Egret: A Flexible Platform for Real-Time
Reconfigurable Systems on Chip

Neil Bergmann, John Williams, Peter Waldeck
School of ITEE, University of Queensland,
Brisbane, Australia

Abstract: The new technology of reconfigurable System-
on-Chip is a good match to the requirements of real-time
embedded systems. However, the complicated design of
such systems remains an obstacle to the widespread prac-
tical adoption of this technology. One method for reducing
the incremental cost of new designs is to develop a generic
platform for the design, prototyping and implementation of
reconfigurable real-time systems. This paper presents our
requirements for this platform, which we have dubbed
Egret (Experimental Generic Reconfigurable Embedded
Target). We describe our initial thinking on the design of
this platform, and outline some of the high-level design
choices made so far.

I. Introduction

Field Programmable Gate Arrays (FPGAs) have long been
a popular implementation technology for random logic,
glue logic and microprocessor peripherals.

As FPGAs reach mega-gate size, it now becomes feasi-
ble to implement a complete microcontroller, consisting of
CPU, peripherals, and a limited amount of program and
data memory on a single FPGA. We call such a system a
reconfigurable System-on-Chip (rSoC).

The concept of an rSoC can be extended to include sys-
tems where a hardwired CPU is incorporated on the die
along with the FPGA circuitry, such as those offered by
Xilinx [1], Altera [2], Atmel [3] and Triscend [4]. Addi-
tionally, we extend this concept of rSoC to include those
systems where external memory and interfacing chips are
added to the integrated CPU-plus-peripherals chip.

rSoC technology is seen as being particularly useful for
a number of different scenarios, such as embedded systems
where a single chip microcontroller is unavailable with the
required set of peripherals, prototyping of ASIC SoC solu-
tions in embedded applications and for cases where the
range of peripherals changes in different operating modes.

Another scenario of particular interest to us is for im-
plementation of real-time embedded systems, where
custom hardware peripherals can improve real-time re-
sponse rates, and the ability to create customised computer
architectures facilitates rapid application prototyping.

II. Real-Time System-on-Chip

We have argued in an earlier paper [5] that reconfigurable
computing can provide significant advantages for real-time
computing, and we summarise the core of the argument
here.

The goal of real-time systems, especially hard real-time
systems is often to guarantee that a response can be made
to an input signal by a fixed deadline, even in the worst
case situation. Worst case calculation times tend to be
more important than average instruction execution rates.
For complex real-time systems with many tasks, many
signals, and many deadlines, a software solution to a real-
time multi-tasking environment leads to a very conserva-
tive computing solution. A powerful processor is needed
to guarantee response times even for very rare conjunc-
tions of events.

Being able to respond to inputs with customised hard-
ware modules has obvious advantages. Many parallel
hardware units can all operate in parallel, so that individual
response times are much less variable and easier to guaran-
tee, even as the number of tasks increases. Parallel
hardware is not so affected by issues such as task swap-
ping, scheduling, interrupt service, and critical sections,
which complicate real-time software solutions.

Our research goal is to clearly demonstrate and prove
these advantages through theoretical analysis and practical
case studies.

III. FPGA Platforms

Modern high speed and high-capacity FPGAs, with
hardwired processor, memory and peripherals, provide a
type of design platform for reconfigurable computing,
since they reduce the number of choices about how to im-
plement particular functions.

Xilinx’s Lysaght argues that in order to manage the
complexity of modern mega-gate FPGAs, and to produce
new designs quickly and efficiently, it will become essen-
tial for companies to develop their own higher level
reconfigurable computing platforms [6]. This includes
hardware platforms (perhaps particular types of FPGAs,
and particular peripheral libraries), software platforms
(such as operating systems), and design tool flows (for
software, hardware, and systems).

As part of our research into reconfigurable computing
for real-time systems, we have commenced the design of
such a platform for real-time systems, and we present our
initial work in the rest of the paper.

IV. Platform Specifications

No platform can be universal in its applicability, even
within the domain of reconfigurable computing for real-
time systems. We have chosen a particular slice through

the design universe for our platform, which we call Egret

(Experimental Generic Reconfigurable Embedded Target).
The primary objectives for our platform design are

twofold:

e To further our research into reconfigurable system-on-
chip for real-time systems, and

e To provide a platform that students (especially under-
graduate and coursework masters project students) can
use to rapidly prototype new reconfigurable, embedded
computing applications.

Based on these objectives, we have first specified some
general requirements, and are in the process of deciding
how best to implement these.

A. Modularity

A modular system is one in which a particular system can
be composed from a selection of modules from within a
larger general purpose pool of modules.

In the case of Egret, we require modularity in three
domains:

e Physical modularity allowing arbitrary combinations of
core and peripheral modules to be plugged together,

e [ogical modularity permitting communication and con-
trol with the physical modules, and FPGA IP cores
assembled to implement the required set of processors
and on-chip peripherals required for the system,

e Software modularity providing device driver, network-
ing, data management and application specific code
requirements of the system.

B. Flexibility and Extensibility

We require that the hardware and software design of the
platform should be easily extensible to handle systems
which require different levels of memory and processing
power, as well as different networking and external signal
interfacing.

C. Plug and Play

It is required that (as far as practicable), circuit compo-
nents should be able to be added in a plug-and-play
fashion. For example, addition of a new hardware module
with a network interface should automatically load the
appropriate device drivers etc, into the network stack,
without requiring a complete rebuild of the operating sys-
tem.

In lieu of full run-time hot-swap capabilities, our im-
mediate goal is a platform which performs power-on
module identification, and configures the software operat-
ing system accordingly. In this scenario it is reasonable to
assume that the rSoC FPGA itself is appropriately config-
ured at design time with the requisite on-chip peripherals.

D. Vendor Independence

The platform should not mandate the choice of a single
vendor’s FPGAs. This implies some kind of hardware
abstraction layer, such as that offered by a conventional
modern operating system.

The first instantiation of the platform is likely to be for
one particular vendor, however design decisions made dur-

ing the prototyping process must keep the vendor
independence goal in mind.

E. Simple Design Tool Chain

Our experience of reconfigurable system-on-chip design is
that it is complicated, and has a very steep learning curve.
We require that our platform support a simple design tool
chain, so that simple real-time embedded system designs
can be accomplished on the platform without excessive
lead times. Conversely, experienced designers should be
able to make full use of the capabilities of the reconfigur-
able computing fabric.

F. Reconfigurability

As far as it is practical, the platform should take advantage
of the design flexibility offered by the use of a central re-
configurable system-on-chip. Existing modular computer
architectures tend to utilize shared bus architectures (e.g.
PCI, ISA etc), via which peripherals communicate with the
CPU and each other. A side-effect of this is that every
physical module must support the entire wide bus inter-
face. Instead, our approach is to focus peripheral control
as much as possible in the central rSoC, using logical
peripheral modules as described above. The physical
interface to modules is made as narrow as possible, simpli-
fying module design.

G. Research Support

The platform is not primarily a platform for prototyping

commercial designs. Instead, it needs to be able to support

our current and planned research projects. These include:

e Hardware-Software tradeoffs in reconfigurable system-
on-chip implementations of real-time systems,

e Flexible on-chip interconnection networks for recon-
figurable system-on-chip,

o Flexible, re-usable microprocessor peripheral core de-
signs for reconfigurable system-on-chip, and

e Applicability of reconfigurable system-on-chip for par-
ticular application domains, including audio processing,
video processing, aerospace and satellite systems.

H. Ease of Manufacture

Whilst it is not envisaged that any of our initial designs
will immediately be converted to commercial products, the
platform should support a reasonable commercialization
path.

This would entail keeping the same logical system ar-
chitecture but instantiating it on custom circuit boards.
The rSoC microprocessor/peripheral cores and operating
system/application software should migrate relatively un-
changed.

V. Platform Design
Having provided some specifications, we next investigate
our initial design choices for our platform.
A. Software Operating System

The choice of an appropriate operating system (OS) envi-
ronment will drive many of the other design choices.
Coarsely there are two competing approaches —

microkernel vs. operating system. Microkernels have the
benefit of small memory footprints, good support for real-
time scheduling, but suffer from limited support and tools
and non-standard development and operating environ-
ments. On the other hand operating systems are usually
well supported and provide familiar development envi-
ronments, but have large memory footprints and often
incur significant execution time overheads. Another axis
of choice is commercial vs. open source.

One complication is the rather simple hardware archi-
tectures of most rSoC processor cores, in particular the
lack of memory management units (MMUSs) to implement
virtual memory. This excludes many Unix-like systems,
including FreeBSD, Mach and off-the-shelf Linux.

uClinux (“you-see-linux”) is a port of the Linux oper-
ating system to embedded processors lacking an MMU [7].
Originally targeting the Motorola 68K series of processors,
it now supports several architectures including ARM.

In common with most Unix-like operating systems,
uClinux lacks hard real-time support. However, this can
be achieved through use of the real time extensions such as
RTAI and RTLinux, wherein the operating system runs as
a low priority user-mode process [8]. The combination of
uClinux and RTAI/RTLinux is a promising approach, and
is discussed further below in the context of the embedded
processor selection.

From an application programming perspective, uClinux
offers an interface almost identical to standard Linux, in-
cluding command shells, C library support and Unix
system calls. Thus, the platform can mature gracefully
onto more powerful embedded processors in a reasonably
transparent manner.

B. Embedded Processor

The pool of potential processors for the platform includes
soft and hard cores from a variety of vendors, such as the
PowerPC (hard-core) and Microblaze (soft-core) from Xil-
inx, various ARM platforms (hard-cores from Altera and
Triscend), and the NIOS soft-core, also from Altera. Other
processors include the venerable 8051 and AVR. Third
party soft-core microprocessors are also plentiful.

Based on the factors presented in the previous section,
we have decided to target uClinux, initially on the Xilinx
Microblaze architecture, with a view to introducing the
RTLinux extensions for real-time support. At the time of
writing the uClinux port is more or less complete.

C. Modules - functionality

To maintain maximum flexibility, we aim for a large selec-
tion of relatively small and simple boards (modules) which
are assembled together to prototype a specific system.

Our planned initial set of modules is as follows:

e 1SoC core — contains the FPGA with CPU, plus suffi-
cient RAM and Flash to run the operating system, and
base configuration of the FPGA hardware,

e Memory boards — provide different combinations of
RAM and Flash memory,

e Networking boards — initially offering 10/100 Megabit
Ethernet, and

Female

/| connector
Male
]

connector

Memory
Expansion
Module

Physical
network

Network connection
Interface @ (—)

Module

Power
connection

Power Supply
Module

Egret CPU
Core Module

Audio
connections

Audio I/0

adapter |:>

(AC coupling,

prefiltering) @ ——

Analog I/0
Module

Figure 1. Example tiling layout for planar topology.

e General purpose I/O (GPIO) board — adds a number of
general purpose digital and analog inputs and outputs,
including audio.

Future modules potentially include video I/O and camera
interfaces, multichannel audio I/O, networking modules
such as wired (CAN bus, etc.) and wireless (Bluetooth,
IEEE802.11 etc.), navigation and positioning (GPS) and
application specific transducer modules.

D. Logical Interfaces

Any one prototyped system is likely to consist of several
modules with a single rSoC core. Ultimately the goal is
for an automated self-configuration process to identify
connected hardware modules at startup, configure the
FPGA with appropriate peripheral driver cores (such as
12C, SPI and one-wire, or custom peripheral interfacing
cores), and configure operating system software drivers
accordingly. For maximum flexibility this process may
also support negotiation between the rSoC core and each
peripheral module over which physical interface pins to
use.

E. Physical Interfaces

Initially we are not especially interested in physical minia-
turisation, and the first version of the platform, Egret v0.1
will use 75Smm x 75mm square circuit boards, with connec-
tors potentially along all four edges. The rSoC core would
always have all four edges populated with connectors.

Two potential physical interconnection schemes have
emerged — horizontal tiling and vertical stacking. Each has
benefits and drawbacks which we discuss briefly below.
The cardinal compass directions North, South, East and
West denote the four sides of the Egret core.

1) Horizontal Tiling

Boards are designed so that they can tile the plane in any
configuration. The connectors along each edge of every
board are identical, and (at least physically), any two
boards can be plugged together. Each edge has symmetri-
cal male and female connector beside each other. Figure 1
shows an example tiling arrangement, while the connector
structure is represented in Figure 2.

Benefits of this approach include easy physical access
to boards and components for hardware debugging, and
fairly simple physical connector and circuit board design.
A challenge associated with horizontal tiling is that to sup-
port configurations with greater than four modules fanning
around the Egret core, modules must offer some through-
connect capability.

2) Vertical Stacking

Under this scheme, boards are designed to stack vertically.
All signals connect vertically through the edges of each
board, and each module taps into a subset of these signals
to achieve its interface with the CPU. Each edge has four
sub connectors, a male and female pair on the bottom and
on the top. In this way multiple modules stack on top of
each other, with four rotational symmetries.

All pins on all edges are common between modules.
To share this resource, modules have a so-called “active
edge”. During stacking, modules are rotated such that their
active face connects with one side (N, S, E or W) of the
Egret core. If just one half of an edge is sufficient for a
particular module then such modules may also be flipped,
doubling to eight the number of stacking orientations.

For Egret v.0.1 we have opted for the planar tiling ap-
proach, mainly to simplify CPU and peripheral module
development and debugging. Stackable modules will be
investigated as a possibility in subsequent revisions.

F. Connector Pin Assignments

For either the tiling or stacking configurations, careful de-
sign of the electrical (pin) interfaces is required. To
physically achieve the general tiling capability, symmetri-
cal structures of male and female connectors are required.
Within this, symmetry in electrical connections is also nec-
essary. Thus, all module identification and power/ground
signals must be duplicated and reflected in a manner simi-
lar to that illustrated in Figure 2.

Otherwise, pins on connectors are unreserved, and each
peripheral module is free to use them as it sees fit. The
CPU card has all of these uncommitted pins connected to
FPGA user I/O pins, which can be reprogrammed as in-
puts, outputs, left tristate, or driven to ground for improved
EMC.

To ensure that all connector edges are compatible, volt-
ages are duplicated on a pair of male and female
connectors. Ground pins are liberally interspersed among
signal pins for protection against electromagnetic interfer-
ence.

Male side Female side

@@@@@@@@@@@@DD Oo0 00 oo|joojoo
@@@@@@ﬁﬁ@ﬁ@@ OO0 0000 oo|oojoao
@@@@@@ﬁﬁ@ﬁ@@ﬂﬂ O 0O oo oo|joofoo

Power Module Module data Module data Module Power
identification identification

Figure 2. Illustration of symmetrical dual male/female
connector scheme, showing power, module identifica-
tion, and module specific pins.

V1. Conclusions

Egret is a new architecture designed specifically to support
research and development into real time reconfigurable
systems on chip. The high level requirements of the archi-
tecture have been developed and described.

In response to these specifications, a preliminary archi-
tectural design has been sketched out, and named Egret
v0.1. The platform will run an embedded Linux-based
operating system called uClinux with real-time (RTLinux)
extensions. The port to the Xilinx Microblaze softcore
processor is almost complete.

A core suite of hardware modules has been chosen for
development, and candidates for future modules identified.
Future support for plug-and-play run-time system recon-
figuration and other advanced capabilities is anticipated,
but with a short term focus on achieving a working plat-
form to be configured manually.

Egret is a work in progress. Current and future efforts
include the port of uClinux and real time extensions to the
Microblaze softcore processor, development of module
identification protocols to support boot-time operating sys-
tem configuration, and hardware design of Egret core rSoC
module and primary peripheral modules (memory, ethernet
and general purpose 10).

Acknowledgment

The support of the Australian Research Council for this
work is acknowledged.

References
[1] Xilinx, "Xilinx FPGA Product Tables," 2003,
<http://www xilinx.com/products/tables/fpga.htm> [ac-
cessed 7th Feb., 2003].
[2] Altera, "Excalibur Devices," 2003,

<http://www.altera.com/products/devices/arm/arm-
index.html> [accessed 7th Feb., 2003].

[3] Atmel, "Field Programmable System Level Integrated Cir-
cuits," 2003, <http://www.atmel.com/products/FPSLIC/>
[accessed 7th Feb., 2003].

[4] Triscend, "A7 Configurable System-on-Chip," 2003,
<http://www.triscend.com/products/a7.htm> [accessed 7th
Feb., 2003].

[5] N. W. Bergmann, G. Brebner, and J. P. Gray, "Reconfigur-
able Computing and Reactive Systems," presented at
Australasian Workshop on Parallel and Real-Time Systems
(PART '00), Newcastle, Australia, 2000.

[6] P. Lysaght, "FPGAs as Meta-Platforms for Embedded Sys-
tems," presented at IEEE International Conference on Field
Programmable Technology (FPT '02), Hong Kong, 2002.

[7] A. Rubini and J. Corbet, Linux Device Drivers, 2nd ed:
O'Reilly and Associates, 2001.

[8] M. Barabanov, "A Linux-based Real-Time Operating Sys-
tem," Masters Thesis, New Mexico Institute of Mining and
Technology, Sorocco, New Mexico, 1997.

