® a5k or sub-task in as short a time as possibieceSach
such a chip which can assist in improving real-tisystem g p-task is usually a relatively long and complek f
performance is also presented. operations, overall performance is greatly impro\sd
1. Introduction _techniqges which increase theverage rateat yv_hich
instructions are executed. Such tasks includelipipg,

As FPGAs reach mega-gate size, it now becomesmemory caching, and multiple instruction issue.
feasible to implement a complete microcontroller, The goal of real-time systems, especially hard-real
consisting of CPU, peripherals, and a limited amaain =~ time systems is quite different: to guarantee that
program and data memory on a single FPGA. We callresponse can be made to an input signal by a fixed
such a system a reconfigurable System-on-Chip ({\SoC deadline, even in the worst case situation. Average

The concept on an rSoC can be extended to includenstruction execution rates tend to be less importhan
systems where a hardwired CPU is incorporated emliln ~ worst case calculation times. For complex real-time
along with the FPGA circuitry, such as those offiebs systems with many tasks, many signals, and many
Xilinx [1], Altera [2], Atmel [3] and Triscend [4]. deadlines, a software solution to a real-time ntakking
Additionally, we extend this concept of rSoC tolute environment leads to a very conservative computing
those systems where external memory chips (RAM, CPUsolution. A powerful processor is needed to guaethat
program ROM, FPGA configuration ROM, Flash) are response times always are met, even for very rare

added to the integrated CPU-plus-peripherals chip. conjunctions of events.
RSoC technology is seen as being particularly Wsefu Being able to respond to inputs with specific haaoav
for a number of different scenarios: modules has obvious advantages. Many hardware units

» Embedded systems where a single chip microcontrolle can all operate in parallel, so that individual passe
is unavailable with the required set of peripherafs a times are much less variable and easier to guaaeten
system requiring a microcontroller with 32 PWM as the number of tasks increases. Parallel haedisarot

outputs. so affected by issues such as task swapping, slomgdu
« For prototyping of ASIC SoC solutions in embedded interrupt service, and critical sections, which @ticate
applications. real-time software solutions.
« For cases where the range of peripherals changes in While we can easily argue the potential advantajes
different operating modes. reconfigurable real-time systems, our eventual anete

« For implementation of real-time embedded systems,goal is to clearly demonstrate and prove theseraeyas
where custom hardware peripherals can improve realthrough theoretical analysis and practical casgiestu =~
time response rates. One key step in our research program is identifying

We are particularly interested in the last of these different ways in which the characteristics of
reconfigurable system-on-chip technology can beduse

https://core.ac.uk/display/14981398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Low Level Signal
Task 1: «— Signal e Input «——
' Formatting
High Level
Signal L(_)w Level Signal
Global control, Processing Signal __»| Output
initialisation and Formatting
rdination task «—>
coordination tas o Lovel Signal
Task N: :
] Elgnal _ «—{ Input «——
High Level ormatting
Signal :
Global «—| Processing ?W Llevel Signal
. . » Ighal
communications > Fogrmatting —» Output —
Network

Figure 1. A Hierarchy of communicating real-time tasks

advantageously for real-time system implementation. rSoC technology can improve real-time system

That is the purpose of this paper. performance by providing additional hardware supjfmr
We will catalog a large number of different possibl these operations.

mechanisms for enhancing the implementation oftiead .

systems through the use of rSoC technology. 4. RSoC support for real-time systems

; : The rest of the paper describes some of our edelysi
3. Amodel of RT system implementation about how rSoC technology can be used to enharece th

Figure 1 shows a simplified framework for descripin implementation of real-time embedded systems. oAll
multiple real-time tasks. We will use this framewdo these techniques have the potential to improveesyst
reason about how different tasks can be assista$b@ performance. Much of our research in the neaméutuill
technology. be trying to determine if these potential advarsacgn be

For a given set of tightly coupled inputs and otgpu realised.

(whose processing constitutes a single ‘task’)a dateds . .
to be input from external sensors or communication 4.1. Customised peripherals

channels, it needs to be assembled into meaningftds, Ordinary peripherals (timers, UARTSs etc) necesgaril
packets or streams of signals, these signals ae th tend to be general purpose. RSoC technology allows
processed into meaningful output sets, which areindividual peripherals to be customised to the daia the
disassembled and sent to actuators or other systems tasks that they deal with. This can reduce theadivgate

In addition, there is a need to transmit data betwe count of peripherals by removing any unused featuve
cooperating tasks, and also between individual I/O alternatively improve overall system performance by
processing tasks and a global controlling task wlsiets adding non-standard features.
overall system parameters, and collects overaltesys For example, if a UART is used for a communications
status information. channel which uses neither parity checking or hardw

Conventionally, a real-time system consists of &CP handshaking, and which operates at a fixed bauwg ttzen
memory, plus a number of different 1/O peripherslgh the UART can be much simplified.
ADCs, DACs, UARTSs, GPIO, and timers. Alternatively, if digital samples are received thgh

In such systems, using the framework above, thean ADC from a transducer at a regular sample e,
hardware peripherals typically handle signal I/@ aome these need to be tested to ensure that they ahinvein
initial signal formatting (eg. converting RS232hito allowable operating range, then a customised ADC
words). Once a meaningful signal is received ott,sen interface can do this range-checking with a smathber
interrupt is sent to initiate software to deal wattiditional of extra gates, and only signal the CPU when dataii of
signal formatting and to signal the appropriatetveafe range.
task that there is data for processing. Othemsu# tasks Customising peripherals extends not just to indisid
deal with global signal processing. A Real-timee@ing peripherals, but also to the mix of peripheralsviuted.

System (RTOS) coordinates and schedules the tagks a Microcontroller manufacturers provide a large raraje
assists with interprocess communication.

different microcontroller models for the same CRdch
with a different mix of peripherals (eg. Motorolafesf
more than 20 variations on their 68HC11 procesgdr [
Usually, on any given microcontroller in a systemany

of these peripherals are unused. Alternatively)sual
mixtures of peripherals (say 6 UARTS and 12 PWM
outputs) mean that no microcontroller has the rigtt

4.2. Hardwar e data formatting

For specific applications, there may be higher leoé
information organisation than just single input andput
samples which conventional peripherals deal witfor
example, communications over a particular RS232wbka

used to signal the arrival of new input data, gnal the
need for new output data, or to signal the end of a
specified scheduling time slice. Servicing an rintpt
requires a context switch upon entry and typicaly
scheduling operation upon exit. Multiple levels of
interrupts, and disabling of interrupts during icat
sections adds to processing delays in responding to
interrupts. Novel interrupt handlers might includer
example, delayed interrupt handling to allow forreno
efficient handling of incoming and outgoing dataentthe
appropriate task is next scheduled, or paralletriopt
processing hardware which can deal with moving data
samples to memory buffers and marking pending &&kg

might always be used within a higher communications as ready without interrupting the main CPU taskeugh

protocol, with specific packet structures. Custsdi
rSoC peripherals can do the front-end data procgdsi
group bytes into packets, and only signal the CRidrnma
whole packet is available for processing, reducihg
CPU load. In such cases the “Low Level Signal
Formatting” operations of Figure 1 are done in
programmable hardware.

4.3. Hardware signal processing

Often, real-time processing of repetitive dataastre
consists of several layers of processing. Thersoise
simple processing that needs to be done on evenplea
and then higher level processing which needs tddre
less frequently on larger sets of data. For exampla car
ignition system, a spark needs to be generatedpecific
interval after a crankcase sensor signals thastarmpis at
TDC (Top Dead Centre). This spark signal needbeo
generated on every combustion cycle. The particula
timing interval for the spark may change as a fiomcof
engine speed, engine temperature, but this doaseeot to
be updated every cycle.

Hardware is well suited to simple, fast, regular
computation, whilst software is more suited to sow
more complex, variable computation.

In rSoC technology we can build custom signal
processing hardware to deal with the very simmgular
high-speed signal processing, and leave the manplex
processing for software. This migrates some of‘High
Level Signal Processing” modules in Figure 1 from
hardware to software.

4.4, Customised CPUs

If the rSoC has either a soft processor core, oard
processor core which is extensible with reconfiglea
logic, then another option is to explore new asgttitral
features in the CPU to better support real-timetesys
operation. We list some possibilities below.

4.4.1. Customised interrupt handlers. A major cause of
unpredictable response times for real-time softwasis
involves servicing interrupts. Typically, intertspare

a context switch.

4.4.2. Customised schedulers. Implementing efficient
scheduling algorithms can have a major effect ahtime
system performance at meeting deadlines. Static
scheduling algorithms (eg. implemented with fixed
priorities) provide quick but inflexible scheduling
Dynamic scheduling, such as deadline monotonic [8],
provides good scheduling orders, but incurs aduktio
software overhead.

Implementing complex scheduling algorithms in
hardware has only been practical in the past fgh hi
volume ASICs with fixed function. RSoC technology
provides a mechanism where hardware scheduling
algorithms can be altered to meet the particulacess
mix at a specific time. Additional hardware timefsr
example, can provide accurate measures of parameter
such as time to next deadline. Hardware algoriticars
also pre-empt a task at any time that anothertiaskmes
more urgent, not just at the end of fixed timeesic

4.4.3. Specialised multi-processing support. Guarantees
of real-time performance become harder as morevard

tasks are added to a system, because of the laugaver

of context switches, which are effectively wastedrbead

time on the CPU.

Another fruitful area of exploration would be to
investigate fast context-switching algorithms. @IS
processors typically use register windowing to cexlthe
context switch time during subroutine calls. A i&m
approach can be taken with real-time systems, fingwan
array of internal register banks, one per procAassingle
register, perhaps under the control of a hardware
scheduler, would control the currently active cahteA
change to this register would make a new context
(including PC, stack pointer, etc) available to BEU,
effectively giving a zero-cycle context switch. la
conventional processor, it would be problematiclécide
how many context banks to have — in an rSoC thebeum
can be decided precisely for each different apfitina

4.4.4. Specialised instruction sets. A soft processor core
can be customised with a unique instruction seiedding
on the mix of processes which it is running.
algorithms, for example, might require instructidos 12
bit arithmetic. A limiting-addition instruction mht limit
the answer to MAXINT if there is an overflow. Spc

DSP

5. Conclusions

Conventional desktop CPUs use techniques such as
very high speed (>1GHz) CPU clocks, pipelining, tiul
level caching, branch prediction and multiple instion
issue in order to produce very high average insbuger

instructions might be used to add or scale A-law second figures. A simple rSoC processor cannoe liop

companded PCM voice samples. If any instructionthén
“standard” instruction set are unused, then sonmdwere
savings can be made.

4.4.5. Customised memory address decoding. Address
decoding hardware is needed in a microcontrollesetect
appropriate addresses for peripherals and memoksl
In an rSoC, one can gain some additional flexipibty

compete with this raw, average computation rate.
Unfortunately, these same techniques which speed up
average instruction rate of desktop CPUs also tend
make the worst case execution rate for individaaks
many times slower than the average. These systiems
not handle large numbers of unpredictable context
switches well. For this reason, rSoC processordatier
able to compete with conventional processors inréad-

adding specialised address decoding to speed ug somime domain, and this is seen as a fruitful areadeearch

operations. For example, if a CPU has hardware stipp
for multiple contexts, then the same context indeuld
be used to provide context-dependent memory addgess

exploration. In particular, there are many avenf@s
exploring how the additional programmable hardware
resources on an rSoC can be used to advantaggtovien

Important addresses for a process, such as data anifal-time system performance.

status registers for peripherals, could be mappad i
CPU-register addresses, which can be accessedimngle

This paper has identified many areas for additional
research. It still remains for each of these ated® more

cycle, rather than via a slower memory or periphera fully explored, and this will be the basis for siipant

addresses. Context-mapped addresses could alse allorésearch in the future.

We are currently buildiag

many tasks to each run within a small memory addres prototyping platform for real-time rSoC experimettst

space (64 k) and take advantage of smaller addre
calculation even though the overall system memary i
significantly larger. Such context-mapped addressadd
also allow for separate module compilation, everha
absence of a conventional MMU.

swill allow us to pursue more of these ideas [9]slhoped
that this paper might provide some insights so tithérs
might also investigate what appears to be a veygnfging
new research domain.

Acknowledgment. The support of the Australian Research

4.4.6. Multiple CPUs. We have so far assumed a single Council for this work is gratefully acknowledged.

multi-tasked CPU assisted by parallel hardware resdu

processing peripheral data. Moving tasks to hardwaref. References

improves the predictability of their timing, butighis as
much a result of the fact that a processing urdedicated
to that one task, as it is to the fact that thek tas
implemented in hardware rather than software. Thasge

[1] Xilinx, “Xilinx
www.xilinx.com

[2] Triscend, “A7 Configurable System-on-Chip” on-liret
www.triscend.com

FPGA Product Tables”, on-line at

tasks implemented in parallel hardware can also be

implemented in parallel software through the use o
multiple, small CPUs rather a single larger, fa€BtJ. In

an rSoC, each small CPU could be customised to it

individual task, and also customised to deal witle t
specific inter-processor communications requiredtfis
specific application.

4.4.7. Customised memory structures. To accompany
multiple CPUs, there might need to be a shared mgmo
system which allows different tasks to share datan
efficient way. In a general

purpose multi-processor

f[3] Altera, “About Excalibur Embedded Processor Sohsgfo
on-line at www.altera.com

S[4] “FPSLIC — Field Programmable System Level Integtate
Circuits” at www.atmel.com

[5] G. Berry, "The Esterel v5 Language Primer" at
ftp://ftp.esterel.org/esterel/pub/papers/primer.pdf
[6] N. W. Bergmann, G. Brebner, and J.P. Gray,

“Reconfigurable Computing and Reactive Systeficeedings
of the Australasian Workshop on Parallel and Reatd
Systems: PART ‘Q0Newcastle, November, 2000

[7] “M68HC11 Family”, on-line at e-www.motorola.com

architecture, memory architectures tend to be very[8] K. Tindell, “Deadline Monotonic Analysis”, Embedded

symmetric and regular.
regularity with an application specific system, aican
have combinations of multi-port and single port meies
as needed.

There is no need for SuchSystem Programming, 13(6), June 2000

[9] N.W. Bergmann, J.A. Williams, Peter Waldeck, “Egrat
Flexible Platform for Real-Time Reconfigurable Syss-on-
Chip”, Engineering of Reconfigurable Systems andofithms:
ERSA '03, Las Vegas, June 2003.

