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Abstract

The huge popularity of Hidden Markov models in pattern
recognition is due to the ability to ”learn” model param-
eters from an observation sequence through Baum-Welch
and other re-estimation procedures. In the case of HMM
parameter estimation from anensembleof observation se-
quences, rather than a single sequence, we require tech-
niques for finding the parameters which maximize the likeli-
hood of the estimated model given the entire set of observa-
tion sequences. The importance of this study is that HMMs
with parameters estimated from multiple observations are
shown to be many orders of magnitude more probable than
HMM models learned from any single observation sequence
— thus the effectiveness of HMM “learning” is greatly en-
hanced. In this paper, we present techniques that usually
find models significantly more likely than Rabiner’s well-
known method on both seen and unseen sequences.

1. Introduction

The successful application of Hidden Markov Models
(HMMs) to diverse applications such as speech recognition
[1, 2, 3, 4], face recognition [7], handwriting recognition
[6], and gesture recognition [5] demonstrates the immense
utility of the HMM as a workhorse for spatio-temporal pat-
tern recognition. The usefulness of the HMM stems from
the ability to learn HMM parameters from observation se-
quences through the Baum-Welch reestimation procedure,
and the consequent ability to provide a form of context han-
dling in pattern recognition tasks.

WhenN observation sequences are known to arise from
the same model, then the ”Third Problem” outlined in Ra-
biner’s work (see [1] Chapter 6) is to find the model param-
eters so that the model has a high likelihood of generating
all N observation sequences. For example, in the case of
speech recognition, we may haveN examples of a speaker
saying a certain word and we need to find an HMM that has
high likelihood of generating allN of these speech signals.

Rabiner describes a method where allN observation se-

quences are used at each step of the Baum-Welch reesti-
mation procedure to produce a single HMM parameter esti-
mate. Here we propose a class of new estimation methods
where the Baum-Welch reestimation procedure is run sepa-
rately on theN observations. In this paper, we investigate
a number of alternative techniques to combine theN re-
sulting models to produce a final model to matches theN
observation sequences.

2 Same-Structure HMM Estimation

A hidden Markov model ([1] chapter 6) consisting of a
set ofn nodes, each of which is associated with a set of
m possible observations (the structure of the model). The
parameters of the model include an initial stateπ which de-
scribes the distribution over the initial node set, a transition
matrixaij for the transition probability from nodei to node
j conditional on nodei, and an observation matrixbi(Om)
for the probability of observing symbolm given that the
system is in statei. Rabiner usesλ = (a, b, π) to denote the
model parameters.

For each modelMk inferred from a sequenceSk (gen-
erated from a single source modelMS), there is an associ-
ated probabilityP̂k of that model producing the sequence
Sk. Similarly, we may definêP all

k as the probability of that
modelk generating all sequencesSk, for all k = 1, . . . , n.
We can also defineGk andGall for the probabilities of gen-
erating sequences given the original generating model as in-
dicated below.

Pk = P (kthtraining seq.| model for seq.k)
P all

k = P (all training seq.| model for seq.k)
Gk = P (kthobservation seq.| generating model)

Gall = P (all observation seq.|generating model)

Two algorithms of major importance are the Forward Al-
gorithm and Backward Algorithm [1], which fall in the cat-
egory of HMM algorithms for evaluating probabilities.

The Forward Algorithm calculates the probabilityαt

of a sequence of observationsO1, . . . , Ot. The Back-
ward Algorithm calculates the probabilityβt of observa-



tions from a sequence of lengthn from timest until n, i.e.
Ot + 1, . . . , On.

The Baum-Welch algorithm is an ”iterative update” algo-
rithm which constructs a hidden Markov model of specified
structure which best fits a given observation sequence.

An important issue in this paper is the thresholds used
by the Baum-Welch algorithms - namely the convergence
level for Pall (the probability of generating all training se-
quences) on consecutive re-estimations. Another important
issue is themaxloops parameter which is the maximum
number of permitted re-estimation calculations. These were
adjusted to the point where the results of the algorithm were
no longer affected significantly by the threshold levels.

Code reliability was established by running a series of
tests on the final algorithm, including parallel tracing, and
executing the Baum-Welch algorithm on a single obser-
vation sequence and comparing the results with Rabiner’s
multiple-sequence merge, supplied with an identical obser-
vation sequence, and also with two copies of that same se-
quence.

3. Methodology

A parameter estimation method for a set of hidden
Markov models produces a new hidden Markov model with
that same structure, but with different transitionaij and ob-
servationbi(Om) probabilities. Method evaluation is done
using elementary Monte Carlo techniques [8]. The method-
ology of this paper is to calculate the relative strengths of
each estimated model using the product of the probabilities
of generating a set of unseen data from the unknown hidden
Markov model.

A set of 50 initial generating models was used to gen-
erate 20 observation sequences, each of length 5 (short se-
quences are better suited to Left-Right models). These 20
sequences were then used to train a HMM using the range
of vector learning techniques being compared in this paper.
The inferred HMM was then evaluated using a set of 20
unseen observation sequences generated by the same initial
generating model.

A single model was randomly generated, containing 3
states and 4 possible observation values 1. The model struc-
ture was upper triangular in the transition matrixaij (re-
quired by the Left-Right property). Finally, observation
probabilities were assigned to each state.

Short sequence merging and and long sequence merg-
ing were tested in the Left-Right case. In the Left-Right
case, Baum-Welch re-estimation was used with a randomly
selected Left-Right model. In the cyclic case, a general ran-
dom model was used and longer sequences were used.

This paper only includes the results of the short-
sequence Left-Right model as this is their most useful form
in most applications.

a) Cyclic Bias b) Left-Right

Figure 1. Cyclic and Left-Right structures.
Bold arrows indicate higher probabilities on
average. No arrow connecting a vertex pair
indicates a forbidden (zero-probability) tran-
sition.

The final two estimation methods in the list below are
iterative update methods in which the information in the
training sequence set is learned using multiple-sequence
Baum-Welch. The method as a whole, using a vector of ob-
servation sequences to iteratively update a single HMM is
described by Rabiner [1]. The re-estimation formula for the
two iterative update methods as follows (reproduced from
[1]):
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All other methods use single-sequence Baum-Welch,
combine the resulting inferred models directly and then
take a simple weighted average of the model parameters as
shown below:
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∑
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where Wk is the weighting factor for each sequence,
Na, Nb, Nπ are normalisation factors and where λ(k) =
(a(k), b(k), π(k)).

The estimation techniques used were as follows:

• Direct parameter averaging across models, Wk = 1

• Direct parameter averaging across the best 50% in
terms of their Pall,k score, with Wk = 1. The 50 mod-
els under this criteria were ranked, and the top 50%
were selected (50% Windsorised Level)



• Windsorised method, maximized over the full range of
percentiles. Maximization was done in terms of the
training observation sequences since this stage of se-
lecting the maximum was part of the method itself.

• Direct parameter averaging over the top 50% in terms
of Pall,k, weighted by Wk = Pall,k

• Windsorised method, maximized over the percentile
thresholds and weighted by Wk = Pall,k Once again
maximization was done in terms of the training (seen)
observation sequences

• Parameter averaging of all models, Wk = 1/Pk

• Parameter averaging of all models, Wk = P all
k

• Parameter averaging of all models, Wk = Pk

• Parameter averaging of all models, Wk = 1/P all
k

• Rabiner’s Vector Learning method [1] which incorpo-
rates unit weighting and re-estimation using multiple
observation sequences at every stage of a single re-
estimation operation

• Rabiner’s Vector Learning method [1] which incorpo-
rates 1/Pk unit weighting and re-estimation using mul-
tiple observation sequences at every stage of a single
re-estimation sequence.

The entire process was repeated for 50 initial generating
models, and the average fit probability for each of the above
methods (over all 50 initial generating models and each
best-fit sequence models) was taken. The correctness of the
implementation was verified using a range of tests includ-
ing careful debugging and variable tracing in addition to the
following:

• Comparison of Baum-Welch and Multiple-Sequence
Baum-Welch on a single observation sequence

• Comparing Multiple-Sequence Baum-Welch on a sin-
gle observation sequence, with Multiple-Sequence
Baum-Welch with two or more copies of that same ob-
servation sequence

4 Comparison of Estimation Techniques

The performance of the final estimated model for each
method was evaluated on unseen data, thereby providing a
reliable test of the approximation to the initial generating
model. The log probability mean results shown in figure 2
are generated from 20 unseen sequences and are averaged
over all 50 final estimated models, one for each initial gen-
erating model.
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Comparison of unseen Pall mean values for all estimation methods

Figure 2. Unseen Pall mean values

Figure 3 shows a closer comparison of the best merge
methods for short sequences in Left-Right models. Density
estimation was performed using a Gaussian kernel [9].

The two Windsor-percentile maximization methods were
evaluated in terms of the merged model’s performance on
unseen data, even though the selection of the percentile
threshold in these cases was done in terms of seen data.
Notices that as is expected, Ptrue is better than all the oth-
ers. The best-performing procedure in this experiment was
the maximized Windsorisation method, with unit weight-
ing. The 1/Pk weighting method advocated by Rabiner [1]
performs well, but not as well as the maximized Windsori-
sation with either unit or Pall,k weighting, or even as well
as 100% Windsorisation with unit weighting. This relative
weakness may be a result of the inability to filter the im-
pact of various sequences on the final result and will be the
subject of further research.

5 Summary

In all our trials, the Pall,k-weighted Windsorised estima-
tions showed very little variation with the Windsorisation
level, which suggests that weighting the terms in this way
makes high-probability terms much more significant in the
Windsorisation, and hence removes any sensitivity to Wind-
sorisation level.

These results suggest that overspecialisation of the
learned model to the training data is important in determin-
ing the effectiveness of learned models. This may be the
reason that the Most Likely model performs worse than the
Random Left-Right model in generating the unseen obser-
vations.

It was also found that Rabiner’s method was more sen-
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Figure 3. Best methods

sitive to the choice of initial random model in the multiple-
sequence Baum-Welch re-estimation procedure.

The experiment was repeated for other forms of initial
generating model, including Left-Right models with obser-
vation sequences much longer than the number of states,
and for cyclic models. The same patterns were observed in
all cases.

These results suggest that weighting over-emphasizes
the high-Pall,k models, in a sense reducing the number of
models being used in the average. This would tend to imply
that the ’effective Windsorisation Level’ is no longer max-
imal, in an ’effective’ sense. The superiority of the Maxi-
mized Unit-Weight Windsorisation Estimation Model is en-
couraging.

It has been demonstrated that Rabiner’s method of vec-
tor learning is more easily affected by the choice of ini-
tial generating model and so it is not as robust as its unit-
weighted alternative. Our results also suggest that Ra-
biner’s re-estimation method and its (slightly superior) unit-
weighted variant suffer from the problem of local minima
trapping (see figure 3 in which the ’ trapped’ re-estimation
runs appear in the low-probability part of the curve).

Our proposed Unit Weighted Maximised Windsorisation
method avoids both problems by discarding bad HMMs (on
a sequence-by-sequence basis) and by avoiding local min-
ima traps with the use of multiple re-estimation runs. Fu-
ture work will aim towards a complete investigation of the
parallel re-estimation problem and a comparison of these
algorithms with existing methods for practical applications.
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