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The Statistical Performance of Some Instantaneous
Frequency Estimators
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Abstract—We examine the class of smoothed central finite
difference (SCFD) instantaneous frequency (IF) estimators
which are based on finite differencing of the phase of the ana-
Iytic signal. These estimators are of particular interest since
they are closely related to IF estimation via the (periodic) first
moment, with respect to frequency, of discrete time-frequency
representations (TFR’s) in Cohen’s class (TFR moment IF es-
timators). Cohen’s class includes representations such as the
spectrogram and Wigner-Ville distribution. Indeed, in the case
of a monocomponent signal, the variance of a TFR moment IF
estimator is bounded from below by the variance of the corre-
sponding SCFD estimator. We determine the distribution of this
class of estimators and establish a framework which allows the
comparison of several other estimators such as the zero-cross-
ing estimator and a recently proposed estimator based on linear
regression on the signal phase.

We find the regression IF estimator is biased and exhibits a
large threshold for much of the frequency range because it does
not account for the circular nature of discrete-time frequency
estimates. By replacing the linear convolution operation in the
regression estimator with the appropriate convolution opera-
tion for circular data we obtain the parabolic SCFD (PSCFD)
estimator. This estimator is unbiased and has a frequency in-
dependent variance and yet still retains the optimal perfor-
mance and simplicity of the original estimator. The PSCFD es-
timator would be suitable for use as a real-time line or bearing
tracker.

In this paper, we propose a number of mathematical opera-
tions suitable for circular data which should be used in pref-
erence to the conventional linear operations.

1. INTRODUCTION

LTHOUGH there are many ways to estimate the in-

stantaneous frequency (IF) of a frequency modulated
tone in noise, we will examine a particular class which
we call the smoothed central finite difference (SCFD) es-
timators [4], [S], [21], [22] which are based on finite dif-
ferencing of the signal phase. Interest in this class arose
while we were investigating IF estimation via the first mo-
ment, with respect to frequency, of discrete time-fre-
quency representations (TFR’s) in Cohen’s class [7] (TFR
moment IF estimators). Cohen’s class includes represen-
tations such as the popular spectrogram, or magnitude-
squared short-time Fourier transform, and the Wigner-
Ville distribution.
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The unsmoothed central finite difference (CFD) IF es-
timator is obtained from the central finite difference of the
phase of the analytic signal; it is analogous to the contin-
uous-time IF estimate obtained from the derivative of the
phase of the analytical signal. SCFD IF estimators are
calculated by appropriately convolving CFD estimators
with a smoothing window function. In the case of a mono-
component signal, it was shown that each TFR moment
IF estimator derived from a member of Cohen’s general
class corresponds to a particular SCED estimator and that
the corresponding SCFD estimator will always be more
efficient and easier to calculate. Hence, there is no point
in using TFR moment IF estimators when there is a sim-
pler and better alternative.

In this paper, we derive approximate expressions for
the statistical performance of the CFD and SCFD IF es-
timators and examine the behavior of SCFD estimators
using various smoothing window functions. We show that
several estimators proposed by other researchers can be
considered as special cases of the SCFD class and we dis-
cuss the parabolic SCFD (PSCFD) estimator which is op-
timally efficient since it meets the Cramér-Rao lower
bound for moderate signal-to-noise ratios (SNR’s). The
PSCFD is closely related to an estimator based on linear
regression on the signal phase which was recently pro-
posed by Kay [12], [15]. Although the PSCFD estimator
is asymptotically optimal, it is computationally far sim-
pler than the maximum likelihood estimator and may be
adapted for use as a real-time line or bearing tracker.

II. DiscreTE-TIME DEFINITIONS

For the reader’s convenience, some of the fundamental
definitions and conditions from {21] and [19] are restated
below.

Let the discrete-time signal x be formed by sampling
the continuous-time real signal x at frequency f, = 1 /T,
Thus

x(n) = x(nT)).

Definition 1: Discrete-Time Analytic Signal: The dis-
crete-time analytic signal z associated with the real dis-
crete-time signal x is defined by

z = Alx]
x + jH[x] (1)

Il

where A[ | is the linear operator which forms the analytic
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signal and H{ ] is the discrete-time Hilbert transform de-
fined by

— mm
modd

Assuming that equivalent approximations to the Hilbert
transform are made in both discrete and continuous time
domains, we can equate the discrete-time and continuous-
time analytic signals at the sample points, i.e.,

z(n) = z(nT)).

Definition 2: CFD IF Estimator: Let z = Alx] where x
is a real discrete-time signal. Then the IF of x at sample
n is estimated by

fimy = 4% (Garg [z(n + 1)) — arg [z(n = DD)2r 3)

where (( ), represents reduction modulo 27 onto the do-
main {0, 27).

The CFD estimator will exhibit negligible bias if the
discrete-time signal meets the following bandwidth con-
ditions.

Definition 3: Discrete-Time Bandwidth Conditions: Let
the continuous-time signal X be an FM signal with instan-
taneous frequency f; given by

£.(0) = f. + fas(®)

where f, is the carrier frequency, fa is the maximum fre-
quency deviation, and s(t) is the normalized (unity peak
amplitude) zero-mean modulating signal with bandwidth
W. Let the deviation ratio D = f, /W and let the discrete-
time signal x be obtained by sampling x at frequency f,.
Then the CFD IF estimator will be a negligibly biased
estimator of f; at the sample points if the following con-
ditions are met:

Df—-DO+DHWw>0

2)ﬁ+(D+1)W<§

3 fo > W

To form a smoothed CFD (SCFD) IF estimator, it does
not make sense to simply apply a low-pass filter function
using linear convolution; the modulo-A convolution op-
eration should be used.

Definition 4: Modulo-\ Convolution: Let the sequence

fbe of the form fn) = (f(), f: Z = = and N € B. If

we convolve f with a smoothing function h of odd length
P =20 + 1, h: 7 = E, then we must use the modulo-\
convolution operation defined by

J) () h(n)
N 0
=3s <<arg LEQ h(n — p)
© exp [J'Zvrf(p)/x]D) : @)
27
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Thus the class of SCFD IF estimators is obtained by
applying a smoothing window to the raw CFD estimates
using the modulo-A convolution.

Definition 5: SCFD IF Estimator: Let f{ be the CFD IF
estimator calculated from the real signal x and let h: .
~ R, be a smoothing function of length P, presumed odd.
Then the SCFD IF estimator is defined by

fim) = h(n) (M) 2 fi(m), V. 5)

III. StaTisTICAL ANALYSIS OF THE CFD IF ESTIMATOR
A. Problem Statement and Assumptions

We now consider IF estimators of a monocomponent
noise-corrupted signal of the form

x(n) = a.(n) cos ¢(n) + e(n) 6)

where a. € | is the envelope function of the amplitude of
the signal, ¢ € & is the cumulative phase of the signal and
€ € R is a zero-mean white Gaussian noise sequence. The
envelope may vary with time but it is always positive and
the cumulative phase ¢ is a monotonically increasing
function of time. At sample n, the instantaneous signal-
to-noise ratio (SNR) is given by s(n) = a’(n) /207 where
o is the variance of the noise sequence.

To simplify the analysis, we assume that both a, and s
are constant in the vicinity of the sample where we wish
to estimate IF and that the SNR is moderate (s = 5). These
assumptions allow us to use a simple approximation to the
true distribution.

Sums and differences of angular quantities are always
performed modulo 27. Angular quantities are assumed to
have domain [0, 27) or [—7, + ) as indicated in the de-
rivation; the latter domain is more convenient for express-
ing random angular variables with zero mean.

We assume that the monocomponent continuous-time
signal x satisfies the bandwidth conditions of the defini-
tion so that the CFD IF estimator f¢ derived from the dis-
crete-time signal x equals the true IF f; of the continuous-
time signal x at the sample points. So

Fit) = fi) = £;(nT)
where T, = 1/f; is the sampling interval.
Using (3) we obtain

fitn) = ‘{—; (¢(n + 1) = o(n = 1), )

where ¢(n) = arg [z(n)] € [0, 27) and z(n) = Alx](n).
Let 2(n) = A[X](n) where % is given by £(n) = x(n) + e(n)
and € is a zero-mean white Gaussian noise sequence of
variance o2 corrupting x. The ~ symbol indicates esti-
mators which are calculated from noise-corrupted data.
An unbiased estimate of f; may be calculated from Z using

the CFD estimator. Thus

s

fitn) = y (@ + 1) — dn — D)y (8)
s

where ¢ (n) = arg [2(n)] € [0, 27).
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We determine the distribution of £, in four steps.

1. Determine the distribution of the phase error O(n)
= ((B(n) — $(1))ay. .

2. Prove that the phase errors of ¢(n + 1) and
¢(n — 1) are uncorrelated.

3. Determine the distribution of the phase difference
Bm) = o+ 1) — é(n ~1).

4. Determine the distribution of the CFD IF esti-
mator f;.

B. Step 1: Determining the Distribution of the Phase
Error 0

We can express x as x(n) = a, cos (1) where a, rep-
resents the signal amplitude in the vicinity of the sample
where we wish to estimate IF. Since we assume that x
meets the bandwidth conditions, we can express z as a
phasor given by

2(n) = Alx] (n) = a.e*™. 9)
Hence
in)y = Alf] (n)
= Ala, cos ¢] (n) + Ale] (n)
= a.e®" + z,(n) (10)
where
z.(n) = Ale] (n) (1D

is an analytic noise sequence.' It is useful to express the
analytic noise in terms of the in-phase and quadrature
components. An equivalent model of the noise in the vi-
cinity of sample ny is given by

2 (m) = €™z (n) + &™)z (n). (12)
Since z, is analytic
2{(n) = Hlz;(m)
+ o i
2zin — k
-y 2tz h (13)
- km

kodd

Now z is a zero-mean white Gaussian noise sequence with
variance o2 representing the in-phase component of the
noise at sample ny. So the quadrature component z¢ is also
white and identically distributed because 2l=H [zi] and
H[ ] is an all-pass filter. Thus Z can be expressed as the
sum of the analytic deterministic signal z and the in-phase
and quadrature components of the analytic noise as shown
in Fig. 1.

1) Linear and Circular Quantities: A linear quantity
has domain (— oo, +0) and can be visualized by a point
on a line; angular quantities are restricted to the domain
[0, 27) and can be visualized by points on a circle. We
will use the terms circular, periodic or modulo to describe
quantities which possess this angular nature. In digital

'Although ¢ is a white noise sequence, the analytic noise is colored be-
cause the negative frequency components are zero.
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Fig. 1. A phasor diagram of the signal and noise.

signal processing, circular quantities are Very common
since they arise whenever we perform modulo reduction
of linear quantities or a scaling of angular quantities. In-
deed, discrete-time frequency estimates are always inher-
ently circular.

2) Phase Error Analysis Using Distributions on the
Circle: We determine the distribution of the phase error
using distributions on the circle and show that the wrapped
normal distribution is actually a very good approximation
to the true distribution for moderate SNR’s.

3) The Exacr Distribution: In the case of a phasor of
magnitude a, in complex noise of the form ¢; + Je, where
€; and ¢, are both zero-mean Gaussian random variables
of variance o2, Blachman [2] and Bennett [1] have shown
that the pdf of the phase © is given by

exp (—a’/2¢g? a. cos 6 a.cos 6
po(@) = R LL20) o | - 2]

erfc
27 a\27

- exp (—a; sin® /202

[
(14)

where the complementary error function is defined by

|
erfc (x) = — S e /2 gy,
0 =7=] y
Equation (14) is the exact pdf of the phase error which
we require. Due to the complex nature of this expression,
we decided to use an approximation to the true distribu-
tion which greatly simplifies later calculations.

4) Relationship with the Wrapped Normal Distribu-
tion: The wrapped normal distribution can be visualized
as a normal distribution which has been wrapped around
a circle of unit radius.

Definition 6: If the random variable X is distributed as
N, 0). Then 6 = ((X)),, is wrapped normal N(O, o)
with pdf

+ o0

1 5 exp{_(e +27rk)2J
oN2r k= o’

where 0 < 6 < 2.

This distribution arises in the study of diffusion pro-
cesses and, in particular, Brownian motion on the circle;
for this reason Stephens [30] and Watson [33] call it the
Brownian distribution. Like the normal distribution on the
line, the wrapped normal distribution possesses the repro-
ductive property since the sum (or difference), reduced

Jo0) = (15)
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modulo 27, of two independent wrapped normal angular
variables with dispersion parameters o, and o, yields a
wrapped normal variable with dispersion parameter o3
given by

0% = U% + 0%.

(16)

Note that for circular random variables such as angles,
the sum of the random variables must be reduced modulo
27; the pdf of this sum is found by circular convolution
of the pdf’s of the individual random variables.

5) Wrapped Normal Approximation to the Phase Error
Distribution: The true distribution of the phase error can
be closely approximated by the wrapped normal distri-
bution for moderate SNR. That is, fors = 5

9 ~ N(O, 0'9) (17)

where og = 1/\/2_s Figs. 2 and 3 compare the true pdf
of © with the corresponding wrapped normal approxi-
mation for s = 5 and s = 10 to indicate the level of the
approximation.

C. Step 2: Proof that the Phase Errors are
Uncorrelated

We show that the phase errors of $(n + 1) and ¢ (n —
1) are uncorrelated by examining the autocovariance se-
quence of analytic wide-sense stationary noise.

1) The Autocovariance Sequence of Analytic Noise:

Lemma 1: Let € be a wide-sense stationary noise se-
quence and let z.(n) = A[e] (n). Then the autocovariance
sequence of 7, is given by

R. . (m) = 24IR.] (m) (18)

where R, is the autocovariance sequence of e.
Proof: Follows from linear system theory [27, p.
272]. O
Hence, if € is a zero-mean white noise sequence of vari-
ance of, the autocovariance sequence of the correspond-
ing analytic noise is given by

R.. (m) = 20%[8(m) + j&(m)] (19)
where
i for m odd
Em)y = { ™"
0 otherwise.

Since R, (m) is zero for all even m # 0, any two sam-
ples z.(n) and z.(n + m) of discrete, analytic noise are
uncorrelated for m even. A similar result was observed by
Tufts and Jackson [11] and Kay [16] where they noted
that the complex noise sequence comprising the even
samples of a discrete-time, analytic noise sequence is
white. Consequently, since

b(n) = arg [z(n) + z.(n))

it can be shown [19] that ¢(n + 1) and é(n — 1) are
uncorre}ated. MoreovAer, in the case of white Gaussian
noise, ¢(n + 1) and ¢(n — 1) are also independent.
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Fig. 2. True pdf of phase error © and corresponding wrapped normal ap-
proximation for s = 5.
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Fig. 3. True pdf of phase error 6 and corresponding wrapped normal ap-
proximation for s = 10.

D. Step 3: Determining the Approximate Distribution of
the Phase Difference 3

Let
By = (@ + 1) — d(n — D),

where B € [0, 27). The angles &(n + 1) and <f>(n — 1) are
uncorrelated with approximate distributions given by the
relations

d(n + 1) =~ N(o(n + 1), gp)
and
d(n — 1) =~ N(p(n — 1), gg).

From the reproductive property of the wrapped normal
distribution

B(n) = N(B(n), ap) (20)
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where
By = ((d(n + 1) — ¢(n — 1))y,
and
05 = g2 = 1 /s @1
from (16).

E. Step 4: Distribution of the CFD IF Estimator f,

1) The Approximate Distribution: We write the result
in terms of the CFD-IF estimator itself to obtain the fol-
lowing theorem:

Theorem 1: Approximate distribution of f.: The CFD IF
estimator f, of a monocomponent, noise-corrupted signal
of the form

x(n) = a. cos ¢(n) + e(n)

where e is a zero-mean white Gaussian noise sequence of
variance o, is approximately distributed as wrapped nor-
mal N(f(n) o,.) where

ﬁ

filn) = = ((arg [z0n + 1)] — arg [z(n — D))y,

and
0. = f./An~s (22)

where f; is the sampling frequency and s = a? /207 is the
SNR.

2) The Exact Distribution: An exact, although some-
what intractable, expression for the distribution of the
CFD IF estimator may be obtained by circularly convolv-
ing the exact phase error distribution of (14) with itself
and then scaling the result to convert from the angular
domain to the frequency domain.

Theorem 2: Exact distribution of fi: The exact pdf
Pcrn (f) is given by

pern(f) = pg <§ﬁ> (23)
T
where
Pe(B) = pa(®) ® pe(6). (24)

Here ® denotes circular convolution and pe(0) is ob-
tained from (14).

F. Validation of These Results

To demonstrate the validity of the wrapped normal ap-
proximations to the phase errors, we calculated the exact
distribution of the CFD IF estimator by circularly con-
volving the exact pdf given by (14) as described above.
This convolution was performed by:

1) sampling the exact pdf at 128 points,

2) forming the 128 point discrete Fourier transform,

3) calculating the squared magnitude of the transform,
and

4) finally taking the inverse discrete Fourier transform.
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Fig. 4. Comparison of estimates of the CFD IF estimator dispersion pa-
rameter from simulations with the exact value from the theory, and the
approximation of f,/(4w ~/§) For the simulated results, 100 simulations
were used above 10 dB, and 500 simulations at lower signal-to-noise ratios.
The dispersion of all estimates was based on the circular mean square error
of (36).

This series of operations gave us a sampled description
of the exact pdf of the CFD IF estimator. From the exact
pdf we calculated the standard deviation using the circular
mean square error defined later in this paper as (36). This
yielded the solid curve in Fig. 4. The dashed curve cor-
responds to the wrapped normal approximation and the
crosses show the measured dispersion from simulations.
This plot shows excellent agreement between the exact
dispersion derived from the foregoing theory and the sim-
ulated results. There is also excellent agreement with the
wrapped normal approximation at signal-to-noise ratios
above 5 dB.

Remarks: 1t is interesting to note that the CFD IF es-
timator is identical to the TFR moment estimator calcu-
lated from the Wigner-Ville distribution [4], [21]. Later
we will show that the CFD estimator is also asymptoti-
cally optimal since it meets the Cramér-Rao lower bound
for moderate SNR.

IV. ANALYSIS OF SCFD IF ESTIMATORS

The class of SCFD estimators is closely related to sev-
eral other estimators which have been proposed in the lit-
erature. In particular, they have a close relationship with
TFR moment IF estimators and estimators based on linear
regression of the signal phase. They can be used with fixed
window length to perform IF estimation at low computa-
tional cost and are particularly attractive for computation-
ally efficient adaptive IF estimation algorithms [21].

The analysis of these estimators from [19] is included
as the Appendix. It assumes that the smoothing window
function is nonnegative, the SNR is constant and moder-
ate (s = 5), and the IF variation within the window is
bounded. The analysis yields the following theorem [21]:

Theorem 3: Distribution of f5:

Let f{ be the SCFD IF estimator calculated from the
CFD estimator f; using the modulo convolution operator
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with a nonnegative smoothing window h of odd length P
= 20 + 1. Then f,(n) is distributed approximately as
wrapped normal N(f.(n), ¢.) and f$(n) is distributed ap-
proximately as N(f(n), o,) where

fim) = fi(n) (*))z)2h(n) (25)
and
hTph
ol = ﬁ o2 26)

and o, is the dispersion of f¢ given by o, = f./4x Vs the
P-dimensional smoothing function vector and unit vector
are defined by

h=1Thg - h ol 27
and
1=101---17 28)

respectively; the P X P dimensional correlation coeffi-
cient matrix p has elements

[l form =0
_sin [(m — 2)8°(n)/2] + 2 sin [mB*(n) /2]
(m—-2)7 mm

oy = J _sin [(;?m++2)2f;(n) /2
—% form =2
0 otherwise
\

where m = |i — j| and 3°(n) = dn fi(n)/f.

Fig. 5 compares the dispersion improvement ratio,
0./ a,, obtained from simulations with the predicted value
from (26) for the case of an SCFD IF estimator with a 5
point rectangular smoothing window. This figure con-
firms (26) and clearly shows the frequency dependence of
this SCFD estimator which is caused by dependencies be-
tween phase estimates introduced by the Hilbert transform
used to form the analytic signal. The dispersion of the
SCFD estimator with a 5-point rectangular smoothing
window is up to 3.5 times lower than the unsmoothed CFD
estimator.

V. STATISTICAL PERFORMANCE OF PARrTICULAR SCFD
ESTIMATORS

A. SCFD Estimators Corresponding to TFR’s

We have already stated that the dispersion parameter
for the TFR moment IF estimator calculated with the
Wigner-Ville distribution is o, from (22). Figs. 6 and 7
show the predicted dispersion improvement ratios for the
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Fig. 5. Comparison of measured and calculated values of dispersion im-
provement, o../g,, against frequency for an SCFD IF estimator using a 5
point rectangular smoothing window. The simulations were performed by
calculating the SCFD estimator 100 times at each of the 64 different fre-
quencies with a SNR of 20 dB.

SCFD estimators corresponding to the spectrogram using
a rectangular data window and the Choi-Williams expo-
nential {6] TFR.

In the case of the Margenau-Hill-Rihaczek (MHR) [29]
TFR, the corresponding SCFD has a P = 3 point smooth-
ing window function A of the form: h(—1) = 1, h(0) = 0
and A(1) = 1. This estimator has a dispersion improve-
ment ratio of 2 for all frequencies. In the next section we
will see why the dispersion is frequency independent in
this case.

B. Estimators with Frequency Independent Dispersion

Consider SCFD estimators which use a comb smooth-
ing function A which has A(n) = 0 for all odd n. All of
the frequency dependent terms in (26) are multiplied by
0 and the dispersion o, becomes frequency independent.
Such estimators only require phase estimates from every
second sample of the signal; these estimators effectively
estimate the IF of the resampled signal comprising every
second sample of the original analytic signal using a finite
differencing operation between adjacent samples. Since
Lemma 1 shows that the even (or odd) samples of analytic
noise are uncorrelated, we see that o, is frequency inde-
pendent because the resampled noise sequence is white.

In particular, consider an estimator with a rectangular
comb smoothing window of the form

Wy =)
Yo

where the window length P = 4g + 1, g € Z". Using
(26), the improvement ratio is given by
[ P +1

o (30)

foreven n < 2¢
, (29)
otherwise

s
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Fig. 6. Calculated values of dispersion improvement ratio, o, /o,, against
frequency for an SCFD IF estimator using with rectangular smoothing win-
dows of length P = 1, 3, 5,7, 9, 11, and 13. Each of these estimators
corresponds to a TFR moment IF estimator derived from a spectrogram
calculated with a rectangular data window of length P + 2.

TN

i ——

Improvement Ratio
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0.00 .050 .100 .150 .200 .&50 -300 .350 400 50 .S00

Normalized Frequency (f-/fs>
Fig. 7. Calculated values of dispersion improvement ratio, o,/ o,, against
frequency for an SCFD IF estimator using exponential smoothing windows
of the form h(n) = exp [—dn?/4)Vdr /2 where the smoothing parameter
d=10,5,2,1,0.5,and 0.2. These estimators correspond to TFR moment

IF estimators derived from the Choi-Williams exponential TFR with
smoothing parameter d.

In this case the dispersion is solely due to the phase esti-
mation errors at the endpoints of the smoothing function
ie.,O(m —2¢g — 1)and O(n + 2q + 1); all phase esti-
mation errors at internal samples cancel. This estimator is
similar to estimators based on zero crossing detection.

Compare this estimator to an SCFD estimator with a
rectangular window of the form

1 forn < 2¢q

h(n) = €2))

0 otherwise.

The dispersion improvement ratio of this class of SCFD
estimators has already been presented in Fig. 6. As f; ap-
proaches 0 Hz (or equivalently f, /2), the improvement
ratio of estimators with rectangular windows approaches
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a maximum value of

g, P
lim =< = —, (32)
fl—p() GS \/5
A minimum value of
o, P
in|— |~ — 33
i (u] 18 33)

is attained near f;, = f,/4 for large P (using numerical
evaluation of (26)). These values seem to indicate that we
can obtain slightly more efficient estimators in some sec-
tions of the frequency range by using window functions
which use all samples of the original analytic signal rather
than just the even or odd samples.

It is interesting to investigate this point further. An an-
alytic signal is completely specified by its even (or odd)
samples because it requires only half the sampling rate of
the corresponding real signal to prevent aliasing. Thus the
odd samples of an analytic signal can be recovered from
the even by using the sampling theorem [27, p. 337]. At
first glance it seems strange that an improved SCFD es-
timate can be obtained by using all samples instead of just
the even samples, when the odd samples are linearly de-
pendent on the even. Upon reflection we see that the odd
samples near the ends of the window function are signif-
icantly dependent on even samples outside the window;
their inclusion has a similar effect to slightly increasing
the length of the comb smoothing window in a frequency
dependent manner.

In IF estimation we minimize mean-square estimation
error at each instant by ensuring that we choose the largest
possible window consistent with the constraint that IF
variation within the window is kept below a given level.
Thus there is no point in investigating the performance of
SCFD estimators which use every sample because they
effectively violate the window length constraint by de-
pending on samples outside the window. We therefore fo-
cus our attention on SCFD estimators with comb smooth-
ing windows.

Now we must answer the questions, ‘‘Which comb
window function will yield the most efficient SCFD esti-
mator?”” and *‘What is the most efficient estimator we can
hope for?”’

VI. OpTiMAL IF ESTIMATION

A. Cramer-Rao Lower Bound

An optimal (efficient) estimator of a quantity is un-
biased, maximum likelihood, normally distributed and
possesses the lowest possible variance for a given data
set. Rife and Boorstyn [28] have determined the Cramér—
Rao (CR) lower bound for the variance of any unbiased
frequency estimator in the case of a complex sinusoid with
unknown phase and amplitude in white, Gaussian noise.
We have adapted their result so it can be applied to real
signals.
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Theorem 4: Cramér-Rao (CR) Lower Bound for a Real
Signal: Let #(n) = x(n) + e(n) where x is a real sinusoid
of the form x(n) = a. cos [2ufyn] and € is a zero-mean
white Gaussian noise sequence with variance o?. Then the
CR lower bound on the variance of an unbiased estimator
of the frequency f, (using only the odd or even samples of
the analytic signal) is given by

WA
@m)’ sN,(N? = 1)

where N; = (M + 1) /2 and M is the number of samples
in the data window, presumed odd. The signal-to-noise
ratio is given by s = a2 /2¢2.

The length M represents the length of the window used
to form the periodogram in the case of the maximum like-
lihood estimator (see Section VI-C). For a SCFD esti-
mator with a smoothing window of odd length P we use
M =P + 2 We can produce estimators which have a
variance which is slightly lower than (34) by using all
samples of the analytic signal, but this is effectively in-
creasing our window length M as shown previously.
Theorem 4 can be used to give a lower bound on the vari-
ance of IF estimators if we assume that the windows are
selected to ensure that IF is nearly constant within the
window.

Thus attaining the Cramér-Rao lower bound is the best
that we can hope to achieve with SCFD estimators. Now
we wish to determine the comb window function which
will yield the most efficient SCFD estimator. Fortunately,
this window function was already discovered by other re-
searchers performing parallel research which we will soon
€xamine.

var [f] = (34)

B. ‘Circular Sample Estimators

The above formula for the CR lower bound assumes
that the frequency estimates can take any value on the real
line, yet discrete-time frequency estimates must always
lie in the interval [0, f/2). Therefore, although (34) in-
dicates that CR lower bound approaches infinity as the
SNR approaches 0, the discrete-time frequency estimates
will actually approach a uniform distribution over [0,£/2)
with a (linear) mean of £,/4, and a (linear) variance of

. " 2 +f;/4 . R
var [fo] = E(f§] = = f 1 df,
fr —fi/4
fi
48
which is less than the CR lower bound! Indeed, the value
of the (linear) mean is also quite unsatisfactory since in-
tuitively there is no reason why we should havefo =f,/4
at low SNR regardless of the signal.

These problems highlight the dangers of using linear
operators on circular random variables. As SNR ap-
proaches 0, it is better say that the distribution offo ap-
proaches a uniform circular distribution which has an un-
defined circular mean.

(35)
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One method of resolving this difficulty would be to re-
formulate the CR bounds using circular random variables
as suggested by Mardia [23, p. 118]. Instead of using this
approach, we have found it convenient to linearize the
circular variance to obtain a quantity which is equivalent
to the linear variance at high SNR but avoids wrapping
point ambiguitics. The linearizing transformation as-
sumes that the statistic is wrapped normally distributed
[23, p. 74] and may be invalid if this condition no longer
holds (e.g., at small SNR).

In practice we use the linearized circular mean-square
error (CMSE) rather than the variance to highlight the bias
inherent in some estimators. We have chosen the follow-
ing definition:

Definition 7: Circular mean-square error (CMSE): Let
{f (k)} be a set of K discrete-time frequency estimates of
a sinusoid with frequency f, in noise sampled at f, Hz.
Then the sample estimator of the (linearized) CMSE is
defined by

f2 1 k-1 A
= g ] & o s )|

f o = £ ?
E(( B2 ) AT e

where fy is the circular sample mean given by

f K-1 .
=& (S vt o

The circular sample mean [21], [22], [23, p. 20] is the
natural measure of location for a set of circular random
variables such as discrete-time frequency estimates. It may
be visualized as the argument of a unit phasor sum; the
argument of each unit phasor would be proportional to the
corresponding frequency estimate. The magnitude of the
phasor sum divided by the number of phasors is used to
derive a measure of circular sample variance.

For sample bias less than f:/4, the CMSE increases
with increasing bias Jjust like the linear MSE. However,
the bias can never exceed f; /4 because of the circular na-
ture of these estimators. In general, the CMSE can be
used to replace the linear MSE in the evaluation of esti-
mators of circular quantities. The linear MSE will give
about the same results as the CMSE provided the variance
of the estimators is small and the origin is chosen to avoid
circular wraparound.

It is interesting to note that Rife and Boorstyn [28] were
aware of the difficulties associated with linear estimators
of MSE and commented that the bias was greatest when
o was near O or f; /2 Hz. For this reason they restricted
their signal frequencies to be near f, /4. The CMSE pro-
vides an elegant answer to this common problem.

C. Maximum Likelihood Estimation

The optimal maximum likelihood (ML) estimator of a
complex sinusoid in complex white Gaussian noise is
given by the location of the peak of the periodogram [28].
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A coarse estimate can be made directly from the DFT of
the signal as was done by Palmer [26].

Frequency estimators generally suffer from threshold ef-
fects. There is usually an SNR value, called the threshold,
below which the dispersion of the estimator rises very
rapidly at the SNR decreases. This threshold generally de-
creases with increasing data window length M [28]. Al-
though several estimators are optimal at high SNR, they
all exhibit higher thresholds than the ML estimator for a
given data set.

If the ML estimator is used to estimate IF at successive
samples, we can replace the FFT calculation with a re-
cursive DFT [10] to reduce the computational load.
Nevertheless, in many instances, computation of the true
ML estimator may be prohibitive.

D. The Kay Estimator

Kay [12], [15] recently proposed an estimator based on
finite differencing of the phase of even or odd samples of
the analytic signal; an operation which involves far less
computation than the ML estimator and can be easily for-
mulated for real-time IF tracking. This estimator is based
upon linear regression on the phase as proposed by Tretter
[31]. It was claimed that this phase regression estimator
is unbiased and that its variance attains the CR lower
bound for moderate SNR (albeit at a somewhat higher
threshold than the ML estimator). We find that this is not
the case for much of the frequency range because the es-
timator does not handle the circular nature of discrete-
time frequency estimators correctly.

We have reformulated the Kay estimator using our no-
tational conventions so that it resembles an SCFD esti-
mator. Kay’s estimator is given by

T -
THO RSP 0)
carg [in — p + Di*¥(n — p — 1)]
= péQ h(p)fin = p)
= hy(n) * f{(n) (38)
where

3N, :
e (17 [R])) =

(39

hy(p) =
0 otherwise

is the comb smoothing window with length P = 20 + 1
containing N; = (P + 3)/2 independent samples (as in
Theorem 4). The * operator denotes linear convolution
and the CFD IF estimator of the noisy signal £ is given
by

Femy = 4f—7r (arg [ + D] - arg (51 — D)y (40)
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Kay uses a parabolic window function A, which mini-
mizes the variance of the estimator according to his anal-
ysis. The parabolic shape arises because of the depen-
dency between successive CFD estimators. Kay has
compared the dispersion of this estimator with a rectan-
gularly windowed estimator which he calls the unwin-
dowed estimator given by

Q
fi= 4i 2 h(p)arg [2(n — p + 1)2*(n — p — 1)]
wp=-0
41)
where
1
forevenn < Q
OEEE 42)
0 otherwise.

He has shown that the ratio of variances of the unwin-
dowed estimator to the parabolically windowed Kay es-
timator approaches N;/6 for large N;.

Contrary to Kay’s claims we find that these estimators
arc biased and exhibit a high threshold when the IF
approaches” 0 or f, /2 Hz. This effect occurs because some
of the f¢ in the summation in (38) wrap around the circular
domain so that estimates that should be near 0 Hz some-
times appear near f,/2 and greatly increase the variance
of the sum. The poor performance of the estimator is a
direct result of using the linear convolution operation on
circular data.

E. The Parabolic SCFD (PSCFD) Estimator

These problems may be overcome by replacing the lin-
ear convolution operation in (38) with the modulo-\ con-
volution operation from definition 4 to obtain a new es-
timator which we call the parabolic SCFD (PSCFD)
estimator given by

Fim = h(p) (D)2 FE(p). 3)

It is easier to compare the two estimators when we expand
(43) using (40) and the definition of the modulo-\ con-
volution to obtain

Q
fimy = f; (<arg LEQ hy(p) exp {j arg [2(n — p

+ DHi*n —p - 1)]}})) .
2r

Substituting (39) into (26) and performing some algebraic
manipulation we find that the dispersion of f ¢ for mod-
erate SNR is given by
2
2 f: 6
5= ——, 45
% = @ny sNVE - D) @
Now (45) is just the CR lower bound given by Theorem
4. Tt follows that ¢2 is the minimum value that the SCFD

(44)

“In [12] estimator bias was minimized near 0 Hz because the phases were
expressed in [—, +) instead of [0, 27).



LOVELL AND WILLIAMSON: STATISTICAL PERFORMANCE

dispersion o2 from (26) can attain using comb smoothing
window functions. Although we can attain a lower vari-
ance by using arbitrary window functions, these esti-
mators violate the window length constraint discussed in
Section V-B. When N; = 2 the PSCFD estimator becomes
the CFD estimator and so we see that the CFD estimator
is also optimal at moderate SNR. Kay’s unwindowed es-
timator corresponds to the SCFD estimator with a rect-
angular comb smoothing window which has a dispersion
of

2
2 _ fs 1
7 T @ s, — 1) “6)
from (30). Dividing (46) by (45) we obtain
o NN +1) N
276 -1 "6 “

a result which is identical to Kay’s. We see that parabolic
windowing offers substantial dispersion improvement for
large window lengths. As mentioned previously, the
SCFD estimator with a rectangular comb smoothing win-
dow corresponds to a form of zero-crossing frequency es-
timator.

VII. COMPARISON OF SIMULATION RESULTS

Since we get spurious large values for (linear) MSE
when frequency estimates wrap around near O or f, /2 Hz,
we compare these estimators using the CMSE of defini-
tion 7. Figs. 8 and 9 show the performance of the ML,
PSCFD, and Kay estimator for normalized frequencies of
fo/f, = 0.05 and 0.20, respectively. These figures show
that the Kay estimator has a frequency dependent thresh-
old. The Kay estimator is also biased towards a normal-
ized frequency of 0.25 at low SNR. Both the PSCFD and
ML estimators are unbiased and have a constant thresh-
old.

A. TFR Moment IF Estimators Revisited

Kay mentions two additional estimators which are
equivalent to the Kay estimator (38) and the unwindowed
estimator (41) at high SNR. These are, respectively,

w  f 2
fi=y-ame ((FZ_Q hy(p)zn — p

+ Dz*(n — p — 1)>> 48)
2r
and
o ki 5
fi=g o <<p=_Q h.(p)z(n — p
+ Dz*(n — p — 1)>> (49)
27

These estimators are formed by interchanging the opera-
tions of argument and summation. Lank et ai. [17] pro-
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Fig. 8. Comparison of the dispersion of the ML, PSCFD, and Kay esti-
mators against SNR for a normalized frequency of 0.05. The window length
M = 47 for the ML estimator and the smoothing window length P = 45
for the PSCED and Kay estimators. The dispersions were calculated using
the frequency estimates from 100 simulations at each SNR value.

100.0 T T T T

CR BOUND E
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10 LOG(1 /CIRCULAR MSE)

10.0 + b
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Fig. 9. Comparison of the dispersion of the ML, PSCFD, and Kay esti-
mators against SNR for a normalized frequency of 0.20. The window length
M = 47 for the ML estimator and the smoothing window length P = 45
for the PSCFD and Kay estimators. The dispersions were calculated using
the frequency estimates from 100 simulations at each SNR value.

posed the estimator f? of (49) and it was later studied by
Jackson and Tufts [11] and Kay [14]. The variance of (49)
is given in [17] and is identical to our result for the ‘‘un-
windowed’’ estimator (46) at high SNR although Kay
shows that f has a higher threshold than f% It can be
shown [22] that (49) is identical to a TFR moment esti-
mator; in fact, if 4, were constant for all samples within
the window rather than just the even samples, (49) would
be identical to the TFR IF moment estimator derived from
the spectrogram with a rectangular data window of length
M = P + 2. Similarly (48) is the TFR moment IF esti-
mator corresponding to the PSCFD. This does not exactly
correspond to any well-known TFR although an infinite
number of TFR’s could be designed which yield (48) by
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their first moment. However, (48) approximately corre-
sponds to the TFR moment IF estimator from a spectro-
gram formed with a low-sidelobe window such as the
Hamming or Blackman-Harris window [9] which are very
similar to the parabolic window. It is interesting to note
that such windows may be used to reduce the variance of
DFT based spectral estimates [13, p. 80] just as we use
the parabolic window to minimize the variance of the
SCFD estimator.

VIII. CONCLUSIONS

We have determined the distribution of CFD and SCFD
IF estimator which are closely related to IF estimation via
TFR moment estimators. These results show that there is
no point in considering IF estimators which use every
sample of the analytic signal because the variance of these
estimators changes with frequency and is influenced by
signal behavior outside the analysis window. We only
need to consider estimators based on every second sample
of the analytic signal. This paper gives a framework which
allows the comparison of several other estimators such as
the zero-crossing estimator and the estimator proposed by
Kay. The Kay estimator was found to be biased and ex-
hibit a large threshold for certain frequencies because it
does not account for the circular nature of discrete-time
frequency estimates. We replaced the linear convolution
operation in the Kay estimator with the appropriate con-
volution operation for circular data to arrive at the PSCFD
estimator. This estimator is unbiased and has frequency
independent variance but it retains the asymptotically op-
timal performance and simplicity of the Kay estimator.

It has become clear that many problems encountered in
discrete-time signal processing can be traced to poor un-
derstanding of the circular nature of some operations such
as frequency estimation. We have highlighted some of
these problems and proposed a number of mathematical
operations suitable for circular data which should be used
in preference to the conventional linear operations.

APPENDIX
ANALYSIS OF SCFD IF ESTIMATORS

A. Problem Statement and Assumptions

We assume the following conditions to simplify the de-
rivation.

1) The window function 4 is nonnegative.

2) The SNR is constant and moderate (s = 5) within
the window.

3) The IF variation within the window is bounded such
that

407
where f} is the SCFD estimate which would be obtained
in the absence of noise. A

We derive the distribution of 8°(n) = 4w f(n) /f, rather

than f3 to simplify the derivation. The estimator 3° may
be visualized as the argument of the phasor sum used to

max |fin —p) — fi(n)| <
-Q=p=Q
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calculate the smoothed IF estimator 7. Then from defi-
nition 5 we have

Q P
B = ((arg { 2 h(p)e"‘*‘"‘”’D) (50)
p=-Q 2n

where B(n) = ($(n + 1) = (n — 1))y, and B, B €
[0, 2m).
Similarly we define the noise-free angle

Q
B(n) = <<arg { 2 h(p)ef"*‘"*"’D) (51)
. p=-Q 27

where B(n) = ((¢(n + 1) — ¢(n — 1)), and B°, B €
[0, 27). )
We determine the distribution of f7 in four steps.

Al. Determine an expression for the phase error y(n) =
((B*(n) — B (1)))2r.

2. Show # is distributed as zero-mean, wrapped nor-
mal.

3. Find the dispersion parameter of ~.

4. Determine the distribution of the SCFD estimator

A
f.\
i

B. Step I1: Determining an Expression for the Phase
Error v

We need to determine the distribution of v, where v rep-
resents the phase error in the smoothed IF estimator due
to noise and is defined by

y(n) = (B*(n) — B*))an-

Since v is a zero-mean angular error, it is convenient to
express it in the domain [—w, +=) rather than [0, 27).
Let the phase errors of the individual unsmoothed CFD
I[F estimators be denoted o, where

a(n) = (B(n) — B(n))ry

and o € [—w, +m). When the SNR rNatiO is moderate
(s = 5), the a(n) will be distributed as N(0, «,) where a,,
= og as given by (21). From (52) and (50) we have

Q
<<arg L 2 hp) exp Ljfitn = p)] J —Bs(n)>>

(52)

(53)

()
27

0
o <|:I’:ZEQ h(p) exp [jB(n — p)]} efjaw)

Q
,,EQ h(p) exp {jlB(n — p) — Bs(n)]}}

= arg

Q P

2 h(p)sin [B(n = p) — B*(m)]
= arctan piQ e .

FZZEQ h(p) cos [B(n — p) — B*(n)]

(54)
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Substituting (53) into (54) we obtain
¥(n)

= arctan

Q
(& h(p)sin [B(n = p) = B*(n) + aln — p)]

- .
FEQQ h(p) cos [B(n — p) — B*(n) + a(n — p)]

(55

We expand the trigonometric terms to obtain
[4

y(n) = arctan Kp 2 hp) sin [8(n = p) = B ()

- cos [a(n — p)]

Q
+ ng h(p) cos [B(n — p) — B*(n)]

- sin [a(n — p)]>

Q
. <p=E_Q h(p) cos [B(n — p) — B°(n)]

* cos [a(n — p)]
9]
- ,,:ZEQ h(p) sin [B(n — p) — B*(m)]

-1
- sin [a(n — p)]> ] (56)

Since we assume moderate SNR, we use the small angle
approximations cos a(n) = 1 and sin a(n) = a(n). Di-
viding both the numerator and denominator by

Q
FZ;Q h(p) cos [B(n — p) — B*(n)]

gives

y(n) = arctan
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and this shows that the first term in the numerator of (57)
is zero. Substituting (58) into (57) we obtain

y(n) = arctan = (59)

where

Q

25 h(p) cos [B(n — p) — B*W]a ~ p)
=" (60)

ZQ h(p) cos [B(n — p) — B*(m)]
.

and

Q

25 h(p)sin [B(n — p) — B*m]a(r ~ p)
x=""" (61)

Q
PEQ h(p) cos [B(n — p) — B*(n)]

1) Bounding the Variances of X and Y: By using the
assumptions that the window function /2 is nonnegative
and the IF variation within the window is bounded, we
can determine upper bounds for the variances of ¥ and X
as follows [19]:

0} < o2 (62)
and

22
ol = sin” Ag 52
cos’ Ag ¢

(63)

2) Further Approximations to ~: Using (21) and the
assumption that s = 5, we get

0, < = 0.45.

o

Sl

By assuming that Az < 0.1, (63) gives

oy < 0.045 << 1

Q Q
2, Py sin (B = p) = B° 0] X h(p) cos [Bn ~ p) = B (Wlatn ~ p)

Q

_Z h(p) cos [B(n — p) — B*n)]
p=-Q

0

+ 0
FZ_Q h(p) cos [B(n — p) — B°(m)]

-1

L2 hp)sin (B = p) = B*(m)]atn — p)

1 -

)
pzz_:g h(p) cos [B(n — p) — B(M)]

It is easily shown [19] that
Q
3 L 2, h(p) exp {j1B(n — p) ~ 6‘<n)1}]

Q
= p=Z_Q h(p) sin [B(n — p) — B*(m)] =0 (58)

(57

and so we can neglect the denominator in (59). From (62)
we know that

Oy < 0,

and therefore we can further simplify (59) by using the
small angle approximation, arctan ¥ = Y. Thus (59) sim-
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plifies to

(n =Y

Q
pggmmwumn—m—ﬁwmwn—m

~

Q
,,:ZEQ h(p) cos [B(n — p) — B ()]
(64)

Although v is really a circular random variable, at this
stage it is safe to treat it as a conventional linear random
variable because it has zero mean and a standard deviation
which is small with respect to its angular domain [—,
+m). Thus there is no need to express the right side of
(64) as a quantity reduced modulo 2.

Since Ag is a small angle

cos [B(n — p) — B*(M)] = cos (Ag) = 1

and thus
Q0
L2, Wpyat = p)
y(n) = %
h
L=, )

(65)

We are now in a position to describe the distribution of v
and hence f7.

C. Step 2: Wrapped Normal Approximation to the
Distribution of

Equation (65) shows us that v is approximately equal
to the weighted sum of the a(n) which are approximately
distributed as N(0, o,). Hence, using the reproductive
property of the wrapped normal distribution

v ~ N0, o). (66)

We must determine the dispersion parameter o, allowing
for the dependencies between the a(n) due to the Hilbert
transformer used to form the analytic signal.

D. Step 3: Finding the Dispersion Parameter of the
Distribution

First we define the following P-dimensional vectors
(recall that P = 2Q + 1).

B=1[8n—0Q) - B(n+ QI
B=[Bn—-0Q - Btn+ Q)
¢, =1[opn — Q) -+ ¢(n + Q)
¢, =[6(n - Q) -+ d(n + O
a=[an—-0) - an+ Q)]

h=[h-0 - O

and
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We have from (65)
o = Ely’(m)]

Q 2
2 h(p)a(n — p)
pP=-0Q

%
h
e (p)

M /hTa)\?
'P(ﬁ”
_ h'Elea’1h
1y

h'ph
= (h TI)Z Oy

(67)

where we define the correlation coefficient matrix p by

p = aLiE[uaT]. (68)
Now
a=p-p
= $n+] - &n—] 2T
=0, -0,_, (69)
where
0,=[060r-0 - 6n+ Q]

O = (B(n) ~ d(m)), = ((arg [2(n)] — arg [2()]))ss

and © € [—7, +) represents the phase error in estimat-
ing arg [z(n)] due to noise. Substituting (69) into (68) we
get

1
p = ?E[(G)n#»l - G)n—l)((.)n+l - On—l)]
1
= 2 [E1©,.,0],,]1 + E[®, ,0]_)]
- E[0,,,0] ] - E[©,_,0].]]
1
== [R - E0,,,0, ] - £0, 0,,,]]. (70
where R = E[Onez] = E[®n+l®r71.+l] =

E[®,_,®]_|] since we assume that the noise is wide-
sense stationary.

1) Determining the Autocovariance Matrix for ©: Fig.
10 shows the noise-free phasors z(n) and z(n + m) of
magnitude a. and the corresponding noise corrupted pha-
sors Z(n) and £(n + m). The noise phasors are represented
as the sums of in-phase and quadrature components de-
noted z! and z?, respectively. Because of the moderate
SNR assumption, we use the small angle approximation
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zé(mm]

2(n+m) = a exp(ip(n+m)] .
" 2 (n4m)

© (ntm)

z{n) = acexp[j¢(nll

Fig. 10. Phasor diagram of Z.
tan © = O©. We have

zi(n)

O(n) = arctan ——
a(’
O
aC

(71)

and similarly
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Since the noise is analytic, we know from (13) that

+oo

2zL(n — k
2 = 3 2= (76)
kodd

and both z' and z¢ are zero mean, white Gaussian noise
sequences with variance o2, Since white noise sequences
are orthogonal

Elz{(mz(n + m)] = Elzi(mzi(n + m)] = o 8(m).
Using this result and substituting (76) into (75) yields
E[6(n)O(n + m)]
2

1 .
~ L o(m) — — E|zi(n + m)
a a

c s

an

s +oo i _
iy B 5 22en — K
- km
kodd

Now from (20), 03 = 03/2 and 0, = o4 since o is just

29(n + m) cos [¢(n + m) — ¢(n)] — zi(n + m) sin [¢p(n + m) — ¢(n)]

O(n + m) = arctan

2i(n + m) cos [p(n + m) — ¢(m] — z(n + m) sin [¢(n + m) — ()]

a.

(72)

We will use the approximation

mB*(n)
—

Here we replace the actual difference between angles m
samples apart with m times the average angle difference
between samples. This approximation is good since we
assume that IF variation within the window is small. Sub-
stituting (73) into (72) yields

o(n + m) — ¢(n) = (73)

On + m) = L [zf(n + m) cos M
a, 2
— zi(n + m) sin mBz(n)} (74)
So using (74) and (71) we have
E[6(n)0(n + m)]
l 5
~ a_g E {zf(n) <z?(n + m) cos n 2(n)
— zH(n + m) sin @)} (75)

ac

the phase error associated with B. Thus the elements r;of
R are given by

r. = E[B(n)O(n + m)]

g

2
Za form =0
2
2
= 2
T = in [mB*(n)/2]  for m odd (78)
2 mm
0 for even m # 0
where m = |i — j|.

All terms in (70) can now be determined. The elements
rj of E[®,,,0/_,] are given by

ry = E[6(n + DO — D] = r; 42 79
and the elements rj of E[®,_,0,, ] are given by
= E[0(n — DO + D] = ;5. (80)

Substituting (78)-(80) into (70) we see that the correlation
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coefficient matrix p is a Toeplitz matrix with elements

1
;= 3 Rrj — 1 — rijoal
a&

Thus
(1 form =0
_sin [(m — 2)8*(n) /2] N 2 sin [mB*(n) /2]
(m - 2)7T mm
_ _sin [(m + 2)8°(n) /2]
Py = m+ 271 for m odd
~% form = 2
kO otherwise

where m = |i — j|.

E. Step 4: Approximate Distribution of the SCFD IF
Estimator f?

Since the IF estimators only differ from the angular
quantities by a simple scale factor, these results can be
rewritten in terms of the smoothed CFD IF estimator itself
to obtain Theorem 3 as required.

ACKNOWLEDGMENT

The authors wish to thank P. Kootsookos of the De-
partment of Systems Engineering, Australian National
University (formerly of the Department of Electrical En-
gineering, University of Queensland) for his many helpful
comments and insights during this research. They also
thank B. Boashash of the Department of Electrical Engi-
neering, University of Queensland, for providing the ini-
tial inspiration for examining time-frequency representa-
tions. Finally, they thank the anonymous reviewers for
their constructive comments regarding this work.

REFERENCES

[1] W. R. Bennett, ‘‘Methods of solving noise problems,’’ Proc. IRE,
vol. 44, pp. 609-639, May 1956.

[2] N. M. Blachman, “‘A comparison of the informational capacities of
amplitude and phase modulation communication systems,”’ Proc. IRE,
vol. 41, pp. 748-759, June 1953.

[31 N. M. Blachman, Noise and its Effect on Communication (McGraw-
Hill Electronic Sciences Series). New York: McGraw-Hill, 1966.

[4] B. Boashash, B. C. Lovell, and P. J. Kootsookos, *‘Time-frequency

signal analysis and instantaneous frequency estimation,”” in Proc.

IEEE Int. Symp. Circuits Syst. (Portland, OR), 1989, pp. 1237-1241.

B. Boashash, ‘‘Time-frequency signal analysis,” in Advances in

Spectrum Estimation and Array Processing, vol. 1, S. Haykin, Ed.

Englewood Cliffs, NJ: Prentice-Hall, 1990, pp. 418-517.

[5

[t}

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40, NO. 7, JULY 1992

[6]

(7]

18]

9]

[10]

[t1}

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[201

[21]

(22]

[23}
[24]
[25]

[26]

[27]

[28]

[29]
[30]

131]

1321

(33]

H. I. Choi and W. J. Williams, *‘Improved time-frequency represen-
tation of multicomponent signals using exponential kernels,"” JEEE
Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 862-871,
June 1989.

L. Cohen, *‘Generalized phase-space distribution functions,”” J.
Math. Phys., vol. 7, pp. 781-786, 1966.

E. J. Gumbel, J. A. Greenwood, and D. Durand, **The circular nor-
mal distribution: Theory and tables,’” J. Amer. Stat. Ass., vol. 48,
pp. 131-152, 1953.

F.I. Harris, **On the use of windows for harmonic analysis with the
discrete Fourier transform,”” Proc. IEEE, vol. 66, pp. 51-83, Jan.
1978.

G. H. Hostetter, ‘‘Recursive discrete Fourier transformation,’’ IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 184-
190, Apr. 1980.

L. B. Jackson and D. W. Tufts, ‘‘Frequency estimation by linear
prediction,”” in Proc. IEEE Int. Conf. ASSP (Tulsa, OK), 1976.

S. M. Kay, *‘Statistically/computationally efficient frequency esti-
mation,”” in Proc. IEEE Int. Conf. ASSP (New York), 1988, pp.
2292-2295.

S. M. Kay, Modern Spectral Estimation. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

S. M. Kay, ‘*Comments on frequency estimation by linear predic-
tion,”” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-27, pp. 198-199, Apr. 1979.

S. M. Kay, ‘A fast and accurate single frequency estimator,”* IEEE
Trans. Acoust., Speech, Signal Processing, vol. 37, no. 12, pp. 1987-
1990, Dec. 1990.

S. M. Kay, ‘*Maximum entropy spectral estimation using the analyt-
ical signal,”” JEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-26, pp. 467-469, Oct. 1978.

G. W. Lank, L. S. Reed, and G. E. Pollon, ‘A semicoherent detec-
tion and Doppler estimation statistic,”” JEEE Trans. Aerosp. Elec-
tron. Syst., vol. AES-9, pp. 151-165, Mar. 1973.

H. Leib and S. Pasupathy, ‘‘The phase of a vector perturbed by
Gaussian noise and differentially coherent receivers,”’ IEEE Trans.
Inform. Theory, vol. IT-34, pp. 1491-1501, Nov. 1988.

B. C. Lovell, *‘Techniques for nonstationary spectral analysis,’
Ph.D. disseration, Univ. Queensland, Brisbane, Australia, 1990.

B. C. Lovell, R. C. Williamson, and B. Boashash, ‘‘The relationship
between instantaneous frequency and time-frequency representa-
tions,”” IEEE Trans. Signal Processing, to be published, May 1993.
B. C. Lovell and B. Boashash, *‘Efficient estimation of the instanta-
neous frequency of a rapidly time-varying signal,”” in Proc. Austra-
lian Symp. Signal Processing Its Appl. (Adelaide, Australia), Apr.
17-19, 1989, pp. 314-318.

B. C. Lovell, P. J. Kootsookos, and R. C. Williamson, *‘Efficient
frequency estimation and time-frequency representations,”’ in Proc.
Int. Symp. Signal Processing Its Appl. (Gold Coast, Australia), Aug.
27-31, 1990, pp. 170-173.

K. V. Mardia, Staristics of Directional Data. London: Academic,
1972.

R. von Mises, ‘‘Uber die ‘ganzahligkeit® der atomgewichte and ver-
wandte fragen,”’ Phys. Zeitschrift, vol. 19, pp. 490-500, 1918.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Process-
ing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

L. C. Palmer, ‘‘Coarse frequency estimation using the discrete Fou-
rier transform,’” JEEE Trans. Inform. Theory, vol. 1T-20, pp. 104-
109, Apr. 1967.

A. Papoulis, Probability, Random Variables, and Stochastic Pro-
cesses, second ed. Singapore: McGraw-Hill, 1984.

D. C. Rife and R. R. Boorstyn, ‘‘Single-tone parameter estimation
from discrete-time observations,”” IEEE Trans. Inform. Theory, vol.
IT-20, pp. 591-598, Sept. 1974.

A. W. Rihaczek, ‘*Signal energy distribution in time and frequency,’
IEEE Trans. Inform. Theory, vol. T-14, pp. 369-274, Mar. 1968.
M. A. Stephens, ‘‘Random walk on a circle,”” Biometrika, vol. 50,
pp. 385-390, 1963,

S. A. Tretter, *‘Estimating the frequency of a noisy sinusoid by lincar
regression,”’ IEEE Trans. Inform. Theory, vol. IT-31, pp. 832-835,
Nov. 1985.

A. 1. Viterbi, Principles of Coherent Communication. New York,
McGraw-Hill, 1966.

G. S. Watson, **Distributions on the circle and sphere,”” Essays Stat.
Sci., vol. 19A, pp. 265-280, 1982.



LOVELL AND WILLIAMSON: STATISTICAL PERFORMANCE

Brian C. Lovell (S'87-M’90) was born in Bris-
bane, Australia, in 1960. He received the B.E. de-
gree in electrical engineering in 1982, the B.Sc.
degree in computer science in 1983, and the Ph.D.
degree in electrical engineering in 1991, all from
the University of Queensland, Australia.

He worked in the Middle East for Schlumberger
from 1983 to 1986 performing geophysical explo-
ration, then returned to Australia to perform doc-
toral research. Since 1989, he has worked as a
Lecturer in the Department of Electrical Engi-
neering, University of Queensland. and is now also a Researcher with the
Centre for Sensor, Signal, and Information Processing, Adelaide. His in-
terests include digital signal processing, stochastic processes, coding the-
ory. and neural networks.

1723

Robert C. Williamson (M'90) was born in Bris-
bane, Australia, in 1962. He received the B.E. de-
gree in electrical engineering from the Queens-
land Institute of Technology in 1984, and the
M.Eng.Sci. degree in 1986 and the Ph.D. degree
in 1990, both from the University of Queensland
in electrical engineering.

He worked as a Tutor for five years and Lec-
turer for one year at the University of Queensland.
Since 1990 he has been at the Australian National
University as a Lecturer in both the Department

of Systems Engineering and Interdisciplinary Program in Engineering. His
current research interests include signal processing algorithms and theo-
retical issues in neural networks.



