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In this paper we propose a technique for classifying
images by modeling features extracted at different
scales. Specifically, we use texture measures derived
from Pap Smear cell nuclei images using a Grey Level
Co-occurrence Matrix (GLCM). For a texture feature
extracted from the GLCM at a number of distances we
hypothesise that by modeling the feature as a continu-
ous function of scale we can obtain information as to
the shape of this function and hence improve its dis-
criminatory power. This hypothesis is compared to the
traditional method of selecting a given number of the
best single distance measures. It is found, on the lim-
ited data set available, that the classification accuracy
can be improved by modeling the texture features in
this way.

Index Terms — Multi-scale Approaches, Pattern Re-
cognition, Texture Analysis.

1 Introduction

S cale is of vital importance in the analysis and un-
derstanding of signals. The adage “ You can’t see
the woods for the trees” is a classic example of a prob-
lem of scale. A forest can only be recognised as such
within a particular range of distances (scales). If you
are too close, the forest appears as a single branch,
piece of bark or collection of molecules. From a dis-
tance of hundreds of kilometers the forest just be-
comes a small part of the shape and texture of the
landscape.

The idea that all the information in a signal is not
contained at only one scale is of crucial importance.
It has been shown that to fully analyse the struc-
ture of the signal it is necessary to relate informa-
tion from a number of different scales. A method
of combining this information, proposed by Witkin
[22], is to treat scale as a continuous variable rather
than a parameter. Signal features measured at dif-
ferent scales can then be related if they lie on the

same feature path in “scale-space”. In the computer
vision community, a variety of image structures have

been analysed at different scales by using this multi-
scale representation [14]. A classic example of this
scale-space analysis is in signal matching [21].

In this paper we have applied this same principle
to the investigation of measures of image texture at
varying scales. Most measures of texture being de-
termined at a number of scales or distances [5,13].
We propose a method to incorporate the information
from all these scales in a meaningful way, hence sig-
nificantly reducing the dimensionality of the data,
whilst maintaining as much useful information as
possible.

2 Grey Level Co-occurrence Mat-
rix Texture Measures

he Grey Level Co-occurrence Matrix (GLCM) as
proposed by Julesz [11] and later by Haralick et
al [7], has been shown to be a powerful technique for
measuring texture [1,6]. It is a second-order method
that characterizes the probability that, given an im-
age f : D C 7?2 — [0,1,2,...,n — 1], the grey
levels & = f(i,7), and | = f(¢',j') co-occur. We
define the distance between (¢,7) and (¢,j') as
d = d((¢,7),(¢,3")), which expressed in polar co-
ordinates is » = |d| and 6 = /d.
The GLCM is then C, g where each element ¢(k,[)
is given by:

e(k, 1) = Prf(i',5') = 1| f(i,5) = K. (1)

The GLCM, C, g, is constructed by first quantising
the image, f, into a “manageable” number of grey
levels! [0,1,2,...,n — 1], and then, for every pixel
(,7), examining the pixel (¢',j') for specified val-
ues of » and §. The GLCM, C, 4, is then of size
n X n, with entries, ¢(k,!), incremented every time
the grey levels & and [ co-occur. Probability estim-
ates are obtained by dividing each entry in C, g by

'In our case 16 [18].
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the sum of all the entries. GLCM’s are constructed
at a number of distances, r, (scales) [1,2,3,...,m],
and angles, 6, [0°,45°,90°,135°] in the image. Note:
the GLCM is constructed to be symmetric so that

T
Cro = m: i.e.,, Cogo = Crigoe Cp 450
Cr 2250, Cpgg0 = Cr 2700, and Cp 1350 = Cr3150.

Once the GLCM, C, 4, has been constructed, its
“content” is characterized using descriptors that ex-
tract features from C, 4. For example, a descriptor
that has a relatively high value when the values of
C, ¢ are near the main diagonal, is the Inverse Dif-
ference Moment (Local Homogeneity):

c(k, 1)
IDM, = e 2
=2y @

while a descriptor such as Entropy measures random-
ness, reaching its highest value when the elements of
C, ¢ are equal:

Ent,.,g =

3N e(k, 1) Ine(k, 1). (3)
k1

A number of other such features have been pro-
posed [7,15], and are given for the continuous case in
section 3. The conventional method of texture ana-
lysis using the GLCM is to treat these features, ex-
tracted at different distances (scales), as independ-
ent features. Selecting a small subset of scales (often
a single scale) that gives the highest discriminatory
power [23].

We propose to treat these measurements of texture
at each scale as sample points of a continuous func-
tion through scale-space. This function can then be
reconstructed by interpolating the sample points of
the functions extracted from the GLCM. This al-
lows a whole new range of classical mathematical
techniques for comparing functions to be used in the
analysis and classification of textures.

3 Texture as a Function of Scale

Assume we have an image f D c R -
[0,1,2,...,n — 1], with the domain D bounded and
of area

:/DM@. (4)

Since this image is defined on a continuous domain,
we need to reformulate the theory of Grey Level
Co-occurrence Matrices (GLCM) for the continuous
case. To unify our work with scale-space theory, we
will use the notation o (scale) instead of » (distance)
to denote pixel displacement.
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We define the Grey Level Co-occurrence Function

(GLCF)
9op:10,1,2,...,m—1]x[0,1,2,...,n— 1] > R as:
1
ga,o(a,ﬂ)—m

[ 115G = a, 14 = 8] dad,

where,

¢ = =z+ocosh, (6)
y y + osind, (7)

and the indicator function,

I [f(m:y) =a, f(mlayl) = /B]

{1 if (f(z,y) = a) and (f(2',y') = B);
0 otherwise.
(8)

In other words, the GLCF estimates the probability
that a pair of grey levels [a, 8] will be found at a
displacement [o cos 8, o sin ] apart.

Scale dependent texture features T'(o) are extrac-
ted by applying some functional ¢ to the GLCF. If
this functional integrates g,¢(a, ) over a, and 6,
then the texture feature of interest can be expressed
as a function of scale. We write:

"/’ [90,0 (a7/6)] . (9)

The following scale dependent functionals are con-
tinuous versions of commonly used [1,7,15] discrete
textural feature measures:

)= [ [] so(a,8) dadsdo

Inverse Difference Moment (Local Homogeneity):

T(o) =

Energy:

(10)

IDM(o /:/];1_% gya9mo(@, 8) daddds.
(11)

Entropy:

Ent, = —/// gop(a,B)Ing, ¢(a, B) dadBdf.

6 D

(12)

Correlation:

Corr, =

(o = ) (B = 116)9e(:6) 4o 10 1o

Vo Vg

Wil

(13)



where, mean:

u= /_o:oah(a) da, (14)
and variance:
V2 = /_Z(a ~ w)’h(a)da (15)

Inertia:

Ina:/G/A)(a—ﬂ)zg,,g(a,ﬂ)dadﬂde (16)

Cluster Shade:

oo [ [ (@) + G- o)

ga’,ﬂ(a, ,3) dadB do.
(17)

Cluster Prominence:

cro= [ [[ (= pa) + (8- na))*

ga’,ﬂ(a, ,3) dadB do.
(18)

Note: Rotational invariance is obtained by integ-
rating with respect to 6, this can be done either be-
fore or after we integrate with respect to D. In the
discrete case it is common [1,8] to average the GLCM
matrices generated for each angle and then calculate
the texture features from this one matrix. In a con-
tinuous version of this approach Energy would then
be written as:

En, = //D/ogg,o(a,ﬂ)dedadﬂ.

We have chosen to calculate the texture features for
each angle and then average the feature values [18].
This reduces the averaging effect for features raised
to powers greater than unity, e.g., equations 10, 17,
and 18. This may be important if at one angle these
texture features, have a much higher value than at all
the other angles. Averaging with respect to 8 before
calculating the function at that scale will reduce this
effect.

In this paper we approximate these scale depend-
ent functionals by fitting continuous functions to the
discrete measurements extracted from the GLCM.
However, we could have also fitted a continuous func-
tion to the image, allowing direct calculation of the
GLCF. This would also allow scale to be extracted

(19)
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as a continuous variable, and 8 to be calculated at
angles other than 0°, 45°, 90°, and 135°.

The number of samples needed to accurately fit a
function depends on the type of texture we are meas-
uring. With the method we have chosen the finest
resolution available is at a distance of one pixel,
while the coarsest resolution would either be the
largest distance in the image or the largest spatial
texture of interest. These have been called the inner
and outer scales [12], and are usually determined by
the format of the original image.

3.1 Classification of Texture Functions

We propose to use the actual shape of these scale-
space texture functions to discriminate between dif-
ferent classes of images. In this way all of the avail-
able information is used to generate a model of the
feature. The parameters of these models can then
used as “high order” features in the classification
scheme.
amples is done in parameter-space.

An advantage of fitting continuous functions is that
we can also classify by integrating the area between
the curves of a new example and the prototype nor-
mal and abnormal curves. We could then weight
this area as a function of the variance (Mahalanobis
distance) of the prototype curves, and then estim-
ate the class of the new example as the class of the
nearest prototype.

This means that classification of new ex-

3.2 An Example

y(Scale)
o

Scale
Figure 1: Examples of two classes of line

Purely for the purpose of illustration, we shall ima-
gine that the functions of the form shown in figure 1
are measures of image texture at varying scale. Ex-
amples of one class being shown with solid lines while



examples from the other class are shown with dot-
ted lines. 30 examples of each class were generated
using y = m;z +¢; +¢, where ¢ ~ N(u = 0,02 = 1),
¢ =[1,2,3,...,16], for one class m; = 0.1, ¢; = 0.8
and for the other m; = —0.1, ¢; = —0.8.

There is a large amount of intraclass variation on
these functions which makes discrimination at any
one scale very difficult. However, if a linear model
is assumed and an equation of the form:

(20)

y=mz+c

is fitted in a least mean squares sense to each ex-
ample, we can then parameterize each example with
only two features: the gradient m and the intercept
¢ of the fitted line.
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Figure 2: Scatter plot for the two “best” scales

Figure 2 shows a scatter plot for the 30 examples of
each class, by selecting the two most discriminatory,
or “best,” scales. Figure 3 shows a scatter plot for
the two parameters of the fitted model, the gradient
and the intercept.
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Figure 3: Scatter plot of the fitted parameters
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Comparing figures 3 and 2 we can see that
the samples are more clustered and separated in
parameter-space rather than in the reduced distance-
Therefore, improved classification accuracy
would achieved using the model parameters rather
than the two “best” scales. It should be noted that
at least four scales are required to separate these two

space.

classes of functions with 100% accuracy on new, un-
seen data, and that, in this case, good (over 97%)
classification accuracy would be achieved using only
the gradient or the intercept parameters.

In the above example, the two “best” scales were
found using a branch and bound algorithm with
the Bhattacharyya distance measure for determin-
ing feature separation [2,16].

4 Texture Analysis of Cervical
Cell Nuclei

T he data set was as detailed by Walker et al [18],

and consists of 61 segmented cell nuclei, there
being 30 normal and 31 abnormal cells. A classifica-
tion accuracy of 96.7% has been reported for the best
two features using a hyper-quadric decision surface,
using three fold cross-validation? [18]. The 7 features
extracted from the GLCM were measured at dis-
tances 1 to 15 at odd intervals only, this gives a total
of 8 distance measures. The “best” two features were
selected using simultaneous forward selection of =,
backward elimination of m, and were found to be
Inertia and Inverse Distance Moment (IDM), both at
a distance of 3.

Abnormal Cell

Normal Cell

Figure 4: Examples of segmented normal and
abnormal cervical cell nuclei

2Due to the differences in methodology this result should
not be directly compared with the results shown in table 2.



Figure 4 shows examples of the texture in typical
normal and abnormal cervical cell nuclei. It can be
appreciated from this figure that it is rather difficult
for the untrained observer to distinguish between the
two different cell types.

For the purpose of this study it was decided to first
classify the cells using only one of the 7 available
texture features at a time, i.e., we would train and
classify on just one (say, IDM) of the features at all
the available distances. We compare classification
accuracy for a model, with N parameters, fitted to
each texture feature, and for the best N distance
measures (scales) for that feature. In this way it is
possible to determine which method best extracts
the useful information from the texture features.

Then, we select the best N parameters from the
best models fitted to each texture feature and again
classify the cervical cell data. This is compared to
the conventional method of choosing N distances
from all those available.

5 Results
No. Features N 1 2 3 4
Energy
N Scales 70% | 70% | 70% | 70%
N Parameters 68% | 57% | 53% | 68%
IDM
N Scales 77% | 85% | 86% | 85%
N Parameters 58% | 77% | 80% | 90%
Entropy
N Scales 67% | 83% | 88% | 88%
N Parameters 72% | 75% | 92% | 85%
Correlation
N Scales 85% | 81% | 83% | 81%
N Parameters 72% | 75% | 84% | 70%
Inertia
N Scales 90% | 92% | 91% | 88%
N Parameters 84% | 90% | 90% | 82%
Cluster Shade
N Scales 70% | 65% | 63% | 67%
N Parameters 54% | 60% | 73% | 69%
Cluster Prom
N Scales 62% | 85% | 81% | 81%
N Parameters 68% | 72% | 77% | 90%

Table 1: Comparison of classification accuracies for
selecting the best N scales and fitting a model with
N Parameters

Table 1 shows estimates of the true accuracy for each
of the features selected and model fitted. Polynomi-
als have been fitted so a 2 parameter model is a
straight line, 3 parameters a quadratic and 4 a cu-
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bic. A 1 parameter model in this case was chosen
to be either the gradient or the intercept from the
straight line model depending on which gave the
highest discrimination.

No. Features 1 2 3 4 5
Best Scales 90% | 92% | 88% | 87% | 88%
Best Model 83% | 90% | 94% | 94% | 94%

Table 2: Comparison of classification accuracies for
the best N features

Table 2 shows estimates of the true accuracy se-
lecting N features from the original 56 distance
measures®, and selecting N of the generated para-
meters from only the best model for each feature,
i.e., from 21 parameter features.

All features were first normalised to be in the range
[0,1] and then selected using a Sequential Forward
Search with the Bhattacharyya distance measure for
determining feature separation [2,16]. Note: The
best two features were the same as used in [18].
Branch and bound analysis was not used because of
its computational complexity when selecting 5 fea-
tures from 56, it also gives no ranking of the fea-
tures. The error estimate was obtained from a leave-
one-out [19] random sub-sampling using K-Nearest
Neighbours (with K=1). This strategy is computa-
tionally intensive, but is generally considered to be
one of the most reliable estimators of true error rate.

6 Discussion

F itting models to each of the 7 texture features

reduced the dimensionality of the original data
set from 56 to 21. This is a significant reduction in
dimensionality and reduces the computational com-
plexity of further feature selection. Karhunen-Loéve
analysis has also been suggested for dimensionality
reduction of texture features [17]. However, in ini-
tial trials we found the technique performed poorly
in this case, and, so far, has not been investigated
further.

The classification accuracy was better for the fitted
models for 4 of the 7 texture features. This is des-
pite the fact that the shapes of the texture functions
are not that different between normal and abnor-
mal cells. This would indicate that even though the
functionals used are perhaps not ideally suited, the
technique still performs well.

Figure b shows the shape of the texture function, In-
ertia, extracted from the cervical cell nuclei. For the

37 features each at 8 distances.



Inertia
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Figure b: Plots of the means and standard devi-
ations of the Inertia texture measure for normal
and abnormal cells

normal cells the mean and standard deviations are
shown by solid and dotted lines respectively, while
for the abnormal cells, the mean and standard de-
viations are shown by dashed and dash-dotted lines
respectively.

In general the classification accuracy of each tex-
ture feature increased when we considered more than
one scale. This confirms a result found by Conners
and Harlow [1] and Weszka et al [20], and reiterates
the fact that all the information in the signal is not
contained at just one scale. The overall accuracy also
increased when combining different texture features
together, a similar result was found by Gotlieb and
Kreyszig for their atomic and composite classifiers
[6].

When using all the texture features, the proposed
technique did not perform as well as the conven-
tional method for low dimensionality (2 and below),
but did better when more features were added (di-
mensionality 3 and above). This is probably due
to the fact that there is one distance of one texture
feature® that separates this data set well (with 90%
accuracy). It is suspected that this will not be such
a dominant feature on a larger data set.

The highest classification accuracy of 94% was ob-
tained using the proposed technique, and was found
to be for 3, 4 or 5 parameters selected from the best
texture feature models. However, if you consider
that the difference between 92% and 94% accuracy
on a data set of 61 examples is only 1 case, we infer
that the results are comparable.

It is hypothesised that the proposed method ex-

*Inertia at a distance of 3.
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tracts the maximum amount of useful information
from the features whilst significantly reducing their
dimensionality. Higher order models will of course
be able to fit more complex scale-space functions,
but at the expense of having a larger number of
parameters and therefore increased dimensionality.
If there is only one scale in the function that has
any discriminatory power®, then this model based
technique would probably not perform any better
than the conventional method of picking this one
“best” scale, though, this pathological worst case, is
unlikely to appear very often in practice.

If we used every distance measured for a feature and
classified the data using distance measures weighted
by the variance at each point, we would have in-
cluded all of the available information. However, no
reduction in dimensionality has been achieved and so
a vast number of examples may be required to accur-
ately separate the classes and give good performance
on new, unseen, data. This problem is known as
the “curse of dimensionality” [3] where an extremely
large number of examples are required to accurately
train the classification scheme. There may also be
scales where there is no discriminatory power at all,
and so including information from that scale in the
analysis may well add noise and degrade perform-
ance.

Scale should really be treated in a logarithmic man-
ner, in this way changes in the texture function
between, say scales 1 and 2 should be just as sig-
nificant as changes in scale between 8 and 16. This
was not done in this study as the data had already
been collected at integer scales, but models should
perhaps be fitted to a logarithmic scale in future re-
search.

Another advantage of the model fitting technique
is that the features can be measured at as many dis-
tances or scales as you desire. The more samples of
the continuous function the better, with the conven-
tional method however, this would add to the dimen-
sionality of the problem and make feature selection
more computationally expensive.

In this paper, only polynomial models have been
discussed, there is of course a multitude of mod-
els and methods that could be used, such as auto-
regressive models, cubic splines, likelihood ratio
tests etc. Classification in scale-space has only been
applied to GLCM texture features in this paper,
there are also a number of other scale dependent
functionals that this technique can be applied to,

50r, as in this case, one scale of one function that has a
high (90%) level of discrimination.



e.g., features extracted from a morphological scale-
space [9], or a multi-scale gradient watershed regions
[4,10].

7 Conclusions

W e have formulated a technique for classifying
texture as a continuous function of scale. We
have empirically shown the technique to perform as
well as (if not better than) the conventional method
on textures derived from cervical cell nuclei. In ad-
dition, we have highlighted the following advantages
of the proposed technique:

e It uses information from a number of scales by
modeling the shape of the texture functions in
scale-space.

e It reduces the dimensionality of the data, pro-
ducing “high order” features.

e Dimensionality is not increased by taking more
distance measures.

Caution should be used when drawing conclusions
from such a small data set, but the results are en-
couraging and provide a good foundation for further
research in this area.
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