
INDUCTIVE LEARNING USING MULTISCALE CLASSIFICATION

Andrew P. Bradley Brian C. Lovell�y

� Dept. of Electrical and Computer Engineering, University of Queensland, Brisbane 4072, AUSTRALIA

y This project is supported by the Cooperative Research Centre for Sensor Signal and Information Processing

Multiscale Classi�cation is a simple rule-based

inductive learning algorithm. It can be applied

to any N -dimensional real or binary classi�cation

problem to successively split the feature space in

half to correctly classify the training data. The al-

gorithm has several advantages over existing rule-

based and neural network approaches: it is very

simple, it learns very quickly, there is no network

architecture to determine, there is an associated

con�dence with each classi�cation rule, and noise

can be automatically added to the training data

to improve generalization.

1 Background

Arti�cial neural networks trained using back-

propagation (backprop) have become a popu-

lar solution to many inductive learning prob-

lems. However, they have a number of prob-

lems, which may be severe, depending on the

type of problem they are used to solve. Some

of the main problems are:

� Learning from examples can be very slow.

� Local minima in the error surface may lead

to convergence to an unacceptable solu-

tion.

� The di�culty of choosing a network which

is capable of �nding an acceptable solu-

tion.

� The di�culty of extracting classi�cation

rules in a meaningful form from the net-

work.

There have been a number of modi�cations

proposed to the backprop algorithm to re-

duce these problems such as using second order

methods, conjugate gradient or line searches.

Cascade-Correlation as proposed by Fahlman

and Lebiere (1990) also attempts to overcome

the problem of optimal network architecture

by starting with a minimal network and then

automatically adding and training new hidden

units until an acceptable solution is found.

This paper wishes to demonstrate that some

problems that are extremely di�cult to solve

using neural networks can be easily solved

by a technique which we call Multiscale Clas-

si�cation. The proposed algorithm, though

rule-based, has simple parallel and parallel-

sequential hardware implementations. It

should also be noted that the algorithm does

not use any measure of attribute information

content normally associated with top down in-

duction of decision trees (c.f. CART, ID3).

2 The Basic Algorithm

All N inputs are considered to be real numbers

in the range [0,1) which can then be expressed

as binary fractions. This means that the en-

tire feature space is mapped to the inside of a

unit hypercube. Binary representation of the

inputs is convenient because each successive bit

position corresponds to a successive halving of

feature space. In other words, the most sig-

ni�cant bit indicates if an input is greater or

less than 0.5; the second most signi�cant bit

increases this resolution to 0.25, the third to

0.125, and so on. By performing the classi�ca-

tion one bit position at a time, the algorithm

uses �ner and �ner levels of resolution to de-

termine the eventual classi�cation | hence the

name multiscale

The multiscale classi�er is based on a tree ar-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14980951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: The �rst training point is learnt as

one universal rule

Figure 2: The second point is learnt, the fea-

ture space is split in half

chitecture. Each node of the tree may have up

to 2N branches or leaves. Normally there will

be less than 2N branches or leaves at each level

of the tree, as rules can have \don't care" terms

which can cover large regions of feature space.

Here \don't care" terms indicate irrelevant in-

puts which may be exploited in the same man-

ner as occurs in logic minimization. Classi�ca-

tion is performed by simultaneously examining

the most signi�cant bit of each of the N inputs.

This either yields the output class directly (a

leaf of the tree), or tells us that we must ex-

amine the next bit (descend down a branch of

the tree) to determine the output class. Exam-

ination of the next bit either yields the output

class directly, or tells us to examine the follow-

ing bit, and so on. In this way the training

data is classi�ed using the minimum level of

input resolution required to separate the out-

put classes, using only one bit of each input at

each level of the tree .

The evolution of the classi�cation tree as the

algorithm learns is best illustrated by the sim-

ple example in two dimensions (two inputs)

shown in Figures 1 through 4.

When the �rst training point is learnt the

whole classi�cation space is labeled with the

training data's class in one universal rule, as

Figure 3: The third training point leads to a

further rule split

Figure 4: The fourth point requires going to

the next level of resolution

shown in Figure 1. When the next training

point arrives of a di�erent class, this universal

rule matches the input but yields the wrong

class and so must be split into two rules, one

for each class, as in Figure 2. Note that this

splitting of the rules can be done by looking

only at the most signi�cant bit in the new in-

put data. The third training point now leads

to the second rule being split in half as in Fig-

ure 3. The fourth training point matches the

third rule but is of a di�erent class; in this

case the second most signi�cant bit of the in-

put data must now be used to separate the two

points. Thus the third rule is converted to a

branch to the next level down.

Rules are either leaves and have a classi�ca-

tion associated with them or are branches and

simply lead down the next level of resolution

and eventually a leaf.

3 The Twin Spirals Problem

The \Twin Spirals" benchmark was �rst pro-

posed by Alexis Wieland of the MITRE Cor-

poration. It consists of two continuous-valued

inputs and a single output. The training set

consists of 194 X-Y values, half of which are

classi�ed as black and the other half as white.

These training points are arranged in two inter-



Figure 5: Classi�cation after 1 training epoch

Figure 6: Classi�cation after 4 training epochs

locking spirals that go around the origin three

times. This problems has been shown to be ex-

tremely di�cult for conventional backprop al-

gorithms to solve (Fahlman and Lebiere, 1990).

Figures 5 and 6 show the development of

the classi�cation rules during training. At

the fourth epoch the algorithm correctly clas-

si�es all the training data and has converged

to a solution. For comparison, Lang and

Witbrock (1988) claim that, with an appro-

priate choice of network, standard backprop

solves this problem in 20,000 epochs, back-

prop with a modi�ed error function requires

12,000 epochs, and Quickprop requires 8000

epochs. Fahlman and Lebiere (1990) state

that the Cascade-Correlation algorithm needs

about 1700 epochs.

A measure of generalization performance can

be obtained from the twin-spirals benchmark

by using another set of 194 test points which

fall on the spirals midway between the train-

ing set points. The basic multiscale algorithm

classi�es 95% of this test data correctly |

after stochastic generalization (see section 4)

it achieves 100%. This should be compared

to Cascade-Correlation which yields networks

which obtain between 85 and 93% correct clas-

si�cation. Both algorithms obtain 100% cor-

rect classi�cation on the training data.

4 Stochastic Generalization

Noise is often added to the training data of neu-

ral networks in order to improve their general-

ization abilities (Tesauro and Sejnowski, 1989).

Normally it is very di�cult to estimate a pri-

ori just how much noise to add to get good

generalization. In the multiscale classi�cation

technique the amount of noise to add can be

accurately gauged from the number of levels

of resolution required to classify the original

training data. Generalization can also be im-

proved by pruning the rule tree generated so

that rules with a low con�dence (i.e., classify

few examples) are merged with adjacent rules

that have a higher con�dence.

Before stochastic generalization the multiscale

classi�er achieved 95% correct classi�cation on

the twin spiral test set after only 4 epochs

of training. Figure 7 shows the classi�cation

boundaries after a further 90 epochs of stochas-

tic generalization, which corresponds to 100%

correct classi�cation of the test set.

Figure 8 shows the con�dence plot of the rule

tree generated for the two-spirals problem. In-

creasing grey level shows increasing con�dence

of a black classi�cation, while lighter grey levels

show increasing con�dence of a white classi�-

cation. Figure 9 shows that after tree pruning,

the classi�er still obtained 100% but the rule

tree was reduced in size by about 25%.

This level of generalization performance is

better than either Cascade-Correlation (85{

93%) or backprop neural networks with a far

lower computational burden.

5 Further Comments

Other features of the multiscale classi�er are:

1. Guaranteed Convergence: The multi-

scale classi�cation algorithm will converge

to 100% correct classi�cation on any �-

nite training set as long as the output

classes are disjoint, i.e., no two examples

can have exactly the same feature space

co-ordinates and di�erent output classes.



Figure 7: Classi�cation after 90 noisy training

epochs

Figure 8: Con�dence plot of spiral classi�ca-

tion

2. Localized Forgetting: Because the al-

gorithm classi�es examples by examining

one bit position at a time, the exact loca-

tions of the examples that originally gen-

erated a particular rule leaf are not known

at the next level down. When the rule leaf

is split, some examples may be \forgotten"

until they are relearnt on the next train-

ing epoch. Rule splitting can only occur

when a new example is misclassi�ed by an

existing rule leaf, so only \neighbouring"

examples are at risk of being forgotten.

3. Learning Speed: The multiscale classi-

�er halves feature space to locate output

class clusters (similar to a binary search)

and so tends to very rapidly modify class

boundaries.

6 Conclusions

Studies of the performance of the multiscale

classi�er on the Monk's Problems (Thrun,

1991), the XOR problem, and Overlapping

Gaussian Output Classes are reported in

Figure 9: Pruned classi�cation after 90 noisy

training epochs

(Lovell and Bradley, 1993). In all cases the

multiscale classi�er o�ered far faster learning

and comparable (if not better) generalization

performance than the best reported results for

either backprop neural networks or advanced

classi�ers.

It is envisaged that this technique will be ap-

plied in the �eld of Medical Diagnostics where

it is ideally suited because of its parallel imple-

mentation, rule-based nature, and con�dence

level output.

7 References

S. E. Fahlman and C. Lebiere (1990), The

cascade-correlation learning architecture,

in \Advances in Neural Information Pro-

cessing Systems", D. S. Touretzky, ed.,

San Mateo: Morgan Kaufmann, 524{532,

Volume 2.

K. J. Lang and M. J. Witbrock (1988), Learn-

ing to tell two spirals apart, in \Proceed-

ings of the 1988 Connectionist Summer

School", Morgan Kaufman.

B. C. Lovell and A. P. Bradley (1993), The

Multiscale Classi�er, Center for Sen-

sor Signal and Information Processing,

CSSIP Technical Report.

G. Tesauro and T. J. Sejnowski (1989),A paral-

lel network that learns to play backgam-

mon, Arti�cial Intelligence 39, 357{390.

S. B. Thrun (1991), The MONK's problem:

A performance comparison of di�er-

ent learning algorithms, Carnegie-Mellon

University, Technical Report.


