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ABSTRACT
In the developing flow region of a plunging jet, the ver

near field (i.e. (x-x1)/d1 < 5) is strongly affected by the
entrapment process at the impingement. New quantita
results show that, although the distributions of void fracti
and mean velocity have smooth shapes, the flow is hig
fluctuating and unstable. At a given location in the mixin
layer, the probability distribution function of the mea
velocity exhibits two distinctive peaks : the jet impa
velocity and the induction trumpet velocity. The wate
velocity fluctuates between the two characteristic values.
Keywords : plunging jet, air entrainment, turbulent she
flow, very-near flow field, interaction bubble-turbulence.

INTRODUCTION
At the intersection of a free-falling jet with a pool o

liquid, air can be entrained and transported downwards.
industrial applications, the process is commonly used w
plunging jet columns, drop structures in waterways, cooli
system of power plants.

Review on plunging jet flows

Plunging jet entrainment takes place when the jet imp
velocity exceeds a critical velocity. The onset velocity is
function of the jet turbulence. For small jet velocities larg
than the onset velocity, air is entrained in the form 
individual air bubbles. At larger jet velocities, large a
packets are entrained and broken up subsequently in the s
flow.

The near-flow field is characterised by the developi
shear layer and air diffusion layer (fig. 1). Rece
experimental results with vertical supported jets have sho
that these layers do not coincide (CHANSON 199
CUMMINGS 1996, CHANSON and BRATTBERG 1997)
Below the impingement point, the air entrainment is primar
an advection-diffusion process and most air is entrained in
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region of high-velocity (V > V1/2). Although the velocity
distribution has the same shape as for monophase flows, the
quantitative parameters are affected by the presence of
entrained air bubbles.

The presence of bubbles modifies the momentum transfer
within the shear layer. The turbulent shear contributes to the
bubble breakage, leading to a broad spectrum of bubble sizes
in the shear flow. Overall the developing flow region of
plunging jets is subjected to strong interactions between the
entrained air bubbles and the momentum transfer mechanism.

Purpose of the present work

Recent reviews (BIN 1993, CHANSON 1997)
emphasised the absence of information on the near and very-
near flow field. CHANSON (1997) suggested that, in the
developing flow region of a plunging jet, the entrained air
bubbles are advected downwards by a "turbulent diffusion"
process. It was emphasised however that "such an assumption
does not reflect the real nature of the turbulent shear layer nor
the existence of vortical structures" and the theoretical results
"are not valid very-close to the entrainment point"
(CUMMINGS and CHANSON 1997).

In the paper, the authors will describe a new study of the
very-near flow field defined as (x-x1)/d1 < 5. It is the purpose
of this work to describe quantitatively the mechanisms of air
entrapment and the interactions between gas and liquid
entrainment.

EXPERIMENTAL INVESTIGATIONS

Experimental apparatus

Experimental investigations were conducted in the two-
dimensional supported plunging jet experiment previously
used by CHANSON (1995), CUMMINGS (1996) and
CHANSON and BRATTBERG (1997). The apparatus
consists of a glass tank (1.8-m deep, 0.30-m wide) and a
1 Copyright © 1998 by ASME
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vertical nozzle supplying a 2-D supported jet. The suppo
characteristics are : 0.269-m width and 0.35-m supp
length. The water supply comes from a constant head ta
and the jet thickness at nozzle is 0.012-m. Domestic wa
was used in all experiments (table 1).

Instrumentation

Velocities were measured using a Pitot tube (in cle
water) and a conical hot-film probe system in air-water flow
The latter used a special miniature probe Dantec 55R42 (0
mm size) scanned at 40 kHz.

A double-tip conductivity probe was used to record a
content, bubble frequency and chord lengths. The pro
consists of two identical tips (internal � 25 �m, external �
200 �m) spaced 8-mm apart, scanned at 10 to 40 kHz p
channel.

The displacement of the probes in the flow direction an
direction normal to the jet support was controlled by two fin
adjustment travelling mechanisms and measured with t
Lucas Schaevitz Magnarules Plus™ MRU-012 and MRU
036. Overall the error in the probe position was less than 
mm in each direction.

Additional information was obtained by visua
observations using high-speed photographs.

Further details of the experimental apparatus a
instrumentation were reported in CHANSON an
BRATTBERG (1997).

Data processing. In air-water flow, velocity measurements
with hot-film probes require the distinction between air an
water phases. A new processing technique was develope
record only the water phase velocity. The air bubble sign
were discriminated using a method based on one sig
threshold, two gradient thresholds and probe-bubble collis
period.

Such a method was required because of the complexity
the collision process (i.e. drying, wetting, glancing) and of t
bubbly structures (e.g. bubble packet, shared interfacial film

Experimental flow conditions

For each experiment, the receiving pool free-surface w
located 0.09-m below the nozzle. The inflow conditions we
partially-developed and turbulence levels of the free-strea
were high (table 1). Air concentration measuremen
indicated a substantial aeration of the impinging jet fre
surface (CHANSON and BRATTBERG 1997). Visually the
jet appeared rough turbulent.

INVESTIGATIONS OF THE VERY-NEAR FLOW
FIELD

Definition

The very-near flow field is defined as the region in whic
the flow characteristics are dominated by air entrapment a
the interactions between gas and liquid entrainment (fig.
and 2). Several researchers mentioned such a flow reg
(Table 2).
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Dominant features of the very-near-flow field include the
induction trumpet and the air cavity at jet impingement
(thickness �al, length xal) (fig. 2). Experimental observation
are summarised in Table 3. Note the scatter of the
experimental data and the discrepancy between theoretical
and experimental results.

In the present study, the very-near flow field corresponds
to (x-x1)/d1 < 5.

Mean flow properties

Distributions of air content, mean air-water velocity and
bubble frequency were recorded with the conductivity probes.
Although the data exhibit some scatter, the profiles are
reasonably smooth despite the proximity of the singular
impingement point (fig. 3). These results were observed
consistently for (x-x1) � 0.005 m and V1 > 2 m/s
(CHANSON and BRATTBERG 1997).

At low inflow velocities (V1 � 2 m/s) and for (x-x1) <
0.05 m, the flow field is highly perturbed by the individual
entrainment of air bubbles, and the data exhibit a broad
scatter (i.e. noise) without smooth trend.

The distributions of air bubble frequency have a
maximum in the mixing layer. This maximum value tends to
increase with the distance from the impingement point in the
very-near flow field, indicating an increase in the number of
bubbles as the largest entrained bubbles are broken up in the
shear layer.
Table 1- Experimental flow conditions (supported jet, � = 89
degrees, W = 0.269 m)

Ref. Run qw V1 x1 (a) d1 Comments
m2/s m/s m m

(1) (2) (3) (4) (5) (6) (6)
CHANSON (1995) F1 0.024 2.36 0.090 0.0102 Tu=1.70 %.

F2 0.048 4.06 0.090 0.0118 Tu=1.50 %.
F3 0.072 5.89 0.090 0.0122 Tu=0.74 %.
F4 0.096 8.0 0.090 0.012
F5 0.108 9.0 0.090 0.012

CUMMINGS
(1996)

2-m/s 0.024 2.39 0.0875 0.010 Tu=1.6 %.

6-m/s 0.072 6.14 0.0875 0.0117 Tu=0.75 %.
CHANSON and
BRATTBERG
(1997)

TBPJ2 0.017 2.0 0.09 0.0090 Tu=1.7 %.

TBPJ3 0.032 3.0 0.09 0.0110 Tu=2.6 %.
TBPJ4 0.045 4.0 0.09 0.0116 Tu=2.8 %.
TBPJ5 0.058 5.0 0.09 0.0119 Tu=2.5 %.
TBPJ6 0.07 6.0 0.09 0.0120
TBPJ7 0.082 7.0 0.09 0.0121
TBPJ8 0.094 8.0 0.09 0.0121

Present study HF-2 0.017 2.0 0.09 0.0090 Tu=1.7 %.
HF-3 0.032 3.0 0.09 0.0110 Tu=2.6 %.
HF-4 0.045 4.0 0.09 0.0116 Tu=2.8 %.

Notes : (a) : distance between nozzle and pool free-surface;
W : channel width; � : jet angle with horizontal; Tu : jet
turbulence intensity at impact (measured outside of jet
support boundary layer).
2 Copyright © 1998 by ASME
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Velocity distributions

Mean water velocities and water velocity fluctuations
recorded with the hot-film probe, are shown in figure 4.

First note the smooth shape of the mean water veloc
distributions : i.e., the same shape as monophase flows. 
data scatter is comparable between conductivity probes (
CHANSON and BRATTBERG 1997) and hot-film probe
data (Present study), suggesting that the scatter is relate
the flow behaviour rather than to the instrumentation.

Secondly let us observe the very-high level of turbulen
in the shear flow. Maximum turbulent intensities of more tha
100% are observed for (x-x1)/d1 � 3. In monophase mixing
layers, experimental data indicated (Tu)max = 15 to 20% for
(x-x1)/d1 � 4 (e.g. DAVIES 1966, SUNYACH and
MATHIEU 1969, WYGNANSKI and FIEDLER 1971).

The writers analysed further the velocity probabilit
distribution function (pdf) in the mixing layer downstream o
the impingement point. The results indicate that, at a
position {x,y} in the mixing layer, the distribution of velocity
around the mean is neither random nor skewed. It 
characterised by two peaks corresponding to a major va
and a minor velocity (fig. 5).

It is believed that the high levels of turbulence in th
mixing layer of developing plunging jet flow are caused b
the fluctuating nature of the air entrapment process. T
probe, fixed in space, is sometimes in the potential core fl
(V = V1) while some other times in the induction trumpe
flow (V = Vi). When the probe tip is located in an air packe
the probe signal is not meaningful and it is discarded. Hen
the two characteristic velocities, seen in figure 5, are t
inflow velocity V1 and the induction trumpet velocity Vi.

DISCUSSION

Although the shape of void fraction and mean veloci
distributions suggest a smooth flow transition between t
high-velocity and low-velocity regions, the air-water mixing
layer is highly unstable. The air entrapment/entrainme
process is very dynamic and interacts substantially with t
transfer of momentum across the mixing layer.

Characteristics of the near-entrapment region we
recorded for 2 � V1 � 4 m/s. The results are summarised i
Tables 3 and 4. The latter gives the upper and low
boundaries of the mixing layer region in which the veloci
probability distribution function exhibits two peaks (fig. 5)
and the deduced induction trumpet velocity.

The results indicate that the induction trumpet velocity 
a function of the inflow velocity. For the experiments, it i
best correlated by :

Vi  =  0.6684 * (V1 - Ve)0.1456 (1)

where Ve is the onset velocity of air entrainment (Table 4).
The boundaries of the two-velocity peaks pdf region a

best correlated by :
Y1
d1

 = 0.04375 * 
x-x1
d1

 + 0.2115*(V1-Ve) + 0.593 (2)
ty
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Y2
d1

 = 1.307 * (V1 - Ve)0.139 (3)

For Y1 � y � Y2, the velocity probability distribution
function has the shape illustrated in figure 5.

Table 2- Investigations of the very-near flow field

Ref. Investigations Comments
(1) (2) (6)

EXPERIMENTAL
OBSERVATIONS
LIN and
DONELLY (1966)

Study of air cavity
length

Circular vertical jets (� = 4
to 8 mm).

SUCIU and
SMIGELSHI
(1976)

Study of air cavity
length

Circular water jets (� = 1 to
4 mm). V1 = 2.5 to 9.6 m/s.

KENNEDY and
BURLEY (1977)

Study of air cavity
length

Impingement of a solid
surface in liquid.

EVANS (1990) Study of air cavity
thickness and

induction trumpet

Circular plunging jet
columns (� = 2.4 to 7.1
mm).

KUSABIRAKI et
al.  (1990)

Study of air cavity
length

Inclined circular jets (� = 7
to 12 mm).

CHANSON (1995) Study of air
entrapment region

Bubble break-up region.
Two-dimensional supported
water jets.

CUMMINGS and
CHANSON (1997)

Study of air
entrapment region

and air cavity
thickness

Very-near flow field. Two-
dimensional supported water
jets.

Present study Study of air
entrapment region

and induction
trumpet flow

Two-dimensional supported
water jets.

THEORETICAL
CALCULATIONS
SENE (1988) Analysis of air

entrapment region
LEZZI and
PROSPERETTI
(1991)

Analysis of air
entrapment region

Air entrainment instability
caused by gas viscosity.

BONETTO et al.
(1994)

Analysis of air
entrapment region

Gas entrainment induced by
Helmholtz-Taylor instability.
Assume wave celerity equal
to jet velocity.

SUMMARY AND CONCLUSION

Downstream of the impingement point of a plunging jet,
the developing flow is characterised is characterised by a
very-near flow region in which the flow properties are
strongly affected by the entrapment conditions and an air
bubble diffusion region downstream.

In the very-near flow field (i.e. (x-x1)/d1) < 5), the
distributions of air content and mean velocity exhibit a
smooth shape, and high levels of turbulent velocity
fluctuations are recorded. The instantaneous fluctuations of
the velocity are not random. In the mixing layer the velocity
pdf exhibits two characteristic peaks : the inflow velocity V1
and the induction trumpet Vi.

Characteristics of the very-near flow field were recorded
and compared with existing data. The scatter of the results
3 Copyright © 1998 by ASME
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reflects a lack of understanding of the basic air entrapm
mechanisms and of the interactions between the mixing la
and the air diffusion process. The writers hope that 
present study will assist future works.
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Table 3- Characteristics of the very-near flow field

Ref. Very-near flow
field region

Air cavity
thickness

Air cavity
length

Induction
trumpet velocity

Comments

(x-x1) �al xal Vi
m m m m/s

(1) (2) (3) (4) (5) (6)
EXPERIMENTAL
OBSERVATIONS
LIN and
DONELLY (1966)

0 to 4.5 mm Circular vertical jets (� = 4 to 8 mm).

SUCIU and
SMIGELSHI
(1976)

4 to 5 mm Circular water jets (� = 1 to 4 mm).
V1 = 2.5 to 9.6 m/s.

KENNEDY and
BURLEY (1977)

� V1
0.6 Impingement of a solid surface in

liquid.
EVANS (1990) 0.07 to 0.45 mm (a)

[V1=4.7 to 15 m/s]
0.6 to 2.7 (b)

[V1=4.7 to 15 m/s]

Circular plunging jet columns (� = 2.4
to 7.1 mm).

KUSABIRAKI et
al.  (1990)

6*�1
[2<V1<13.5 m/s]

Inclined circular jets (� = 7 to 12
mm).

CHANSON (1995) < 50-100 mm Bubble break-up region. Two-
dimensional supported water jets.

CUMMINGS and
CHANSON (1997)

< 20 mm
[2 < V1 < 6 m/s]

0.5 to 5 mm
[3 < V1 < 6 m/s]

Very-near flow field. Two-dimensional
supported water jets.

Present study (x-x1)/d1 � 5 (as above) 0.5 to 0.8
[V1 = 2 to 4 m/s]

Two-dimensional supported water jets.

THEORETICAL
CALCULATIONS
SENE (1988)

� 
Qair
V1

2*�air*V 1
�w*g

High velocity two-dimensional jets.

LEZZI and
PROSPERETTI
(1991)

10 mm < 52 �m
[air & water]

0 Air entrainment instability caused by
gas viscosity.

BONETTO et al.
(1994) � 

Qair
V1

V1 Gas entrainment induced by
Helmholtz-Taylor instability. Assume
wave celerity equal to jet velocity.

Notes : (a) measured data; (b) calculated; [Impact flow conditions in brackets].

Table 4 - Experimental observations of the very-near flow field : dual-velocity peak flow region

Ref. Run x - x1 Y1 Y2 Vi Comments
m m m m/s

(1) (2) (3) (4) (5) (6) (6)
Present study HF-2 0.02 0.0077 0.0141 0.65

0.03 0.0081 0.0094 0.65
HF-3 0.02 0.0121 0.0148 0.72

0.03 0.0134 0.0166 .072
0.05 0.0139 0.014 0.84

HF-4 0.02 0.0146 0.0193 0.60
0.03 0.0147 0.017 0.66
0.05 0.0156 0.0177 1.03

Note : Y1, Y2 : upper and lower boundaries of the dual-velocity region; Vi : induction velocity (minor velocity) measured
in the very-near flow field.
5 Copyright © 1998 by ASME



Fig. 1 - Sketch of the plunging jet apparatus at the University of Queensland

Fig. 2 - Sketch of the impingement region
6 Copyright © 1998 by ASME



Fig. 3 - Distributions of air content and dimensionless bubble frequency (fab = F*d 1/V1) near the

impingement point (Conductivity probe data) - Run TBPJ4, V 1 = 4 m/s, d 1 = 0.012 m, x1 = 0.09 mm
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Fig. 4 - Distributions of mean water velocity and water velocity fluctuation near the impingement point
(Hot-film probe data) - Run HF4, V 1 = 4 m/s, d 1 = 0.012 mm, x 1 = 0.09 mm

Fig. 5 - Probability distribution functions of water velocity near the impingement point (0.05-m/s
intervals)
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