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Abstract - To achieve the extreme accuracy rates de-
manded by applications in unsupervised automated cy-
tology, it is frequently necessary to supplement the pri-
mary segmentation algorithm with a segmentation qual-
ity control system. The more robust the segmentation
strategy, the less severe the data pruning need be at
the segmentation validation stage. These issues are ad-
dressed as we describe our cell nucleus segmentation
strategy which is able to achieve 100% accurate segmen-
tation from a data set of 19946 cell nucleus images by au-
tomatically discarding the most difficult cell images. The
automatic quality checking is applied to enhance the per-
formance of a robust energy minimisation based segmen-
tation scheme which already achieved a 99.47% accurate
segmentation rate.

Keywords— cell, cytology, image, segmentation, ro-
bust

I. I NTRODUCTION

Machine vision systems for the unsupervised automation
of otherwise manual tasks usually require image processing
components with exceptionally high accuracy rates. This is
especially true in the biomedical domain where failures re-
sult in mis-diagnoses. The fact that research is still contin-
uing on the development of a cervical cancer screening ma-
chine despite projects being initiated in the 1950’s is perhaps
a good indication of the magnitude of the development effort
required to go from an algorithm obtaining “good” results on
a small test data set, to one obtaining acceptable levels of ac-
curacy in a real environment. The main difficulty with this
application has been identified as the robust segmentation of
cells and cell nuclei. Indeed, Bengtsson [5] says that seg-
mentation stage is “the key to a working machine” echoing
the sentiments of Gonzalez and Woods [9] that, “effective
segmentation rarely fails to lead to a successful solution.”
Many algorithms have been proposed in the past with vary-
ing degrees of success, but just as important as a high accu-
racy rate is knowing when a failure has occurred as ‘... an

erroneously segmented cell is much worse than a rejected
cell’ [13].

Many researchers have included artefact and incor-
rect segmentation rejection schemes in their algorithms.
MacAulay used a post-processing step after segmentation to
remove potential artefacts based on shape and appearance
that was capable of detecting some of the incorrectly seg-
mented nuclei [11]. Nordin describes an algorithm that is
able to report failures at various stages of the segmentation
process, as well as a separate artefact rejection algorithm
[13]. McKenna made use of a neural network to select poten-
tial nuclei in scenes for subsequent segmentation. He noted
that a post-processing stage would also be necessary to filter
out “erroneously detected objects” [12].

A common theme in these techniques is the need for a
separate quality control process to view the output of the seg-
mentation and typically these apply shape and appearance
criteria to classify the results as either “pass” (looks like a
cell) or “fail” (doesn’t look like a cell). We have developed a
segmentation strategy that not only employs a segmentation
algorithm with much higher performance than previously re-
ported [4], but which also provides a confidence measure
in the resulting segmentation without explicit reference to
shape and appearance criteria for quality check purposes.

II. T HE SEGMENTATION STAGE

For a full explanation of the underlying segmentation
technique, the reader is referred to [4] and [1]. The method is
based on energy minimisation techniques and is summarised
here only to introduce the development of the subsequent
quality checking strategy.

A. Energy Minimisation Implementation

The use of active contours in bio-medical applications is
well established, but it is well known that these methods
tend to suffer from local minima, initialisation, and stop-
ping criteria problems. Fortunately global minimum energy
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searching methods have been found to be particularly effec-
tive in avoiding local minima problems due to the presence
of the many artefacts often associated with medical images
[6][7][8]. Here, a dynamically programmed search method
was implemented based upon a suggestion in [10]. A search
space is first set up within the image, bounded by two con-
centric circles centralised upon the approximate centre of the
nucleus found by an initial rough segmentation technique
(e.g., converging squares algorithm). This search space is
sampled to form a circular trellis by discretising both the cir-
cles and a grid of evenly-spaced radial lines joining them
(figure 1).

Figure 1. Discrete search space

Every possible contour that lies upon the nodes of the
search space is then evaluated and an associated energy or
cost function is calculated. This cost is a function of both
the contour’s smoothness and how closely it follows image
edges. The relative weighting of the cost components is con-
trolled by a single regularisation parameter,λ ∈ [0, 1]. By
choosing a high value ofλ, the smoothness term dominates,
which may lead to contours that tend to ignore important im-
age edges. On the other hand, low values ofλ allow con-
tours to develop sharp corners as they attempt to follow all
high gradient edges, even those which may not necessarily
be on the desired objects edge. Once every contour has been
evaluated, the single contour with least cost is chosen as the
global solution. The well-known Viterbi algorithm provides
an efficient method to find this global solution as described
in [4].

B. Segmentation Performance

A data set of 19946 Pap stained cervical cell images was
available for testing. These images were of the order of
128x128 pixels, quantised to 256 gray levels and each con-
tained a single nucleus.

The single parameterλ that controls the behaviour of the
algorithm, was empirically chosen to be 0.7 after trial runs
on a small sub-set of the images. This sub-set was made up
of 141 known ‘difficult’ images from previous studies [4][3],
augmented by a random sample of 269 images from the re-
maining data set. This careful data selection was necessary

as previous experience showed that for the majority of im-
ages, the resulting segmentation was fairly insensitive to the
choice ofλ, making the choice of optimum value difficult.
Nevertheless, more demanding images require some adjust-
ment to the parameter to achieve correct segmentation. The
effect of the choice ofλ on segmentation accuracy on this
trial set is shown by the graph of figure 2.
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Figure 2. Plot of percentage of correct segmentations against
λ for a set of images consisting of known ‘difficult’ images
and randomly selected images.

With λ set at 0.0, the smoothness constraint is completely
ignored and the point of greatest gradient is chosen along
each search space radius. Previous studies [3] have shown
that for approximately 65% of images, all points of greatest
gradient actually lie upon the nucleus cytoplasm border (fig-
ure 3(a)), so these cell images will be correctly segmented.

(a) (b) (c)

Figure 3.λ = 0.0. a) Largest gradients occur on the nucleus
border, b) darkly stained chromatin generates largest gradi-
ents, c) dark artefacts generate largest gradients.

For the remaining 35% of images, a large gradient due to
an artefact or darkly stained chromatin will draw the contour
away from the desired border (figures 3(b)&(c)). Asλ in-
creases, the large curvatures present in these configurations
become less probable (figure 4).

The graph shows a value ofλ = 0.7 as the most suitable
for these particular images. Every image in the data set was
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Figure 4. The effect of increasingλ. a)λ = 0.1, b) λ = 0.2,
c) λ = 0.5.

then segmented atλ = 0.7 and the results verified by eye.
Of the 19946 images, 99.47% were found to be correctly seg-
mented. Three main classes of failure were identified. Eighty
seven of the failures were due to the nuclei lying close to the
cytoplasm boundary. As the background cytoplasm bound-
ary contrast is much greater than that of the nucleus cyto-
plasm boundary, the contour tended to lie upon the former
very low image energy area (high gradient edges). Fourteen
of the failures were caused by the inappropriate choice of
λ for that individual image (they all subsequently produced
correct segmentations with different values ofλ.) The re-
maining four images were found to fail at all attempts. The
failures due to the presence of the background in the nucleus
images are preventable through careful design of a prior cell-
finding stage [2]. Here, the cytoplasm background boundary
is known and can therefore be prevented from appearing in
the nucleus images. The detection of the other classes of
failure is therefore the major issue.

III. D EVELOPMENT OF AN ERROR CHECKING

FRAMEWORK

Despite the exceptionally high accuracy rate that the
global minimum searching contour method achieves, there is
still a possibility of sample contamination from the few fail-
ures that do occur. In order to prevent this, the need would
still exist for a human to view the output of this stage, un-
dermining its utility in a practical system. The remainder of
this paper therefore concerns itself with the development of
a framework that further increases the accuracy of a potential
system.

A. Lambda Sensitivity

For the majority of relatively simple images with little
ambiguity in the true location of the nuclear boundary, the
final segmentation can be fairly insensitive toλ over a wide
range of values (figure 5).

By contrast, ‘difficult’ images (even for humans) produce

very different contours depending upon the choice ofλ (fig-
ures 4 and 6).

These images usually contain artefacts near or on the nu-
clear boundaries that make the ‘true’ border hard to find.
These examples show that no single value ofλ is capable
of accurately segmenting all of the images. Therefore, rather
than segment the images at one value ofλ and use a post-
process to reject possible failures, we are interested in view-
ing the output of the algorithm for various values ofλ in
order to detect stability as a measure of confidence in the
resulting segmentation.

B. Error Checking

The graph of figure 2 shows monotonically increasing
segmentation accuracy for0.0 < λ < 0.7. In fact, from the
data it was observed that the set of correct segmentations at
λ1 was a strict subset of the set of correct segmentations at
λ2 whereλ1 < λ2 < 0.7. Therefore, by segmenting an im-
age at the high probability of correct segmentation value of
λ = 0.7 and then again atλ = 0.0, similarity between the
two contours indicates a high level of contour stability (fig-
ure 5). This image is then classified as a ‘very easy’ image
to segment and for convenience labelled “level 0”. Lack of
similarity leads to a comparison of the contour atλ = 0.7
with the contour atλ = 0.1. Similarity leads to a classifica-
tion of level 1 and so on.

This classification method suggests a means to discard in-
correct segmentations. For example, if we keep only level 0
(very easy) cell images, we discard approximately a third of
the data set, but achieve a 100% correct segmentation rate on
those retained [3].

IV. F INE TUNING

In order to pursue this method, the data set was split into
two sets:F , Those images that been incorrectly segmented
atλ = 0.7 (105 images) andC, those that had been correctly
segmented (19841 images). Statistics were then measured
for each level by comparing the segmentation result atλ =

(a) (b) (c)

Figure 5. Example of an image that is stable over a range of
λ. (a)λ = 0.1, (b) λ = 0.5, (c) λ = 0.7.



Level 0 1 2 3 4 5 6

Threshold 4.85 3.20 2.45 0.79 0.79 0.79 0.79

Table 1. Minimum MAD thresholds for the detection of ev-
ery element inF (incorrect segmentation atλ = 0.7 on the
test data set) for levels 0 - 6.

0.7 with those atλ = 0.0, 0.1, ..., 0.6 for every image in both
sets.

As the contours to be compared were the result of the
same algorithm and indeed the same search space in the im-
age, the comparison between any two contours is trivial. The
distance between each chosen point on each of the search
space radii (figure 1) for each contour was calculated and
the maximum absolute deviation (MAD) evaluated.

A cumulative plot of the percentage of the setF against
MAD for level zero (comparison between contours atλ =
0.7 andλ = 0.0) is shown in figure 7.

This graph shows that for level 0, a MAD threshold of
4.84 pixels would detect every failed segmentation. In a
similar manner, it is possible to establish thresholds for each
level so that the detection of every failed segmentation in this
database is guaranteed (table 1).

The thresholds decrease with increasing level. This is ex-
pected as closer values ofλ are compared at higher levels.
The values then taper to a limit of 0.79 pixels as this is the
distance between two adjacent radial points on the discrete
search space.

In order to establish the effect of setting such thresholds
on C, the percentage ofC that would be discarded against
MAD threshold for level zero is shown in figure 8.

Therefore, by setting a threshold of 4.84 pixels and re-
jecting any segmentation with a greater MAD, 40.2% of the
correct segmentations would be discarded. This procedure
may be repeated for each level, using the thresholds previ-
ously calculated. The percentage ofC that falls above the
threshold for each level (i.e. a good segmentation being dis-
carded) against MAD is shown in figure 9.

(a) (b)

Figure 6. Example of an image that is not stable over a range
of λ. (a)λ = 0.5, (b) λ = 0.7
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Figure 7. A plot of the percentage of the elements ofF (in-
correct segmentation atλ = 0.7 on the test data set) against
measured MAD for level 0.
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Figure 8. A plot of the percentage of elements ofC (cor-
rect segmentations atλ = 0.7 on the test data set) rejected
against MAD threshold for level 0.

Although a harsher threshold is used at level 1 than at
level 0, fewer correct segmentations are discarded. This is
due to the absence of any smoothness constraint atλ = 0.0
which leads to the wild deviations such as those shown in
figure 3. However, the small smoothness contribution at
λ = 0.1 corrects many of these deviations resulting in the
large drop in average MAD (table 2).

Therefore by running at level 2, it is possible to detect ev-
ery failure and only discard 10.78% of the correct segmenta-
tions.

V. CONCLUSIONS

By analysing the modes of failure of a highly success-
ful cell nucleus segmentation algorithm, an error checking
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Figure 9. Plot of the percentage of elements ofC (correct
segmentations atλ = 0.7 on the test data set) rejected at
each level using the thresholds of table 1.

Level 0 1 2 3 4 5 6

Average MAD 8.90 2.78 1.91 1.56 1.35 1.22 1.07

Table 2. Average MAD for levels 0 - 6.

framework was implemented that was capable of detecting
every failure. The algorithm parameterλwas first empiri-
cally tuned for the data set to obtain best segmentation ac-
curacy. It was then observed that different values ofλ ob-
tained different solutions for difficult images, but simple im-
ages generated stable solutions. Therefore, by varyingλ this
stability could be detected. A decision to reject or accept the
segmentation was then made, based upon measured thresh-
olds for each level. For the data set of 19946 images, it was
found that by comparing the resulting contours at values of
λ = 0.7 andλ = 0.2, and rejecting the segmentation if the
maximum absolute deviation (MAD) between the contours
was greater than 2.45 pixels, every failure could be detected
whilst only discarding 10.78% of the correct segmentations.
In this study, only values ofλ with a resolution of 0.1 have
been considered. It is possible that by increasing this resolu-
tion in the region of interest (i.e. near ‘level 2’ operation) and
repeating the exercise, a further increase in the performance
could be achieved. Naturally, the parameters and results that
have been reported are optimised not only for one type of
image but also for the hardware configuration that was used
to capture them. Current work involves the incorporation of
the proposed system into a fully automatedCytometer(an
automatic imaging system) using the same methodology to
achieve optimal performance for that hardware. This allows
for much more extensive analysis of the proposed methods
through the accessability of a greater amount of data. This
result has great potential for the implementation of unsuper-
vised cancer screening devices using methods where only a

representative sample of cells is required. Preliminary stud-
ies have shown strong possibilities for the non-invasive early
detection of lung and other forms of cancer.

Finally, The ‘rejected’ cells have simply been labelled as
such. These could be interpreted as having been ‘flagged’
by the algorithm as problematic, requiring processing by a
higher level (e.g., to invoke a different algorithm etc.) By
achieving such high accuracy rates and confidence in the seg-
mentation stage, the following feature extraction and classi-
fication processes can only become more robust.
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