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ABSTRACT: This paper describes a procedure
for the time-freguency analysis of signals,
based on Time-Frequency Distributions (TFDs)
and Instantaneous Frequeney (IF) estimation.
First, we use a suitable TFD to deteraine the
number of signal components. Then, if the
signal is monocomponent, the IF law can be
estimated directly. For multicomponent sig-
nals, two-dimensional windowing in the time-
frequency (t-f) domain (a form of time-vary-
ing filtering) is used to isolate each compo-
nent; IF estimation is then applied to the in-
dividual components. The periodic first
moment of a TFD is used to estimate the IF. A
suitable definition of the periodic first
moment is proposed, and the relationship of
these estimators to others based on the cen-
tral finite difference of the phase of the
analytic signal is given. A TFD such as the
Wigner-~Ville Distribution may be used to rep-
resent both IF and amplitude variations in
the individual signal components at each
stage of the analysis.

0. INTRODUCTION

The representation of time-varying signals is a
major problem in many signal processing applica-
tions. The Short time Fourier Transform (STFT) is
often used in such cases. Model based approaches
such as time-varying ARMA models have also been
used. Time-frequency Distributions (TFDs) have
been introduced in an attempt to provide a gen-
eral solution to this problem and can be consi-
dered as an extension to classical Fourier ana-
lysis. The latter is primarily designed to deal
with stationary or quasi-stationary signals,
while TFDs deal with non-stationary ones.
Although the STFT is a general member of Cohen's
class of Time-~Frequency listributions (TFDs), @,
partial integration over a sufficiently large
region of the time-frequency (t-f) plane will
not give the signal local energy contribution. We
say that TFDs such as the Wigner-Ville, Born-
Jordan-Cohen and Choi-Williams which possess
this property belong to the sub-class, ¢'.

A concept central to the selection of TFDs for
practical analysis is that of instantaneous fre-
quency (IF). The IF is a parameter which corres-
ponds to the frequency of a sine wave which
locally matches the signal under analysis. Phy-
sically, it makes sense only for monocomponent
signals, i.e. where there is only one frequency
or a narrow range of frequencies varying as a
function of time ([1]. For multicomponent sig-
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nals, the notion of a single valued IF becomes
meaningless - (see [2] for a good discussion on
multicomponent signals).

It is clear from the above that the first step
of any general time-frequency analysis procedure
is to determine whether the signal under ana-
lysis is monocomponent or multicomponent, and
whether the signal is stationary or non-station-
ary. The analysis tool (chosen from Cohen's
class of TFDs (2]) must therefore possess the
following three properties:

P,: The tool discriminates between stationary
and non-stationary signals.

P,: The tool discriminates between monocom-
ponent and multicomponent signals.

P;: The tool allows a break-up of the multi-
component signal into its components (also time-
varying).

Many TFDs possess P, and P,. However, interfer-
ence terms prohibit most TFDs from possessing
P,. Recent work (3] has shown that there are
many ways of generating TFDs with reduced magni-
tude artifacts which can therefore be used for
this purpose. However, there is a trade-off
between TFD main lobe width and the magnitude of
the artifacts as described in section 1.

The second step of the analysis procedure is to
break down the multicomponent signal into its
sub-components. The method used is based on a

.masking operation in the time-frequency plane.

If required, the equivalent time domain signal
can be obtained by TFD inversion techniques (1]
[el.

The third step is to analyze the components.
Here, we are back to the problem of analyzing a
non-stationary monocomponent signal. Which ana-
lysis method should we use? What is desired
from the analysis method is

D;) to track as accurately as possible the
spectral variation of the component as given by
the IF f; (t) and

D,) to indicate at each time the measure of
the local spectral spread or instantaneous
bandwidth (IB) B;(t) around the IF.

The ideal tool would be a TFD which has £it) as
its first moment and Bj_(t) as its second moment,
and can display these two parameters in a way
which is easily readable. However, the intuitive
concept of IB needs to be defined clearly in
terms of TFDs.

It is known that any particular TFD can be pro-
duced by appropriately smoothing another TFD and
that many TFDs give the IF by their first moment.
However, with sampled signals we must use the
periodic first moment because of the periodic
nature of the frequency representation. The
relationship between TFDs and IF estimation is
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shown in section 2.

The fourth step is the reconstruction and mod-

elling part of the analysis, where a mathemati-
cal model can be given which accurately repre-
sents this signal. )
An example of a multicomponent non-stationary
signal is the sum of a chirp signal, a narrow-
band time-varying signal and noise as shown in
fig.1. An appropriate model is:

N
s(t) = & s (t) +n(t) (1)
k=1

where n(t) is a random noise process and the
sk(t) are monocomponent time-varying signals
described by amplitude envelope, 3 (t), and IF,

f‘;(t), such that:

j2n f’;(t)dr

-0

S (t) = a(t) e (2)

Then the analysis problem is to find 3, and fI;
for k=1,N.

TIME

FREQUENCY

Figure 1. Time-Fregquency Plot of an
Example Signal

1. SELECTION OF A DISCRETE TFD.

This section examines discrete implementation
of Cohen's Class of TFDs. The definition is given
in the time-lag domain because of ease of in-
terpretation and implementation. The concept of
Bowtie Functions (BFs) is introduced to generate
TFDs with the desired properties and to predict
their behaviour.

1.1 Cohen's Class of TFDs
Cohen's Class of TFDs [1] is described by

py(tf) =

]«» +00 ¢ 40
where z(t) is the analytic signal associated
with the real signal x(t) [4], and g(v,T) is

U)o, ot/ 202 fut/ 2 2T A

(<)
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the arbitrary ambiguity kernel function which
characterizes each individual member of the
class.

By taking the Fourier transform (FT) of
g(v,T), we obtain:

B(t,t) =9
vt

(g(v,T)] (4)

where ¥ represents the FT. The expression of
pz(t,f) reduces to:

Ay (€, £) =F {B(t,‘c) * kz(t,‘t)] (5)
t-f (t)
where Ky (t,T) = z(t+T/2)z"(t-v/2). (8)

B(t,t) will be referred to as the kernel func-
tion, where t and t are the time and lag vari-
ables. The time-lag domain is assumed unless
otherwise noted.

In (3) and (5), the functions g(v,T) and
B(t,t) characterize the observation mode
chosen by the analyst; they determine how the
signal energy is distributed in the time-fre-
quency domain. The g(v,t) are analogous to the
windows used in spectral analysis. Correct
choice of B in (5) will yield all TFDs that
have been proposed.

The discrete time definition equivalent to
the time-lag definition leads to the easiest
implementation of a TFD and is expressed as

py(n,k) = F
m-k
Py (n,k) =
. M M

5 X B(p-n.m) z(prm)z'(p-m) e
me-M p=-M

[B(n.m) zn)kz(n.m)] (1)

-jermk/N

(8)
where the discrete real signal, x(nat), is
formed by sampling x(t) at frequency fg =
1/At such that t = n.At and f = k.Af= k.£ /N,
N = signal length, and M = (N-1)/2; and where
B(n,m) represents the sampled B(t,t). For
simplicity, we assume At=fg=1.

Eq. (7) indicates that the implementation
of a TFD requires three steps:

i) formation of the bilinear product k,(n,m) =
z(n+m)z' (n-m).

ii) discrete convolution in the n (time) direc-
tion

iii) discrete FT with respect to m.

1.2 Desirable Properties of TFDs

To be useful as a tool for time-freguency
signal analysis {1], a TFD must have the fol-
lowing properties.

P,: The TFD must be real-yalued; this imposes:
B(n,m) =B (n,-m) (9)

P,: The marginals of the distribution should
“e equal to the spectrum and instantanevas
power:



N-1
Y o (nk) = j2(k) |2 (10)
n=0
N-1
¥ a,(nk) = |z(n)|: (11)
®=0
This is obtained if
N-1
B(n,0) =&(n) and & B(n.m) =1 (12)
n=0

where §(n) is the Kronecker delta.

P3: The representation should be zero outside
the time and frequency regions where the
signal is present:

fy(n,k) = 0 when (13)
z(n) =0 forn<n, and n > n,;
Z(k) = 0 for k < k, and k > k,.
This is obtained if
B(n,m) =0 for |nj > |m]j. (14)

P,: The normalized periodic first moment in
frequency (section 3) should yield the instan-
taneous frequency (Central Finite Difference
definition). This imposes the conditions:

B(n,0) = §(n) and B(n,1) = 8§(n) (15)

TFDs which possess properties P; through P,
oelong to the class, ®'.

1.3 Bowtie Functions

Accounting for all the constraints on the
‘shape and magnitude of the kernel, the shaded
section of Figure 2 indicates the region in
the time-lag plane where the kernel function
must be zero. Due to the shape of this region,
the B(n,m) functions describing the TFDs which
are members of ¢' will be called Bowtie Func-
tions (BFs).

%
1/ /////T

Figure 2 - Bowtie Functions - Kernel shape
of TFDs satisfying P, through P,

Table 1 lists B for *%2 most common TFDs. Each
B is plotted in Figures 3A-3F.

The BF concept is useful because many guali-
tative characteristics of TFD behaviour can
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be inferred directly:

A) Energy Concentration: For the distribu-
tion to exhibit a high energy concentration
about the IF law of a signal, the kernel func-
tion must be concentrated about the n=0 axis.
The kernel function of the discrete WVD is
only non-zero along this axis, so it will
exhibit this property. The Choi-Williams Dis-
tribution will also give high concentration,
for large values of the o parameter.

B) Artifacts: The shape of the artifacts of
TFDs is given by the cross-section of B(n,m)
in the n direction (with a constant value of
m). This occurs only when the ambiguity
kernel function is a product kernel; that is
when g(1,m) is a function of the product of 1
and m.

The discrete WVD, Born-Jordan-Cohen and
Choi-Williams Distributions artifact shapes
will all be given by the cross-section of the
kernel function. The artifacts of the STFT,
for which the kernel function g(v,t) shown in
(3) is not a product kernel, must be calcu-
lated differently [2]. The STFT artifacts
are superimposed on the true spectral compo-
nents and cause them to oscillate or jitter
slightly; they are much smaller in magnitude
than the true components.

A) and B) mean that there is a trade-off

between energy concentration (mainlobe
width) and artifact magnitude (see £fig.3).
Time-Freguency B(n,m)
Discrete WD 8n) , m e [~(M-1)/2,(M-1)/2]
0 otherwise.
Smcothed WD using a i . e [~(P-1)/2,(P-1)/2]
Rectangula wirdow 0 otherwise,
of oid length P
Rihaczek-Margena = [&(rrm)+S5(n—m) ]
STFT usirg a -:; . imn| <= (B-1)/2
Rectangular Window 0 otherwise.
of odd length P.
Borm~Jardan-Cohen 1 . Im| <= |nj
imj+1
0 ot
vo/n
Choi- Williams e-on?/4m?
2m
(with perameter |

Table 1 - Time-lag kernels of some TFDs.
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Figure 3 - B(n,m) for various TFDs
A= windowed discrete WVD; B= smoothed windowed
discrete WVD; C=Rihaczek; D=STFT:; E=Born-Jordan-
Cohen; F= Choi-Williams

1.4 The choice of a TFD for t-f signal analysis

The shape of B allows the properties of a TFD to
be predicted. The properties P,~P, are verified
if B is a Bowtie Function. Other properties,
such as energy concentration and artifact shape
(for product ambiguity kernel functions) may
also be found from B. .

The best TFD for a particular application must
be selected according to the signal under ana-
lysis. The only discrete TFDs which satisfy all
of Py, P;, P, and P, are the windowed discrete WVD
and the Choi-Williams Distribution (for large o).
Although the Born-Jordan-Cohen Distribution
gives the IF law exactly in the continuous case,
the discrete Born-Jordan-Cohen Distribution does
not satisfy P, exactly. The periodic first moment
in frequency of the Born-Jordan-Cohen Distribu~
tion will give a smoothed (3-point MA filtered)
version of the true IF law. In the case of a mon-
ocomponent signal, the WVD gives the greatest
energy concentration about the frequency law.
However, the Choi-Williams Distribution or Born-
Jordan-Cohen Distribution is probably the better
choice when analyzing multicomponent signals due
to reduced artifacts.
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All TFDs suffer from artifact terms. If the
signals under analysis are multicomponent, then
the time-frequency display becomes confused
with artifacts appearing where no component
exists or interfering with true spectral compo-
nents. Another method of reducing artifacts is
to use windowed versions of TFDs. The analysis
window limits the extent to which a TFD is
affected by far future and distant past occu-
rences in the signal, and thus reduces or elimi-
nates the artifacts which occur between compo—
nents at different times.

Using this knowledge of the effect of the

kernel shape on the behaviour of the TFD, it may
be possible to design a kernel that will vield a
TFD similar to the STFT, but with improved reso-
lution.
(After completing this manuscript, we became
aware of a similar approach by M. Amin for
designing two-dimensional window functions used
for smoothing the Autocorrelation function of
random signals to produce a smoothed Wigner-
Ville spectrum [8].)

2. INSTANTANEOUS FREQUENCY ESTIMATION

Intuitively and from (2), it is clear that the
IF of a signal is only a function of its phase,
and that its IB (spread about IF) should be a
function of its envelope a(t). Motivated by the
increasing use of time-frequency signal analysis
as a tool for analyzing the time-varying spec-
tral characteristics of signals, and in particu-
lar their IF, the performance of the IF estimate
based on the direct definition was compared with
the first moment of the discrete WVD as a func-
tion of signal to noise ratio (SNR) and the sta-
tistical behaviour of the WVD based definition
which was studied in [7].

Many authors thought that by using the first
moment of the WVD to estimate the IF, noise con-
tributions would be smoothed out and this would
result in improved IF estimation over the direct
use of the definition. Analytical results and
simulations have shown that in fact both methods
are identical if we use the periodic first moment
[5). If we use the linear first moment, the dis-
crete WVD based estimate exhibits more variance.
However, the influence of noise on the WVD IF
estimate will decrease if we smooth the WVD
along the t-axis before taking the first moment,
thus effectively producing a different TFD, or
alternatively perform the integration over a
selectively reduced range of frequencies (this
uses the full potential of time-frequency signal
analysis). Next we discuss the performance of IF
estimators based on TFDs.

2.1. The Analytic Signal
The continucus time analytic signal, z(t),
associated with the continuous time real signal,
x(t), is given by

z(t) = @x(t)]= x(t) + JIx(t)] (16)
where ¥#[ ] is the continucus time Hilbert trans-
form defined by



+co

H(x(t)) -%‘ p.v. J x——(t—E)de . (17)

o E

where p.v. denotes the Cauchy principle value.

The discrete time analytic signal, z(n), asso-
ciated with the real discrete time signal, x(n),
is given by

z(n) = A[x(n)]l= x(n) + jH{x(n)] (18)
where H[ ] is the discrete time Hilbert Trans-
form defined by 7

+o 2x )
n-
A = £ 0 (moda) . (9)
-0

This definition of H[ ] describes the ideal case,
but the corresponding filter is not realizable.
However, realizable approximations are easily
obtainable.

2.2. IF and the CFD Estimator

Let z(t) = @[x(t)] where x(t) is a continuous
time real signal. Then the continuous time in-
stantaneous frequency of x(t) is defined by the
derivative of the phase of z(t).

fj_(t) =
1
lim —— arg[z(t+ét)] - ar t-6t .
Tmar (Carglz(test)] glz(t-6t)] }) oy
st -=> 0 (20)
where the notation (( ))a5 represents a modulo

2n operation. The limiting and modulo operations
are required because arg[z(t)] is only defined on
(~m, +m).

The concept of instantaneous frequency is
extended to discrete time signals by using the
central finite difference (CFD) of the phase of a
discrete time analytic signal.

Let z(n) = A[x(n)] where x(n) is a discrete
sequence formed by sampling the continucus time
signal, x(t), at frequency f_. Then the discrete
instantaneous frequency of x(n) is defined by

£,
£i(n) = ﬁ (( arglz(n+1)] - arglz(n-1)] ))py (21)

If we have a noisy signal, %x(n) = x(n) + e(n),
where e€(n) is a random noise sequence corrupting
X(n), we may estimate the IF of x(n) by using the
CFD estimator defined by

£
£(n) = fr (( arg[Z(n+1)] - arg(Z(n-1)] )) oy (22)

where Z(n) = A(k(n)].

2.3 IF estimation using the first moment of a TFD
Let p(n,k) be a discrete TFD from Cohen's class

which may be represented by an N by M matrix.

Then the periodic first moment of p(n,k) with
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respect to frequency is defined by
M-1
in) = 2 ((arg) & e32m/M p(ni)l )y (24)
2w k=0

In the special case where p(n,k) is the dis-
crete WVD, the normalized periodic first moment
equals the CFD IF estimator,

. fg
fi(n) = ﬁix(n) (25)

Some authors use a conventional linear defini-
tion of the first moment to form an estimator of
IF. It can be shown that this estimator is biased
and exhibits higher variance than the estimator
based on the periodic first moment and in gen-
eral, the equality in (25) no longer holds [5].

If p(n,k) is a general member of Cohen's class,
the normalized periodic first moment of (25) may
yvield an IF estimator with excessive bias (5].

2.4. Relationship between Smoothed CFD and TFD
IF Estimators

In this section we describe IF estimators which
are calculated by applying a time-averaging or
smoothing window to the CFD estimator. Since the
CFD estimator is periodic in value (it is modulo
£f./2) and a linear function of time, we cannot
simply calculate the smoothed estimator by
linear convolution with a smoothing function.
Instead, we use modulo convolution defined as
follows:

Let the IF sequence, f(n), be of the form
f(n) = (( £(n) ))y where f and A ¢ ®; if we con-
volve f(n) with window h(n) of odd length
P=2Q+ 1, h € ® then we must use the modulo A
convolution operation defined by
f(n) (( * ) bin) =
Q
ﬁ(( arg|- £ h(p)eI2mf(m-pI/A[ ), . (26)

P=-Q

This definition ensures that values of f(n) are

averaged sensibly to reflect their periodic
nature and is effectively the argument of a
phasqr sum.
Let fi be the CFD IF estimator which is modulo
f5/2 and let h be a smoothing function of odd
length P. Then the smoothed CFD (SCFD) IF esti-
mator is defined by

.
££(n) = £m) (( * Ny Bl - (27)

We determine the functions, h(n), which make -ff
correspond to an IF estimate calculated as the
first moment of a TFD from Cohen's class as fol-

lows. The normalized periodic first moment of a
TFD as given in (24) becomes:

(217) 333.4789 TTUrUICT MIormadnon Can dpe onldinea Irom pr. vv. nennewn Jenkins.



.ij (n) =

£ (N-1)/2
S ((arg B B(p,1)z(n-p+1)z*(n-p-1) oy
am p=-(N-1)/2

(28)
When we substitute

'41\’%- n-p)/f
|z(n—p+1)z‘m—p—1)leJ iR /s

for z(n-p+1)z*(n-p-1) in (28) we find that, apart
from the |z(n-p+1)z*(n-p-1)| multiplier term,
(28) is of the form of a modulo convolution. If
we assume high SNR and constant signal amplitude
within the window defined by B(n,1), then this
multiplier term is constant and we may write

£(n) = £(n) (( * B(n,1) . 29
1() 3(n) (( ))fs/2 ( ) (29)
Thus the IF estimate calculated as the first
moment of any TFD is almost exactly equivalent
to a smoothed CFD IF estimator with window func-
tion, h, equal to B(n,m) evaluated at m = 1. In
fact, the smoothed CFD estimator will always
have a dispersion parameter which is slightly
less than the corresponding estimator calculated
as the first moment of a TFD due to variations in
|z(n-p+1)z*(n-p~1)| from noise.

sSince h(n) = §(n) for the discrete WVD, the IF
estimator derived from the periodic first moment
of the WVD is identical to the unsmoothed CFD
estimator as seen previously. The analysis of

the distribution of E: is given in {5].

DISPLAY TFD
OF SIGNAL
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SEPARATE COMPONENTS
BY 2—D WINDOWING IN
TF PLANE

DETERMINE IF OF
COMPONENTS

MODEL OR
SYNTHESIZE
COMPONENTS

DISPLAY WITH |
D

Figure 4. Diagram of the TFD Analysis System

3. CONCLUSION

The previous sections have described the tech-
niques used for separation of the signal into
components modelled by s;(t) as in (2), where the
phase is estimated via the instantaneous fre-
quency (IF) and the envelope via the instantane-
ous bandwidth (IB). Analytic expressions could
then be given, using polynomial fitting tech-
niques for the phase and gaussian expansions for
the envelope. Results will appear elsewhere.

A comprehensive procedure for time-frequency
signal analysis based on TFDs should incorporate
TFD properties selection, component separation,
IF and IB estimation, TFD inversion (see fig.4)
and must be sufficiently general to be applied in
all situations where analysts are dealing with
time-varying signals.

From the results presented in this paper, it is
concluded that there is perhaps no best univer-
sal TFD: the best we can do, for a particular
class of signals, is to select a TFD which will
be optimal for that class. The most useful TFDs
are the STFT and the WVD because the STFT has
negligible artifacts and the WVD gives the least
blurred time-frequency representation in the
case of a monocomponent signal.
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