
MMX-Accelerated Real-Time Hand Tracking System
Nianjun Liu and Brian C. Lovell

 Intelligent Real-Time Imaging and Sensing (IRIS) Group
 School of Computer Science and Electrical Engineering

The University of Queensland ,Brisbane,Australia 4072
Email: {nianjun, lovell}@csee.uq.edu.au

ABSTRACT
We describe a system for tracking real-time hand gestures
captured by a cheap web camera and a standard Intel
Pentium based personal computer with no specialized image
processing hardware. To attain the necessary processing
speed, the system exploits the Multi-Media Instruction set
(MMX) extensions of the Intel Pentium chip family through
software including. the Microsoft DirectX SDK and the
Intel Image Processing and Open Source Computer Vision
(OpenCV) libraries. The system is based on the Camshift
algorithm (from OpenCV) and the compound constant-
acceleration Kalman filter algorithms. Tracking is robust
and efficient. and can tracks hand motion at 30 fps.

Keyword: Real-Time, Camshift algorithm, Kalman filter,
moment, HSV color, Gesture Recognition

1. INTRODUCTION

Every interaction with the physical world involves some
form of physical manipulation, which may be considered as
a gesture. We wish to capture these gestures to form a
touch-free computer interface using techniques from
computer vision. A major impediments to developing real
time computer vision systems such as this has been the
computational power and level of skill required to process
video streams in real-time. This has meant that many
researchers have either analyzed video streams off-line or
used expensive dedicated hardware acceleration
techniques. While valuable, off-line demonstrations tend to
be unconvincing as they are typically performed on just a
few sequences. Hardware accelerated real-time systems
suffer from high cost, lack of portability, and high
maintenance due to the enormously rapid development in
image processing hardware platforms. Recent software and
hardware developments have greatly eased the
development burden of real-time image analysis leading to
the development of portable systems using cheap PC
hardware and software by exploiting the Multi-Media
Extension (MMX) instruction set of the Intel Pentium chip.
Notable software packages to aid the development of
MMX-accelerated computer vision applications have been
released by Intel and Microsoft. Intel has released the

Image Processing (IPL) and Open Computer Vision
(OpenCV) Libraries to the public domain. Microsoft has
released the DirectX Software Development Kit that
provides the necessary drivers for a large number of video
capture devices including universal serial bus, Firewire
connected cameras and streaming video formats.

The final system is a computationally efficient computer
vision system for tracking and recognizing hand gestures,
which exploits efficient C++ coding and MMX-acceleration
to achieve its real-time performance on low cost hardware.
The system is the first step towards replacing the mouse
interface on a standard personal computer with a touch-less
interface to control application software.

2. REAL-TIME SOFTWARE TOOLS
Microsoft DirectX is a set of low-level application
programming interfaces (APIs) for creating games and other
multimedia applications. Microsoft DirectShow is an API
for streaming media on the Microsoft Windows platform.
DirechShow simplifies media playback, format conversion,
and capture tasks. At the same time, it provides access to
the underlying steam control architecture for applications
that require custom solutions.

The Intel Image Processing Library provides a set of low-
level image manipulation functions in standard DLLs and
static library form. The functions are optimized for Intel
Architecture processors, and are particularly effective at
taking advantage of MMX (Multimedia Extensions)
technology, the Streaming SIMD Extensions (SSE) and
SSE-2 [6]. The Open Source Computer Vision Library is
mainly aimed at real-time computer vision

3. IMPLEMENTATION
Figure 1 is the flow chart of the system.. First we convert the
image color model from RGB to HSV, and then convert the image
to a skin-colour probability distribution image using a
predefined lookup table for skin colour hue. Next, we use
eiher the Continuously Adaptive Mean-shift algorithm
(Camshift) algorithm [10] or Kalman filter [11] to determine a
region of interest (ROI) surrounding the hand in each
successive frame. Finally, we use canny edge detector on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the grayscale ROI determined in the previous step to extract
the contour of the hand, and combine this edge map with
the skin -colour probability distribution image to determine a
reliable contour.

3.1 HSV Color Transformation and Histogram
Based Probability Distribution Image.

The hand region is separated from background clutter by
using a discrete probability model of human skin color and
typical image background. Skin segmentation is made
invariant to illumination changes and differing skin tones
by using an illumination normalized color space and a skin
color probability distribution that is generated from a range
of different ethnic groups. The raw image is converted to a
color probability distribution image via a color histogram
model of the color being tracked (skin for hand gesture
tracking). We use the Hue Saturation Value (HSV) color
space and create a model of the desired hue using a color
histogram. The HSV space separates out hue (colour) from
saturation (how concentrated the colour is) and intensity.
The colour model is created by taking a 1-D histograms of
the H(hue) channel in HSV space. For hand tracking via a
skin color model, skin regions from the users are sampled
by prompting them to center their face in an onscreen box.
The hues derived from the skin pixels in the image are
sampled from the H channel and binned into a 1D
histogram. When sampling is complete, the histogram is
saved for future use.

Clearly, sampling flesh hues from multiple people may make
more robust histograms. However, even simple skin
histograms tend to work quite well with a wide variety of
people. A common misconception is that different color
models are needed for different races of people, for example
negroids and caucasians. That is simply not true. All
human skin is much the same hue. Dark-skinned people
simply have more skin colour saturation than light-skinned
people, and these differences are largely removed in the
HSV colour system and therefore ignored in our skin-
tracking colour model.

During processing, the stored skin color histogram is used
to convert incoming video pixels to a corresponding
probability of flesh image. This is done for each video
frame. Using this method, probabilities range in discrete
steps from zero to the maximum probability pixel value (1.0
in our case). We then track using the Camshift algorithm on
this probability of flesh image. When using real cameras
with discrete pixel values, a problem can occur when using
HSV space in low illumination conditions. If intensity is
low (V near 0), hue then become quite noisy due to large
discretization noise in the RGB values. This then leads to
wild swings in the hue values. To overcome this problem,

we simply ignore the hue of pixels that have very low
intensity values. Thus for very dim scenes, the camera must
auto-adjust or be adjusted for increased brightness so that
it can track reliably.

Output image

 Hand within ROI

Initial Image

Canny edge detector to
extract the contour of the
hand in ROI

CamShift Algorithm for
Searching Region of
Hand

Kalman filter Algorithm
for Searching Region
of Hand

HSV colour transform & probability distribution

FIgure 1 Flow chart of hand tracking system

4.2 CamShift algorithm

The Continuously Adaptive Mean-shift algorithm, or
CamShift, algorithm is a generalization of the Mean shift
algorithm which is designed for static distributions.
CamShift operates on a 2D color probability distribution
image produced from histogram back-projection. It is
designed for dynamically changing distributions. These
occur when objects in video sequences are being tracked
and the object mo ves so that the size and location of the
probability distribution changes in time. The Camshift
algorithm adjusts the search window size in the course of
its operation. For each video frame, the color probability
distribution image is tracked and the center and size of the
color object as found via the Camshift algorithm. The
current size and location of the tracked object are reported
and used to set the size and location of the search window
in the next video image. The process is then repeated for
continuous tracking. Instead of a fixed, or externally
adapted window size, Camshift relies on the zeroth moment
information, extracted as part of then internal workings of

the algorithm, to continuously adapt its windows size
within or over each video frame.

CamShift Algorithm Process (from [10]):

Step1 Choose the initial location of the 2D mean shift
search window.

Step 2 Calculate the color probability distribution in the 2D
region centered at the search window location in an ROI
slightly larger than the mean shift window size.

Step 3 Run mean shift algorithm to find the search window
center. Store the zeroth moment (area or size) and center
location. The centroid (mean location) within the search
window is found as follows:

The zeroth moment:

∑∑=
x y

yxIM),(00 (4.2.1)

Choose initial search
window size and location

Set processing region at
search window center
but larger in size than
the search space

Report X,Y,Z,
and Roll

Color histogram
look up in
processing region

Color probability
distribution image

Find center of mass
within search window

Converged

Use(X,Y) to set search
window center,2*area1/2
to set size

HSV
Image

Center search window at
the center of mass and
find area under it

Figure 2 Camshift Algorithm for finding the hand
region

Find the first moment for x and y:

∑∑∑∑ ==
x yx y

yxyIMyxxIM),(;),(0110 (4.2.2)

The centroid then is found by:

00

01

00

10 ;
M
M

y
M
M

x cc == (4.2.3)

Where I(x,y) is the pixel (probability) value in the
position(x,y) in the image, and x and y range over the
search window.

Step 4: For the next video frame, center the search window
at the mean location stored in step 3 and set the window’s
size to a function of the zeroth moment found there.

Step 5 Calculation of 2D Orientation

The 2D orientation of the probability distribution is also
easy to obtain by using the second moments in the course
of Camshift operation, where(x,y) range over the search
window, and I(x,y) is the pixel(probability) value at (x,y).
Second moments are:

)5.2.4(),(

)4.2.4(),(

02

2
20

∑∑

∑∑
=

=

x y

x y

yxIyM

yxIxM

Then the object orientation(major axis) is

()
() ()

2

2

00

022

00

20

00

112

arctan

=
−−−

−

cy
M

M
cx

M

M

cycx
M

M

θ
 (4.2.6)

The first two eigenvalues(major length and width)of the
probability distribution found by Camshift may be
calculated in the closed form as follows. Let

() 2

00

02,
00

112,2

00

20
cy

M

M
ccycx

M

M
bcx

M

M
a −=−=−= . (4.2.7)

Then length l and width w from the distribution centroid are

() ()() () ()()
2

22
;

2

22 cabca
w

cabca
l

−+−+
=

−+++
= (4.2.8)

 Figure 3 color probability distribution image

 Figure 4 Extracting the contour from figure 3

4.3 Kalman Filter Tracking

Kalman filters provide an efficient, recursive technique to
minimize the least-squares error of each prediction where
the system model is governed by a linear, stochastic
difference equation, therefore,a two -dimensional Kalman
filter (stochastic estimator) is used to track the hand region
centroid in order to accelerate hand segmentation and
choose the correct skin region when multiple image regions
are skin coloured. Using a model of constant acceleration
motion the filter provides an estimate for hand location,
which guides the image search for the hand. The Kalman
filter tracks the movement of the hand from frame to frame
to provide an accurate starting point for searching a skin
colour region which is the closest match to the estimate.

Instead of segmenting the entire input image into multiple
skin regions and selecting the region, which is closest to
the filter estimate, the filter estimate is used as the starting
point for the search for a skin colour region. The
measurement vector Zk consists of the location of the

centroid of the hand region. Therefore the filter estimate
−∧
kXkH is the centre of a distance-based search for a skin

coloured pixel. As the hand region may be assumed to have
a certain minimum area, a grid of pixel points tested in order
of increasing distance from the filter estimate should find
the best matching region. The spacing of the grid is
determined by the minimum allowable hand area. Upon
finding a skin colored pixel, the contour following routine is
started to trace the connected skin region around the pixel.
If the area of region is below the hand area threshold then

the region is discarded and the search is continued with
that region excluded from the search grid.

The Kalman filter estimates a process by using a form of
feedback control: the filter estimates the process state at
some time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter
fall into two groups: time update equations and
measurement update equations. The time update equations
can be thought of as predictor equations, which are
responsible for projecting forward(in time) the current state

kX
∧ and error covariance Pk estimates to obtain the a priori

estimates
−∧
kX for the next time step.

The time update equations are:

()
)2.3.4(

1.3.4

1 k
T
kkkk

kkkk

QAPAP

BuxAx

+=

+=
−
+

∧−∧

The measurement update equations can be thought of as
corrector equations, which are responsible for feedback i.e.
for incorporating a new measurement Zk into a priori

estimate
−∧
kX to obtain an improved posteriori estimate kX

∧ .
Measurement update equations are:

()

)5.3.4()(

)4.4.4(

)3.3.4(
1

−

−∧−∧∧

−−−

−=

−+=

+=

kkkk

kkkkkk

k
T
kkk

T
kkk

PHKIP

xHzKxx

RHPHHPK

Implementation of the filter requires that the error
covariance matrices Qk for process noise and Rk for
measurement noise be fixed a priori. Process noise
represents the accuracy of the model and is usually very
hard to determine analytically. In fact it is usually
determined empirically. Measurement noise can usually be
determined directly from off-line calibration tests. Filter
initialization consists of an estimate of Xkand Pk. A choice
for the state vector is usually obvious from the nature of
the system. Pk is hard to choose, but under most
conditions its value will soon stabilize through the
operation of the filter. Note that if Qk and Rk are constant

then Pk and Kk (Kalman gain) will stabilize and then remain
constant. These steady-state matrices can be computed by
running the filter and finding the settled values, or by
solving the updated equations for steady-state conditions.

The Kalman filter used here is based on a model of two-
dimensional constant acceleration motion. The filter may be

described in terms of its constituent vectors and matrices.
The state space includes the position(s), velocity and
acceleration of the hand region centroid in the two
dimensions. Since the dimensions are treated
independently but identically, the filter will be described
for the x axis motion only using s as the coordinate to avoid

notation conflict. A state vector 3Rx ∈ is given by:

=

..

.

s

s

s

x (4.3.6)

As only the centroid position is measured, a measurement
vector Rz ∈ has the simple form.

[]sz = (4.3.7)

Hence the measurement matrix H which relates the
measurement to the actual state is trivially given by the
3x1 row vector below.

[]001=H (4.3.8)

The constant acceleration model is incorporated in matrix
A, the state update matrix

()

∆

∆∆

=
100

10

2/
2

1

t

tt

A (4.3.9)

For a constant sample rate(frame rate) matrix A will clearly
remain constant, but under multi-tasking conditions when
the system is running with other applications, the sample
rate varies according to processor load. Thus t∆ and hence
a must adjusted at each step accordingly.

Values for the noise covariance matrices were determined
empirically and fine tuned for best performance. The values
for matrix Q suggest that the model derived position should
be considered quite noisy compared to velocity and
acceleration. As the measurement vector also provides
position information, this has the effect of favouring the
measurement in the filter correction phase. Velocity and
acceleration are generated entirely by the motion model
through Matrix A

=
400
020
0020

Q (4.3.10)

As the noise covariance matrices are constant in the filter
formulation, the Kalman gain K and the estimate error
covariance matrix P will settle to steady state values.

4.4 Canny Edge Detector

It is a very good method for detecting edges suggested by
J.Canny. It takes grayscale image on input and returns bi-
level image where non-zero pixels mark dectected
edges.The following describes the 4 steps.

Step 1 Image smoothing:The image data is smoothed by a
Gaussian function of width specified by the parameter.

Step 2 Differentiatio n The smoothed image, retrieved at
step 1, is differentiated with respect to the directions x and
y.From the computed gradient values x and y, the
magnitude and the angle of the gradient can be calculated
using the hypotenuse and arctangent functions. We can
join the smoothing and differentiation in sober operator.

Step 3 Non-Maximum Suppression. After the gradient has
been calculated at each point of the image, the edges can
be located at the points of local maximum gradient
magnitude. It is done via suppression of non-maximums,
that is points, whose gradient magnitudes are not local
maximums. However, in this cases the non-maximums
perpendicular to the edge direction, rather than those in the
edge direction, have to be suppressed, since the edge
strength is expected to continue along an extended
contour. The algorithm starts off by reducing the angle of
gradient to one of the four sectors. The algorithm passes
the 3x3 neighborhood across the magnitude array. At each
point the center element of the neighborhood is compared
with its two neighbors along line of the gradient given by
the sector value. If the central value is non-maximum, that
is, not greater than the neighbors, it is suppressed.

Step 4. Edge Thresholding The Canny operator uses the
so-called “hysteresis” thresholding. Most thresholders use
a single threshold limit,which means that if the edge values
fluctuate above and below this value,the line appears
broken.This phenomenon is commonly referred to as
“streaking”.Hysteresis counters streaking by setting an
upper and lower edge value limit.Considering a line
segment,if a value lies above the upper threshold it is
immediatedly rejected.Points which lie between the two
limits are accepted if they are connected to pixels which
exhibit strong response.The likelihood of streaking is
reduced drastically since the line segment points must
fluctuate above the upper limit and below the lower limit for
streaking to occur. The reference ratio of high to low limit
is in the range of two or three to one based on predicted
signal-to-noise ratios.

 Figure 5 Image only applying Canny edge detector

4.5 Final Output Image Video

Through the system which diagram is figure 1, the output
video is shown in Figure 6. It is combination of all of above
approaches, which is better than applying each of them
respectively. The method is high speed, computationally
efficiency, with tracking rate is 30 fps on a standard PC. An
example of the video output can be found on
www.csee.uq.edu.au/~iris.

 Figure 6 Output image

4. CONCLUSION

The system has been implemented in the Visual C++
environment, running under the Windows 2000 Operating
System. It achieves robust real-time performance to track a
skin region under very few constraints. Throughout the
gesture recognition system, computational efficiency is
provided by a compact contour representation and fast
contour processing algorithms.

5. REFERENCES

[1] G.A.Agoston, Color Theory and Its Application in Art
and Design, Springer-Verlag , 1987.

[2] R.A. Bolt, Put -That-Three: Voice and Gesture at the
Graphics Interface”, Proc SIGGRAPH80,ACM Press,1980.

[3] W.T. Freeman, Hand Gesture Machine Control System”,
Proc SIGGRAPH80,1980.

[4] V. Pavlovic,”Visual Interpretation of Hand Gestures for
Human-Computer Interaction “, Proc. Human Interaction
with Complex System,Sept,1995

[5] J. Rehg and T. Kanade, DigitEyes: Vision-Based Human
Hand Tracking,Technical Report.CMU-CS93220,CMU,
December.1993.

[6] T.Starner and A.Pentland, Real-time American Sign Language
Recognition”, IEEE Trans, On Pattern Analysis and Machine
Intelligence,Vol 20.pp 1371-1375,Dec.1998.

[7] B.-C. Lin and J. Shen. Fast computation of moment
invariants. Pattern Recognition, 24(8):807-813,1991.

[8] W.Philips. A new fast algorithm for moment calculation.
Pattern Recognition,26(11):1619-1621,1993.

[9] Image Processing Library Reference Manual.
developer.intel.com/software/products/perflib/ipl/index.htm.

[10] Intel Open Source Computer Vision Library Reference
Manual. www.intel.com/research/mrl/research/opencv

[11] D. Heckenberg and B. C. Lovell, "MIME: A Gesture-Driven
Computer Interface", Proceedings of Visual Communications
and Image Processing, SPIE, V4067, pp 261-268, Perth,
2000.

